Ordinary Differential Equations: Linear Multistep Methods

Kyle A. Gallivan

School of Computational Science

Florida State University

ACS I Spring 2007
Sources

Assume $h_n = h$ and let $f_n = f(t_n, y_n)$ where y_n is a point on the numerical solution.

$k-$ step Linear multistep methods are of the form:

$$
\sum_{j=0}^{k} \alpha_j y_{n-j} = h \sum_{j=0}^{k} \beta_j f_{n-j}
$$

$$
\mathcal{N}_h[y_n] = \frac{\sum_{j=0}^{k} \alpha_j y_{n-j}}{h} - \sum_{j=0}^{k} \beta_j f_{n-j}
$$

$$
\alpha_0 \neq 0
$$

$$
|\alpha_k| + |\beta_k| \neq 0
$$

y_0, \ldots, y_{k-1} must be specified
Examples

- forward Euler

\[y_0 = c \text{ given, } y_n = y_{n-1} + hf_{n-1} \]

- backward Euler

\[y_0 = c \text{ given, } y_n = y_{n-1} + hf_n \]

- Trapezoidal rule

\[y_0 = c \text{ given, } y_n = y_{n-1} + \frac{h}{2}(f_n + f_{n-1}) \]
Various derivations of these methods are possible depending on the family.

- algebraic constraints
- difference operator calculus
- interpolation and integration
- interpolation and differentiation
Adams Methods

\[y(t_n) = y(t_{n-1}) + \int_{t_{n-1}}^{t_n} f(t, y(t))dt \]

Adams-Bashforth – explicit methods, \(k \)-step, order \(k \)

- let \(P'(t) \) interpolate \(f_{n-1}, \ldots, f_{n-k} \)
- Define the integration constant so that \(P(t_{n-1}) = y_{n-1} \)
- The method is given by \(y_n = P(t_n) \)

Adams-Moulton – implicit methods, \(k \)-step, order \(k + 1 \)

- let \(P'(t) \) interpolate \(f_n, f_{n-1}, \ldots, f_{n-k} \)
- Define the integration constant so that \(P(t_{n-1}) = y_{n-1} \)
- The method is given by \(y_n = P(t_n) \)
Example

forward Euler:

\[P'(t) = f_{n-1} \]
\[P(t) = tf_{n-1} + c \]
\[y_{n-1} = t_{n-1}f_{n-1} + c \rightarrow c = y_{n-1} - t_{n-1}f_{n-1} \]
\[y_n = P(t_n) \]
\[= t_nf_{n-1} + y_{n-1} - t_{n-1}f_{n-1} \]
\[= y_{n-1} + hf_{n-1} \]
Example

Trapezoidal rule:

\[P'(t) = \frac{(t - t_{n-1})}{(t_n - t_{n-1})} f_n - \frac{(t - t_n)}{(t_n - t_{n-1})} f_{n-1} \]

\[P(t) = \frac{1}{2h} \left[(t - t_{n-1})^2 f_n - (t - t_n)^2 f_{n-1} \right] + c \]

\[c = y_{n-1} + \frac{h}{2} f_{n-1} \]

\[y_n = \frac{1}{2h} \left[(t_n - t_{n-1})^2 f_n \right] + y_{n-1} + \frac{h}{2} f_{n-1} \]

\[= y_{n-1} + \frac{h}{2} (f_n + f_{n-1}) \]
Backward Differentiation Methods

BDF – implicit methods, k-step, order k

- let $P(t)$ interpolate $y_n, y_{n-1}, \ldots, y_{n-k}$
- The method is given by $P'(t_n) = f_n$

Backward Euler:

$$P(t) = \frac{(t - t_{n-1})}{(t_n - t_{n-1})} y_n - \frac{(t - t_n)}{(t_n - t_{n-1})} y_{n-1}$$

$$P'(t) = \frac{1}{h} (y_n - y_{n-1})$$

$$f_n = \frac{1}{h} (y_n - y_{n-1})$$

$$y_n = y_{n-1} + h f_n$$
Linear multistep methods are recurrences and can be defined in terms of their characteristic polynomials.

\[
\sum_{j=0}^{k} \alpha_j y_{n-j} = h \sum_{j=0}^{k} \beta_j f_{n-j}
\]

\[
\rho(\xi) = \sum_{j=0}^{k} \alpha_j \xi^{k-j} \quad \sigma(\xi) = \sum_{j=0}^{k} \beta_j \xi^{k-j}
\]

Various properties can be analyzed and expressed in terms of these polynomials.
We have using Taylor series of $y(t)$

$$
N_h[y_n] = \frac{\sum_{j=0}^{k} \alpha_j y_{n-j}}{h} - \sum_{j=0}^{k} \beta_j f_{n-j}
$$

$$
d_n = N_h[y(t)]
$$

$$
hN_h[y(t)] = C_0 y(t) + C_1 h y'(t) + \cdots + C_q h^q y^{(q)}(t) + \cdots
$$

DEFINITION: The linear multistep method is consistent of order p if and only if

$$
C_0 = C_1 = \cdots = C_p = 0 \text{ and } C_{p+1} \neq 0.
$$

We have $d_n = C_{p+1} h^p y^{(p+1)}(t_n) + O(h^{p+1})$.

