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ABSTRACT

This dissertation considers the generalization of two well-known unconstrained optimization
algorithms for Rn to solve optimization problems whose constraints can be characterized
as a Riemannian manifold. Efficiency and effectiveness are obtained compared to more
traditional approaches to Riemannian optimization by applying the concepts of retraction
and vector transport. We present a theory of building vector transports on submanifolds of
Rn and use the theory to assess convergence conditions and computational efficiency of the
Riemannian optimization algorithms. We generalize the BFGS method which is an highly
effective quasi-Newton method for unconstrained optimization on Rn. The Riemannian
version, RBFGS, is developed and its convergence and efficiency analyzed. Conditions that
ensure superlinear convergence are given.

We also consider the Euclidean Adaptive Regularization using Cubics method (ARC)
for unconstrained optimization on Rn. ARC is similar to trust region methods in that it
uses a local model to determine the modification to the current estimate of the optimal
solution. Rather than a quadratic local model and constraints as in a trust region method,
ARC uses a parameterized local cubic model. We present a generalization, the Rieman-
nian Adaptive Regularization using Cubics method (RARC), along with global and local
convergence theory.

The efficiency and effectiveness of the RARC and RBFGS methods are investigated and
their performance compared to the predictions made by the convergence theory via a series
of optimization problems on various manifolds.
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CHAPTER 1

INTRODUCTION

This dissertation investigates the generalization of algorithms for unconstrained optimiza-
tion on Rn to Riemannian manifolds and their analysis, implementation, and evaluation.
This is achieved by identifying key components of Riemannian optimization algorithms,
analyzing the theoretical properties that influence the convergence of the associated algo-
rithms, and developing novel algorithms and implementations that are significantly more
efficient than simple generalizations from Rn while achieving rigorously guaranteed con-
vergence. The dissertation is organized as follows. In Chapter 1 an overview of the opti-
mization problem on Riemannian manifolds is given followed by a brief history of research
on methods for optimization on manifolds and a summary of the basic principles upon
which the associated algorithms are built. The chapter ends with an overview of the pro-
posed research and the thesis statement investigated. Chapters 2, 3 and 4 present the
details of the two main components of the dissertation: Riemannian manifold versions of
the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) and the Adaptive
Regularization using Cubics algorithm (ARC). The discussions include convergence theory
as well as algorithmic and implementation issues. Chapter 5 presents the evaluation of
the effectiveness of the methods and compares predictions made by the theory to observed
performance via numerical experiments.

1.1 The Problem of Optimization on a Manifold

Optimization on manifolds (also called Riemannian optimization) concerns finding
an optimum (global, or more reasonably, local) of a real-valued function f defined over a
(smooth) manifold. Roughly speaking, a manifold is a set endowed with coordinate patches
that overlap smoothly.

When the function f is read through a coordinate system, it becomes a classical real-
valued function, defined on an open subset of Rd (where d is the dimension of the manifold),
to which classical optimization techniques can be applied. There are, however, several
reasons not to follow this route. The coordinate patches may not be available explicitly, or
they may have an expression that is unwieldy in terms of required floating point operations
or memory usage. There is also the issue of switching between the coordinate systems as
the algorithm evolves over the manifold. Moreover, resorting to coordinate systems may
destroy or hide some useful properties of the manifold M and the cost function f .
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Optimization on manifolds is applicable in two broad situations:

1. Classical equality-constrained optimization problems of the form

min f(x)

s.t. h(x) = 0,

where h is such that {x : h(x) = 0} is a submanifold of Rn. For example, finding
the best orientation of a solid object (a problem that appears in pose estimation) is a
problem on the special orthogonal group SO(3), which is a submanifold of R3×3.

In view of their formulation, these problems can also be tackled by classical equality-
constrained optimization methods. The manifold-based approach offers certain ad-
vantages over these methods:

• All the iterates are feasible (i.e., they satisfy the constraints, h(x) = 0); this
property is particularly useful when attempting to stop the iteration early.

• Riemannian optimization algorithms usually enjoy convergence properties akin
to unconstrained optimization algorithms. In a sense, these algorithms perform
an unconstrained optimization over a constrained set.

• There is no need to consider Lagrange multipliers or penalty functions. Rieman-
nian optimization is also a way of avoiding the Maratos effect.

• If f is only defined on h−1(0), then classical infeasible (i.e., the iterates do not
satisfy h(x) = 0) methods are not applicable.

2. Problems where the objective function has some continuous invariance properties that
we want to eliminate for various reasons: efficiency; consistency; applicability of cer-
tain convergence results; avoid failure of certain algorithms, e.g., Newton’s method,
that do not behave satisfactorily in case of degeneracy. For example, a way to impose
a low-rank constraint on a symmetric positive-semidefinite matrix X is to factor it as
X = Y Y T , where Y ∈ Rn×k with n > k, then Y Q represents the same matrix X for
all orthogonal Q.

Optimization on manifolds, therefore, can be thought of as an “informed” way of doing
optimization when the cost function has certain invariance properties or when the constraint
set possesses a nice smooth geometry.

Applications of Riemannian optimization abound in engineering and the sciences in-
cluding areas such as: algorithmic questions pertaining to linear algebra, signal processing,
data mining, statistical image analysis, financial mathematics, nanostructures, and model
reduction of dynamical systems. We refer the reader, e.g., to [4] and the many references
therein. Specific problems relevant to multiple applications to be used in our work are also
mentioned below.

1.2 Historical Context

Even though optimization on manifolds is a relatively new field of research, the concept
of optimizing a function over a manifold dates back to the work of Luenberger [19, 20] in
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the early 1970s, if not earlier. Luenberger mentions the idea of performing line search along
geodesics, “which we would use if it were computationally feasible (which it definitely is
not)”. This statement is not correct in all generality, as there are important manifolds
(such as the sphere and the Grassmann manifold) where geodesics admit closed-form ex-
pressions. However, even in this case, Luenberger was correct, in the sense that computing
the geodesics is rarely worth the effort: in most optimization algorithms on manifolds, an
approximation of the geodesics (in a sense that will be specified later on in this text) is
enough to guarantee that the desired convergence properties are achieved. Replacing clas-
sical mathematical objects found in Riemannian geometry (such as geodesics, Levi-Civita
connections, parallel translation) by approximations of these objects, without losing crucial
convergence properties of the algorithms, is one of the cornerstones of our group’s previous
work and this dissertation.

Somewhat surprisingly, it is only in around the year 2002 that researchers started to
recognize the importance of making room in the collection of optimization methods for a
wide class of approximations of geodesics. Indeed, for roughly two decades, the researchers’
concern was chiefly of a theoretical nature: the central research question was to exploit
differential-geometric objects in order to formulate optimization strategies on abstract non-
linear manifolds, where the notions of addition and multiplication by a scalar no longer
exist. The first research paper to focus on optimization on manifolds was Gabay’s work [15]
on minimizing a differentiable function over a differential manifold. Initially, this paper was
barely noticed. (According to ISI Web of Knowledge, [15] received only 8 citations before
the year 2000.) The area of optimization on manifolds started to gain wider popularity
in the 1990s, notably with the seminal works of Helmke and Moore [16] and Edelman et
al. [14]. (ISI records a total of 361 citations for [16], including 60 citations over the last two
years.)

Gradually, the emphasis shifted towards making the manifold-based approach more
practical and flexible, with particular consideration for the efficiency of the resulting nu-
merical algorithms. Optimization on manifolds is now a very active area of research. Many
manifold-based algorithms have been proposed or are under development, Ph.D. theses have
been presented and are in preparation, and minisymposia and tutorial workshops are being
organized. The recent book [4], co-authored by Co-advisor Absil, proposes an introduc-
tion to the area, with an emphasis on providing the necessary background in differential
geometry instrumental to algorithmic development, and on guiding the reader through the
concrete calculations that turn an abstract geometric algorithm into a numerical implemen-
tation. It includes a good summary of much of the recent work by the Co-advisors Gallivan
and Absil on Riemannian manifolds including that in the dissertation of C. Baker that de-
veloped a complete theory, implemented a numerical library and analyzed the performance
of a Riemannian trust-region family of methods [6]. Baker’s dissertation also contains a
concise introduction to the basic elements of Riemannian optimization methods.
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1.3 Basic Principles

1.3.1 Unconstrained Optimization on a Constrained Space

Roughly speaking, a manifold is a generalization of the Euclidean space Rn on which
the notion of a differentiable scalar field still exists. One can think of a nonlinear manifold
as a smooth, curved surface, even though this simple picture does not fully do justice to
the generality of the concept. Retaining the notion of differentiability opens the way for
preserving concepts such as gradient vector fields and derivatives of vector fields, which are
instrumental in many well-known optimization methods in Rn, such as steepest descent,
Newton, trust regions or conjugate gradients.

Optimization on manifolds can be intuitively thought of as unconstrained optimization
over a constrained search space. As such, optimization algorithms on manifolds are not
fundamentally different from classical algorithms for unconstrained optimization in Rn. In-
deed, new optimization algorithms on manifolds are often obtained by starting from an
algorithm for unconstrained optimization in Rn, extracting the underlying concepts, and
rewriting them in such a way that they are well-defined on abstract manifolds. Generally
speaking, applying the techniques of optimization on manifolds to a given computational
problem involves the following steps. First, one needs to rephrase the problem as an opti-
mization problem on a manifold. Clearly, this is not possible for all problems, but examples
abound (several examples are mentioned below, and many other examples can be found,
e.g., in [4, 14, 16, 18]). Second, one needs to pick an optimization method, typically from the
several classical optimization methods that have been formulated and analyzed for manifold
search spaces. The final step is to turn the generic optimization method into a practical
numerical algorithm. This entails choosing a representation of the manifold, e.g., encod-
ing via a particular quotient manifold or embedded submanifold, and providing numerical
expressions for a handful of differential-geometric objects, such as a Riemannian metric
and a retraction. The compartmentalization of the representation of the elements of the
manifold, the differential-geometric objects and the algorithm that uses them lends itself to
the development of very general and quite powerful software. Generic prototype implemen-
tation of algorithms on a Riemannian manifold as well as more specific implementations
exploiting the structure of particular problems and manifolds can be obtained, for example,
from http://www.math.fsu.edu/~cbaker/GenRTR.