Closed forms are known for the C_i. The first few are:

\[
C_0 = \sum_{j=0}^{k} \alpha_j \quad C_1 = -\sum_{j=1}^{k} j\alpha_j - \sum_{j=0}^{k} \beta_j
\]

\[
C_2 = \sum_{j=1}^{k} \frac{j^2}{2} \alpha_j + \sum_{j=1}^{k} j\beta_j \quad C_3 = -\sum_{j=1}^{k} \frac{j^3}{6} \alpha_j - \sum_{j=1}^{k} \frac{j^2}{2} \beta_j
\]

\[
C_4 = \sum_{j=1}^{k} \frac{j^4}{24} \alpha_j + \sum_{j=1}^{k} \frac{j^3}{6} \beta_j
\]
Consistency

LEMMA: We have

\[C_0 = \rho(1) \quad \text{and} \quad C_1 = \rho'(1) - \sigma(1) \]

and therefore a method is consistent if and only if

\[\rho(1) = 0 \quad \text{and} \quad \rho'(1) = \sigma(1) \]
Examples

Adams-Bashforth: k–step, order k, explicit family

forward Euler:

\[
\alpha_0 = 1, \quad \alpha_1 = -1, \quad \beta_0 = 0, \quad \beta_1 = 1 \\
C_0 = 1 - 1 = 0, \quad C_1 = 1 - 0 - 1 = 0 \\
C_2 = -\frac{1}{2} + 1 = \frac{1}{2}
\]

AB(k=2):

\[
\alpha_0 = 1, \quad \alpha_1 = -1, \quad \alpha_2 = 0, \quad \beta_0 = 0, \quad \beta_1 = \frac{3}{2}, \quad \beta_2 = -\frac{1}{2} \\
C_0 = 1 - 1 = 0, \quad C_1 = 1 + 0 + 0 - \frac{3}{2} + \frac{1}{2} = 0 \\
C_2 = -\frac{1}{2} + 0 + \frac{3}{2} - 1 = 0, \quad C_3 = \frac{1}{6} + 0 - \frac{3}{4} + 2 = \frac{5}{12}
\]
Examples

Adams-Moulton: \(k \)-step, order \(k + 1 \), implicit family

AM(k=1) (trapezoidal):

\[
\alpha_0 = 1, \quad \alpha_1 = -1, \quad \beta_0 = \frac{1}{2}, \quad \beta_1 = \frac{1}{2}
\]

\[
C_0 = 1 - 1 = 0, \quad C_1 = 1 - \frac{1}{2} - \frac{1}{2} = 0
\]

\[
C_2 = -\frac{1}{2} + \frac{1}{2} = 0, \quad C_3 = -\frac{1}{6}(-1) - \frac{1}{2}(\frac{1}{2}) = -\frac{1}{12}
\]
Examples

Adams-Moulton: $k-$step, order $k + 1$, implicit family

AM(k=2):

\[\alpha_0 = 1, \quad \alpha_1 = -1, \quad \alpha_2 = 0, \quad \beta_0 = 0, \quad \beta_1 = \frac{3}{2}, \quad \beta_2 = -\frac{1}{2} \]

\[C_0 = 1 - 1 = 0, \quad C_1 = -1 + 2 + 0 - \frac{5}{12} - \frac{8}{12} + \frac{1}{12} = 0 \]

\[C_2 = -\frac{1}{2} + \frac{8}{12} - \frac{2}{12} = 0, \quad C_3 = -\frac{1}{6}(-1 + 0) - \frac{1}{2}(\frac{8}{12} - \frac{4}{12}) = 0 \]

\[C_4 = \frac{1}{24}(-1) + \frac{1}{6} \cdot \frac{8}{12} - \frac{8}{6} \cdot \frac{1}{12} = -\frac{1}{24} \]
Examples

Backward Differentiation Method: k–step, order k, implicit family

backward Euler:

\[\alpha_0 = 1, \; \alpha_1 = -1, \; \beta_0 = 1, \; \beta_1 = 0 \]

\[C_0 = 1 - 1 = 0, \; C_1 = 1 - 1 = 0, \; C_2 = \frac{1}{2}(-1) = -\frac{1}{2} \]

BDF(2):

\[\alpha_0 = 1, \; \alpha_1 = -\frac{4}{3}, \; \alpha_2 = \frac{1}{3}, \; \beta_0 = \frac{2}{3}, \; \beta_1 = 0, \; \beta_2 = 0 \]

\[C_0 = 1 - \frac{4}{3} + \frac{1}{3} = 0, \; C_1 = \frac{4}{3} - \frac{2}{3} - \frac{2}{3} = 0, \]

\[C_2 = \frac{1}{2}(-\frac{4}{3} + \frac{4}{3}) = 0, \; C_3 = -\frac{1}{6}(-\frac{4}{3} + \frac{8}{3}) = -\frac{2}{9} \]
The first order differential equation has been replaced with a k—th order difference equation.