1.3.2 Analogues of Lines and Planes

Some basic intuition behind the adaptation of algorithms for unconstrained optimization
in Rn can be seen by considering the fact that many have a basic step of xk+1 = xk +
αkpk where the direction vector pk may be determined first followed by a one-dimensional
search to set the step αk as in a line search method, or αkpk may be set by considering
a local constrained optimization of a simplified model of the cost function as in a trust-
region method. In either case, the main concern is the ability to generalize the notion of
motion for some distance on a line given by a direction vector. Hence, much of the initial
manifold work centered around the evaluation of geodesics and was accurately characterized
by Luenberger’s comment cited earlier.

As an example, consider Newton’s method for finding a stationary point of a differen-
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tiable function f . In Rn, the method reads

x+ = x− (Hess f(x))−1grad f(x),

where x is the current iterate, x+ is the new iterate, grad f(x) =
[
∂1f(x) . . . ∂nf(x)

]T
is

the gradient of f at x and Hess f(x) is the Hessian matrix of f at x defined by (Hess f(x))ij =
∂i∂jf(x). When f is a function on a nonlinear Riemannian manifold M, most of these
operations become undefined. However, the notion of a gradient still exists on an abstract
Riemannian manifold, and if one sees the Newton method as iteration that defines x+ as
x+η where η is the vector along which the derivative of the gradient is equal to the negative
of the gradient, one is led to the following iteration

∇ηgrad f = −grad f(x)

x+ = Expx(η),

where ∇ is the Levi-Civita connection and Exp is the Riemannian exponential. In the
1990s, this was considered “the” Newton iteration on manifolds; see, e.g., [25].

The significant change responsible for the renewed interest in manifold methods came
with the work of Shub et al. [5]. There the Levi-Civita connection was relaxed to any affine
connection, and the Riemannian exponential was relaxed to any retraction: a function
mapping elements of the tangent space of xk back to a neighborhood on the manifold.
A detailed proof that the resulting algorithm still has local quadratic convergence to the
nondegenerate stationary points of f can be found in [4, §6.2]. Several other classical
optimization algorithms in Rn have been generalized to manifolds; those relevant to our
proposed research include line-search methods [26], conjugate gradients [25], BFGS [15],
various direct-search methods [13], and trust-region methods [2, 6].

The Riemannian Newton method exploiting the idea of a retraction worked in the tan-
gent space to solve the Newton equation for the direction vector and its natural step length
of a single step. The work by the Co-advisors Gallivan and Absil and their previous Ph.D.
student C. Baker on the theory, implementation and application of the Riemannian trust-
region (RTR) method [2, 6] and [4, Chapter 7.0] took this idea to its logical conclusion.
Rather than looking for the analogue of a line on the curved space, their approach looked
for a series of flat spaces and associated optimization problems to replace the optimization
problem on the curved space. Of course, the tangent spaces of the iterates xk provide a
natural series of flat spaces. The retraction is used not only to map tangent vectors back to
the manifold, but also to lift the cost function f(x) to the tangent spaces yielding the lifted
cost functions f̂xk(η) where η ∈ TxkM. Combining this with Riemannian analogues of
the gradient and Hessian produces an algorithm that solves a series of unconstrained op-
timization problems in Rd (or at least reduces the lifted cost function sufficiently) via a
trust-region method, retracts to the manifold, and decides on step acceptance or rejection
and trust-region radius update by considering the relationship between the lifted cost func-
tion f̂xk(η), its local model mx(η), and the cost function f(x). The paradigm is sufficient
to describe many Riemannian optimization algorithms by simply replacing the notion of
using a trust-region method to solve each local problem with other methods. They have
shown that, despite using several lifted cost functions f̂xk(η) to define a series of problems,
under mild assumptions on the retraction, the cost function and the solution of the local
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unconstrained optimization problems the method converges globally to the critical points
of f(x) and has local superlinear convergence. In practice, convergence is to a local min-
imizer. Convergence to a saddle point only occurred for carefully constructed malicious
situations. This is due to the fact that the method is also shown to be a descent method,
and local maxima and saddle points are unstable fixed points of the algorithm. Cubic lo-
cal convergence was also proven and observed under special circumstances, e.g., when the
cost function was symmetric around the local minimizer. This essentially generalizes the
behavior of the trust-region method on Rn. Implementations of the RTR method can be
obtained from http://www.math.fsu.edu/~cbaker/GenRTR/.

1.3.3 Transport

When taking a step on a manifold M from a point x ∈ M along a vector ηx ∈ TxM, it
is natural to think about following the geodesic curve γ with initial velocity ηx and define
the new point as γ(1). However, whereas geodesics admit closed-form expressions for some
specific manifolds, in general, they are the solution of an ordinary differential equation, and
are thus costly to compute accurately. Fortunately, as noted earlier, in most optimization
algorithms one is content with first-order approximations of the geodesic. This prompted
Shub et al. [5] to introduce the concept of retraction.

Quite similarly, when one has to subtract two tangent vectors ξx and ξy at two different
points x and y = Expx(ηx), it is natural to think about parallel translating one tangent
vector to the foot of the other along the curve t 7→ Expx(tηx). Here again, apart from
some specific manifolds where parallel translation admits a closed-form expression, in gen-
eral, parallel translation requires solving an ordinary differential equation. This prompted
the relaxation of the idea and the introduction of the concept of vector transport, of
which parallel translation is a particular instance [4]. The definition below, illustrated in
Figure 1.1, invokes the Whitney sum TM ⊕ TM , which is defined as the set of all ordered
pairs of tangent vectors with same foot.

x

M

TxM

ηx

Rx(ηx)

ξx

Tηxξx

Figure 1.1: Vector transport.

Definition 1.3.1. We define a vector transport on a manifold M to be a smooth mapping

TM⊕ TM → TM : (ηx, ξx) 7→ Tηx(ξx) ∈ TM

satisfying the following properties for all x ∈ M.
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• (Associated retraction) There exists a retraction R, called the retraction associated
with T , such that the following diagram commutes

(ηx, ξx) Tηx(ξx)

ηx π (Tηx(ξx))
��

//T

��

π

//
R

where π (Tηx(ξx)) denotes the foot of the tangent vector Tηx(ξx).

• (Consistency) T0xξx = ξx for all ξx ∈ TxM;

• (Linearity) Tηx(aξx + bζx) = aTηx(ξx) + bTηx(ζx).

The first point in Definition 1.3.1 means that Tηxξx is a tangent vector in TRx(ηx)M,
where R is the retraction associated with T . When it exists, (Tηx)−1(ξRx(ηx)) belongs to
TxM. If η and ξ are two vector fields on M, then (Tη)−1ξ is naturally defined as the vector
field satisfying (

(Tη)−1ξ
)
x
= (Tηx)−1 (ξRx(ηx)).

It was shown in [4, §8.2.1] that when any vector transport is used in an approximate
Newton method to find zeros of functions defined on a manifold where the Jacobian (or
Hessian if in an optimization context) is approximated by finite differences, the resulting
algorithm enjoys convergence properties akin to those of approximate Newton method in
Rn. As with the introduction of retraction to replace the exponential map, replacing parallel
translation by the more general, and sometimes more efficient, concept of vector transport
is a key part of our work developing efficient Riemannian optimization algorithms.

1.4 Research Overview and Thesis Statement

The development of a complete convergence theory for the RTR method and its success-
ful implementation and application to important problems, by our group, is a significant
step in the development of efficient and well-understood optimization algorithms for Rie-
mannian manifolds. However, there is still room for improvement, in several ways. This
dissertation concentrates on two: (i) Unconstrained optimization in Rn is still an active area
of research. Several novel algorithms have appeared recently that need to be generalized
and analyzed on manifolds. This is the case, for example, of the Adaptive Regularization
using Cubics algorithm which, like trust-region methods, advances to a solution using a
local model of the cost function [9, 10]. (ii) Some of optimization algorithms have not,
or not fully, benefited from the possibility of relaxing certain differential-geometric objects
(Riemannian exponential, parallel translation) to wider class of objects that leave leeway for
more efficient implementations while preserving convergence properties of the optimization
algorithms. We will combine retraction-based ideas with vector transport to generalize and
improve important manifold versions of methods on Rn. Of particular interest is the BFGS
method, see for example, [12, 22].
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1.4.1 Riemannian Broyden-Fletcher-Goldfarb-Shanno Algorithm

There are other manifold algorithms, such as conjugate gradients and secant methods,
where parallel translation is used to combine two or more tangent vectors from distinct
tangent spaces. We will combine retraction-based ideas with vector transport focusing, in
particular, on the methods based on a manifold version of the secant condition used in many
methods on Rn such as Riemannian generalizations of the BFGS method. While such gen-
eralizations have been proposed in the literature, they are generally based on heuristics and
there is currently no convergence analysis that guarantees that the convergence properties
associated with the use of parallel translation remain valid when it is replaced by any vector
transport. A goal of this dissertation is to fill this gap.

An approximate Jacobian or Hessian at x ∈ M is a linear operator in the d-dimensional
tangent space TxM. Secant methods in Rn construct an approximate Jacobian Ak+1 by
imposing the secant equation

ξxk+1
− ξxk = Ak+1ηk, (1.1)

which can be seen as an underdetermined system of equations with d2 unknowns. The re-
maining degrees of freedom in Ak+1 are specified according to some algorithm that uses prior
information where possible and also preserves or even improves the convergence properties
of the underlying Newton method.

The generalization of the secant condition (1.1) on a manifold M endowed with a vector
transport T is

ξxk+1
− Tηkξxk = Ak+1[Tηkηk], (1.2)

where ηk is the update vector at the iterate xk, i.e., Rxk(ηk) = xk+1.

In the case where the manifold is Riemannian and ξ is the gradient of a real-valued
function f of which a minimizer is sought, it is customary to require the following additional
properties. Since the Hessian, Hess f(x), is symmetric (with respect to the Riemannian
metric), one may require that the operator Ak be symmetric for all k. Further, in order to
guarantee that ηk remains a descent direction for f , the updating formula may be required
to generate a positive-definite operator Ak+1 whenever Ak is positive-definite. BFGS on
Rn satisfies these properties. This dissertation contains a complete theory addressing when
this is possible, its consequences regarding guaranteeing convergence, assessing its necessity,
and evaluating its efficiency.