- starting values must be given and be $O(h^p)$ accurate.
- spurious roots of the difference equation can not help.
- spurious roots of the difference equation must be prevented from damaging the solution.
0-Stability of Linear Multistep Methods

- The 0-stability definition used earlier based on the Lipschitz continuity of \mathcal{N}_h^{-1} can be difficult to work with.

- 0-stability for linear multistep methods can be stated in terms of their performance on the test problem $y' = 0$.

- A method is 0-stable if the numerical solution to $y' = 0$ remains bounded when the extra initial conditions are perturbed.

- Characterization comes from standard difference equation results.

- Useful linear multistep methods require an additional property – strong stability.
0-Stability, Consistency, Convergence

DEFINITION: The linear multistep method with characteristic polynomials $\rho(\xi)$ and $\sigma(\xi)$ is

- consistent if and only if
 \[\rho(1) = 0 \quad \text{and} \quad \rho'(1) = \sigma(1) \]

- satisfies the root condition if all roots, ξ_i, of $\rho(\xi)$ satisfy $|\xi_i| \leq 1$ and roots with unit magnitude are simple.

THEOREM: If a linear multistep method is consistent, satisfies the root condition, and has initial values that are $O(h^p)$ accurate, then the method is convergent to order p.
Example of Unstable Consistent Method (Petzold)

The method

$$y_n = -4y_{n-1} + 5y_{n-2} + 4hf_{n-1} + 2hf_{n-2}$$

is the most accurate two-step explicit method in terms of local truncation error. It does not satisfy the root condition however since

$$\rho(\xi) = \xi^2 + 4\xi - 5 = (\xi - 1)(\xi + 5)$$

Consider solving $y' = 0$, with $y_0 = 0$ and $y_1 = \epsilon$ to see disastrous effect of instability.
Strong Stability

DEFINITION: A linear multistep method is strongly stable if all of the roots, \(\xi_i \), of \(\rho(\xi) \) satisfy \(|\xi_i| < 1 \) except the principal root \(\xi = 1 \).

DEFINITION: A linear multistep methods is weakly stable if it is 0-stable but not strongly stable.

EXAMPLE: Consider Milne’s method

\[
y_n = y_{n-2} + \frac{h}{3} (f_n + 4f_{n-1} + f_{n-2})
\]

The characteristic polynomial \(\rho(\xi) = \xi^2 - 1 \) and \(\xi_i = \pm 1 \). When applied to \(y' = \lambda y \) the recurrence is dominated by the spurious root at \(-1\) for any \(\lambda < 0 \) and is unstable. (To be stable and accurate it should be dominated by the principal root.)
Stability

- All one-step methods are 0-stable.
- Adams methods have $\rho(\xi) = \xi^k - \xi^{k-1}$ and are strongly stable.
- BDF methods are strongly stable for $k = 1, \ldots, 6$ and unstable thereafter.
Absolute Stability Region

- test problem: $y' = \lambda y$
- applying method yields $\sum_{j=0}^{k} \alpha_j y_{n-j} = h\lambda \sum_{j=0}^{k} \beta_j y_{n-j}$
- characteristic polynomial for homogeneous difference equation
 $$\rho(\xi) - h\lambda \sigma(\xi) = 0$$
- $|y_n|$ does not grow for if roots satisfy $|\xi_i| \leq 1$
- roots are a function of $h\lambda$
- Boundary of absolute stability region for $h\lambda = z \in \mathbb{C}$
 $$z = \frac{\rho(e^{i\theta})}{\sigma(e^{i\theta})}$$
Absolute Stability Regions

AB 1–4 in red
AM 1–6 in green
Absolute Stability Regions

BDF 1,2,3

k=1

k=2

k=3
Stiffness and Stability

• BDF 1 and 2 A-stable, strongly stable, stiff decay
• BDF’s trade absolute stability for stiff decay
• $A(\alpha)$ – stability is stability in a wedge around real axis – still too restrictive
• stiff stability is accurate around origin and absolutely stable for large negative $Re(\lambda)$.
Predictor Corrector Pairs

- Implicit methods use explicit methods to predict value at t_n to start nonlinear solution process.
- Functional iteration OK for nonstiff problems
- Newton or other superlinear method needed for stiff problems
- Error can be estimated from predictor/corrector difference
- Fixed number of corrector iterations may be used – $P(EC)^m E$ methods
- Variable stepsize, variable order, method selection are all available in good software
Comments

• AB cheaper than AM and BDF
• same order or same steps AM better error and stability than AB
• As steps increase AM and AB improve error and reduce stability region.
• BDFs are superstable and have stiff decay
• As steps increase BDF improve error and increase instability region.
Things Not Treated

- variable step methods, representations, and adjustments
 - representations: Nordsieck, modified divided differences
 - high order starting
 - asymptotics when only the last stepsize changes
 - heuristics
- Boundary value problems and methods
 - finite difference methods and nonlinear equations
 - shooting methods
- Differential Algebraic theory and methods.
 - index of a DAE
 - consistent initial conditions
 - symplectic and geometric integrators