1.4.2 Riemannian Adaptive Regularization Using Cubics

Adaptive Regularization using Cubics (ARC) is an unconstrained optimization algo-
rithm recently proposed by Cartis et al. [9, 10]. The authors start from an optimization
method introduced by Nesterov and Polyak [21] where the objective function is overesti-
mated by a local cubic model, but they modify it in three ways to make it more practical.
Cartis et al. provide a local and global convergence theory similar to that of trust-region
methods, but, remarkably, they also have complexity bounds, and, even more remarkably,
the numerical results for small-size problem are overall significantly better than with classi-
cal trust-region methods. Our objective is to generalize this method to abstract Riemannian
manifolds, analyze its convergence and understand its efficiency tradeoffs. Generalizing the
method to abstract manifolds is straightforward, as the operation is similar to the one
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that performed in [2, 6] for trust-region methods. Extending the convergence analysis and
complexity results requires significantly more work. We develop such theory, and the per-
formance of the algorithm is analyzed and compared with state-of-the-art algorithms such
as our RTR family of methods.

1.4.3 Thesis Statement

To pursue the research goals set out above this dissertation asserts the following thesis:

1. The ARC method on Rn can be generalized for Riemannian optimization with:

• convergence theory giving the sufficient conditions for superlinear convergence;

• efficient implementations based on retractions on embedded submanifolds and
quotient manifolds;

• and demonstrations of its effectiveness on optimization test problems.

2. The BFGS method on Rn can be generalized for Riemannian optimization with:

• convergence theory giving the sufficient conditions for superlinear convergence;

• explanations of the performance effects related to the choice of vector trans-
port, the effect of operator symmetry preservation, and the relationship to true
Hessians of the cost function;

• efficient implementations and analysis of the performance tradeoffs based on
vector transport on embedded submanifolds and quotient manifolds;

• and demonstrations of its effectiveness on optimization test problems.

9



CHAPTER 2

RIEMANNIAN BFGS ALGORITHM

2.1 History and an Overview

The BFGS algorithm is one of the most successful methods for unconstrained optimiza-
tion (see [12, 22]), and it is natural that its generalization would be a topic of interest.
However, as mentioned earlier, it is its use of an update to a linear transformation that ap-
proximates the evolution of the Hessian or its inverse that makes it particularly challenging
on a Riemannian manifold.

The BFGS algorithm on Rn is given in Algorithm 1 in the form that updates, Bk, an
approximation to the Hessian at xk. An alternate form that updates an approximation to
the inverse of the Hessian at xk is also used extensively.

Algorithm 1 The BFGS algorithm on Rn

Require: real-valued function f on Rn.
Goal: Find a local minimizer of f .
Iutput: Initial iterate x1 ∈ Rn, Hessian approximation B1 = I
Output: Sequence of iterates xk.

1: for k =1, 2,. . . do

2: 1. Obtain ηk by solving: ηk = −B−1k ∇f(xk).
3: 2. Perform a line search in the direction ηk to find an appropriate scale α and update

xk+1 = xk + αηk.
4: 3. Define sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
5: 4. Bk+1 = Bk − Bksks

T
k
Bk

sT
k
Bksk

+
yky

T
k

yT
k
sk

6: end for

The update is a simple rank-2 modification to Bk that preserves symmetry and positive
definiteness. It is the generalization of this update in an efficient and effective manner that
is a major component in the success of the research discussed in this chapter.

Some work has been done on BFGS for manifolds. Gabay [15, §4.5] discussed a version
using parallel transport on submanifolds of Rn. Savas and Lim [23] apply a version on
a product of Grassmann manifolds to the problem of best multilinear low-rank approxi-
mation of tensors. Brace and Manton [7] have a version on the Grassmann manifold for
the problem of weighted low-rank approximations. They made a similar assertion to our
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thesis concerning the use of transport functions with significantly lower complexity than
parallel translation. However, their efficient version was based on heuristics and no rigorous
argument was given for the observed performance or performance expectations on other
problems.

Gabay’s Riemannian BFGS [15, §4.5] differs from the classical BFGS method in Rn

(see, e.g., [22, Alg. 6.1]) in five key aspects: (i) The search space, to which the iterates xk
belong, is a Riemannian submanifold M of Rn specified by equality constraints; (ii) The
search direction at xk is a tangent vector to M at xk; (iii) The update along the search
direction is performed along the geodesic determined by the search direction; (iv) The usual
quantities sk and yk that appear in the secant equation are tangent vectors to M at xk+1,
obtained using the Riemannian parallel transport (i.e., the parallel transport induced by the
Levi-Civita connection) along the geodesic. (v) The Hessian approximation Bk is a linear
transformation of the tangent space TxkM that gets updated using a generalized version of
the BFGS update formula. This generalized formula specifies recursively how Bk applies to
elements of TxkM .

We propose an algorithm model (or meta-algorithm), dubbed RBFGS, that subsumes
Gabay’s Riemannian BFGS method. Whereas Gabay’s method is fully specified by the
Riemannian manifold, the cost function, and the initial iterate, our RBFGS algorithm offers
additional freedom in the choice of a retraction and a vector transport. This additional
freedom affects points (iii) and (iv) above. For (iii), the curves along which the update
is performed are specified by the retraction. For (iv), the Levi-Civita parallel transport is
replaced by the more general concept of vector transport. If the retraction is selected as the
Riemannian exponential and the vector transport is chosen to be the Levi-Civita parallel
transport, then the RBFGS algorithm reduces to Gabay’s algorithm (barring variations of
minor importance, e.g., in the line-search procedure used).

The impact of the greater freedom offered by the RBFGS algorithm varies according
to the manifold of interest. On the sphere, for example, the computational cost of the
Riemannian exponential and the Levi-Civita parallel transport is reasonable, and there is
not much to be gained by choosing computationally cheaper alternatives. In contrast, as
we will show in numerical experiments, when the manifold is the Stiefel manifold, St(p, n),
of orthonormal p-frames in Rn, the improvement in computational time can be much more
significant.

We also improve on Gabay’s work by discussing the practical implementation of the
algorithm. When the manifold M is a submanifold of Rn, we offer the alternatives of
either representing the tangent vectors and the approximate Hessian using a basis in the
tangent spaces, or relying on the canonical inclusion of M in Rn. The latter leads to
representations of tangent vectors as n-tuples of real numbers and of the approximate
Hessian as an n × n matrix. This approach may offer a strong advantage when the co-
dimension of M is sufficiently small.

The proposed RBFGS does not assume that M is a submanifold of a Euclidean space.
As such, it can be applied to quotient manifolds as well.

In this chapter we present the general form of the RBFGS algorithm and discuss key
aspects of its convergence and implementation on embedded submanifolds and quotient
manifolds. Specifically, we present a two-part convergence analysis. In Section 2.3, we
propose a general Riemannian line search defined using retraction and vector transport of a
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local linear operator and develop sufficient conditions to guarantee superlinear convergence.
In Section 2.4 we exploit the general line search superlinear result by giving two sets of
sufficient conditions for global and superlinear convergence the general form of RBFGS
using parallel transport.

In the remainder of the Chapter 2, we discuss the influence of the manifold, the re-
traction, the transport mechanism, and the implementation details on the performance of
RBFGS. Particular attention is paid to a discussion of designing vector transport on an
embedded submanifold of Rn.

In Chapter 5, we illustrate performance and check predictions of our theory with a set
of Riemannian optimization problems.

2.2 The General Form of the RBFGS Algorithm

The general form of the RBFGS algorithm is given in Algorithm 2. This form uses only
abstract operations on the manifold, i.e., no specific choices of representation are assumed.
Recall that, given a smooth scalar field f on a Riemannian manifold M with Riemannian
metric g, the gradient of f at x, denoted by grad f(x), is defined as the unique element of
TxM that satisfies:

gx(grad f(x), ξ) = Df(x)[ξ],∀ξ ∈ TxM. (2.1)

In the rest of the dissertation the subscript indicating the element that defines the relevant
tangent space is dropped when it is easily seen from the arguments.

The general form of RBFGS also makes use of the notion of the flat of an element of
a tangent space which is also known as the index lowering function, musical isomorphism,
and canonical isomorphism, see [1, p. 342]. This allows the update to the approximate
Hessian to be written as an operator update with a form similar to that seen in BFGS.

Definition 2.2.1. Let (M,g) be a Riemannian manifold and let X = Xi∂i be a vector field
on M , where {∂i} is a local frame for the tangent bundle TM. The flat of X is defined by
X♭ := gijX

idxj =: Xjdx
j where {dxi} is the dual coframe and the metric g is defined locally,

using Einstein notation, as g = gijdx
i ⊗ dxj . Equivalently, we have X♭(Y ) = g(X,Y ) for

all vectors X and Y .

In order to select a suitable stepsize, a generalization of the Wolfe conditions to a
Riemannian manifold is required. The Generalized Wolfe conditions are on M are

f(Rxk(αkηk)) ≤ f(xk) + c1αkg(grad f(xk), ηk) (2.2)

d

dt
(f(Rxk(tηk)))|t=αk

≥ c2
d

dt
(f(Rxk(tηk)))|t=0 (2.3)

with 0 < c1 < c2 < 1. Condition (2.2) is the Generalized Armijo condition and (2.3) is the
Generalized curvature condition.

Other generalizations of the Wolfe conditions are possible. For example, if the vector
transport T is an isometry, then (2.3) can be replaced by:

g
((

Tαkηk

)−1
grad f(Rxk(αkηk)), ηk

)
≥ c2g(grad f(xk), ηk). (2.4)
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This form transports the tangent vector that is in the tangent space of the potential next
iterate Rxk(αkηk) to TxkM and applies the Euclidean curvature condition. For parallel
transport and the exponential map as the retraction, conditions (2.3) and (2.4) are identical.

Algorithm 2 General Form of RBFGS

1: Given: Riemannian manifold M with Riemannian metric g; vector transport T on
M with associated retraction R; smooth real-valued function f on M ; initial iterate
x0 ∈M ; initial Hessian approximation B0.

2: for k = 0, 1, 2, . . . do
3: Obtain ηk ∈ Txk

M by solving Bkηk = −grad f(xk).
4: Perform a line search to find αk that satisfies conditions (2.2) and (2.3). Set xk+1 =

Rxk
(αηk).

5: Define sk = Tαηk(αηk) and yk = grad f(xk+1)− Tαηk(grad f(xk)).
6: Define the linear operator Bk+1 : Txk+1

M → Txk+1
M by

Bk+1p = B̃kp−
g(sk, B̃kp)
g(sk, B̃ksk)

B̃ksk +
g(yk, p)

g(yk, sk)
yk for all p ∈ Txk+1

M, (2.5)

or equivalently

Bk+1 = B̃k −
B̃ksk(B̃∗ksk)♭
(B̃∗ksk)♭(sk)

+
yky

♭
k

y♭k(sk)
(2.6)

where a♭ represents the flat of a, ∗ denotes the adjoint with respect to g, and

B̃k = Tαηk ◦ Bk ◦ (Tαηk)−1. (2.7)

7: end for

As with the BFGS algorithm, the RBFGS algorithm can also be reformulated to work
with the inverse Hessian approximation Hk = Bk−1 rather than with the Hessian approxi-
mation Bk. In this case, in Step 6 of RBFGS the following that holds for all p ∈ Txk+1

M is
used

Hk+1p = H̃kp−
g(yk, H̃kp)

g(yk, sk)
sk −

g(sk, pk)

g(yk, sk)
H̃kyk +

g(sk, p)g(yk, H̃kyk)

g(yk, sk)2
sk +

g(sk, sk)

g(yk, sk)
p (2.8)

or equivalently

Hk+1 = H̃k − sk
(H̃∗kyk)

♭

(yk)♭(sk)
− H̃kyk

(sk)
♭

(sk)♭(yk)
+ sk

(yk)
♭(H̃∗kyk))(sk)

♭

((yk)♭(sk))2
+

(sk)
♭(sk)

(sk)♭(yk)
(2.9)

where a♭ represents the flat of a, ∗ denotes the adjoint with respect to g, and

H̃k = Tηk ◦ Hk ◦ (Tηk)−1. (2.10)

This yields a mathematically equivalent algorithm. It is useful because it makes it possible
to cheaply compute an approximation of the inverse of the Hessian. This may make RBFGS
advantageous even in the case where we have a cheap exact formula for the Hessian but not
for its inverse or when the cost of solving linear systems is unacceptably high.
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2.3 The Riemannian Dennis-Moré Condition

In this section, we generalize an important result from [12, Theorem 8.2.4] that guaran-
tees the basic Riemannian line search algorithm xk+1 = Rxk(ηk), where ηk = −B−1k F (xk)
converges superlinearly. The result, stated in Theorem 2.3.1, is used to prove superlinear
convergence of RBFGS in next section.

In the discussions that follow, coordinate expressions in a neighborhood and in tangent
spaces are used. For elements of the manifold, v ∈ M , v̂ ∈ Rd will denote the coordinates
defined by a chart φ over a neighborhood U , i.e., v̂ = φ(v) for v ∈ U . Coordinate expressions,
F̂ (x), for elements, F (x), of a vector field F on M are written in terms of the canonical
basis of the associated tangent space, TxM via the coordinate vector fields defined by the
chart φ (see, e.g., [4, §3.5]).

Lemma 2.3.1. Let U be a compact coordinate neighborhood, and let the hat denote coordi-
nate expressions. Then there is c2 > c1 > 0 such that, for all x, y ∈ U , we have

c1‖x̂− ŷ‖ ≤ dist(x, y) ≤ c2‖x̂− ŷ‖,

where ‖ · ‖ denotes the Euclidean norm.

Proof. Proof of the first inequality:

Let Γx̂,ŷ be the set of all smooth curves γ̂ with γ̂(0) = x̂ and γ̂(1) = ŷ. We have

dist(x, y) = inf
γ̂∈Γx̂,ŷ

∫ 1

0

√
˙̂γ(t)T Ĝ(γ̂(t)) ˙̂γ(t)dt

≥
√

min
x̂∈Û

λmin(Ĝ(x̂)) inf
γ̂∈Γx̂,ŷ

∫ 1

0

√
˙̂γ(t)T ˙̂γ(t)dt

≥
√

min
x̂∈Û

λmin(Ĝ(x̂))‖ŷ − x̂‖

Proof of the second inequality:

Taking γ̂(t) = x̂+ t(ŷ − x̂), we have

dist(x, y) ≤
∫ 1

0

√
˙̂γ(t)T Ĝγ̂(t) ˙̂γ(t)dt ≤

√
λmin

∫ 1

0

√
˙̂γ(t)T ˙̂γ(t)dt =

√
λmin‖x̂− ŷ‖.

We have the proof by taking c1 =
√

minx̂∈Û λmin(Ĝ(x̂)) and c2 =
√
λmin.

Lemma 2.3.2. Let M be a Riemannian manifold endowed with a vector transport T and
an associated retraction R, and let x∗ ∈ M . Let F be a smooth vector field on M . Then
there is a neighborhood U of x∗ and L > 0 s.t., ∀x, y ∈ U :

∣∣∣‖T −1
R−1

y x
F (x)‖2y − ‖F (x)‖2x

∣∣∣ ≤ L‖F (x)‖2xdist(x, y).

where ‖F (v)‖v denotes the norm in TvM defined by the Riemannian metric.
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Proof. Let L(y, x) denote T −1
R−1

y x
. We work in a coordinate chart and let the hat denote the

coordinate expressions. We have

∣∣∣‖T −1
R−1

y x
F (x)‖2y − ‖F (x)‖2x

∣∣∣ =
∣∣∣F̂ (x)T

(
L̂(ŷ, x̂)T Ĝ(ŷ)L̂(ŷ, x̂)− Ĝ(x̂)

)
F̂ (x)

∣∣∣ (2.11)

≤ ‖F̂ (x)‖2‖H(ŷ, x̂)‖ (2.12)

≤ c1‖F̂ (x)‖2‖ŷ − x̂‖ (2.13)

≤ c2‖F (x)‖2xdist(x, y). (2.14)

where H(ŷ, x̂) = L̂(ŷ, x̂)T Ĝ(ŷ)L̂(ŷ, x̂)− Ĝ(x̂).

In (2.11), Ĝ(v̂) is the matrix expression of the Riemannian metric on TvM (see, e.g., [4,
(3.29)]). In (2.12), ‖F̂ (x)‖ denotes the classical Euclidean norm of F̂ (x) ∈ Rd, where d is
the dimension of M , and ‖H(ŷ, x̂)‖ denotes the induced matrix norm (spectral norm). To
get (2.13), take U bounded and observe that H is smooth and that H(x̂, x̂) = 0 for all x̂.
To get (2.14), use Lemma 2.3.1.

Lemma 2.3.3. Under the assumption of Lemma 2.3.2, there is a neighborhood U of x∗ and
L′ > 0 s.t., ∀x, y ∈ U :

∣∣∣‖T −1
R−1

y x
F (x)‖y − ‖F (x)‖x

∣∣∣ ≤ L′‖F (x)‖xdist(x, y). (2.15)

Proof. If ‖T −1
R−1

y x
F (x)‖y + ‖F (x)‖x = 0, then both sides of (2.15) are zero and the claim

holds. Otherwise,

∣∣∣‖T −1
R−1

y x
F (x)‖y − ‖F (x)‖x

∣∣∣ =

∣∣∣‖T −1
R−1

y x
F (x)‖2y − ‖F (x)‖2x

∣∣∣
‖T −1

R−1
y x

F (x)‖y + ‖F (x)‖x
≤ L‖F (x)‖2dist(x, y)

c3‖F (x)‖

≤ L′‖F (x)‖xdist(x, y)

Definition 2.3.1. (Nondegenerate zero) Let F be a smooth vector field on a Riemannian
manifold M . A point x∗ ∈ M is termed a nondegenerate zero of F if F (x∗) = 0 and
∇ξx∗F 6= 0, ∀ξx∗ 6= 0 ∈ Tx∗M for some (and thus all) affine connection ∇ on M .

Lemma 2.3.4 (Lemma 7.4.7, [4]). Let x ∈ M , let U be a normal neighborhood of x, and
let ζ be a C1 tangent vector field on M , then, for all y ∈ U ,

P 0←1
γ ζy = ζx +∇ξζ +

∫ 1

0
(P 0←τ

γ ∇γ′(τ)ζ −∇ξζ)dτ,

where γ is the unique geodesic in U satisfying γ(0) = x and γ(1) = y, P b←aγ denotes parallel

transport along γ(t) from a to b, and ξ = Exp−1x y = γ′(0).
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Lemma 2.3.5. Let F be a smooth vector field on a manifold M . Let x∗ ∈ M be a nonde-
generate zero of F , then there exists a neighborhood U of x∗ and c0, c1 > 0 such that, for
all x ∈ U ,

c0dist(x, x∗) ≤ ‖F (x)‖ ≤ c1dist(x, x∗). (2.16)

Proof. Let DF (x) denote the linear transformation of TxM defined by DF (x)[ξx] = ∇ξxF,∀ξx ∈
TxM. Let U be a normal neighborhood of x∗ and, for all x ∈ U , let γx denote the unique
geodesic in U satisfying γx(0) = x∗ and γx(1) = x.

From Taylor(Lemma 2.3.4), it follows that

P 0←1
γx F (x) = DF (x∗)[γ

′
x(0)] +

∫ 1

0

(
P 0←τ
γx DF (γx(τ))[γ

′
x(τ)]− DF (x∗)[γ

′
x(0)]

)
dτ (2.17)

Since F is smooth and since ‖γ′x(τ)‖ = dist(x∗, x),∀τ ∈ [0, 1], we have the following bound
for the integral:

∥∥∥
∫ 1

0

(
P 0←τ
γx DF (γx(τ))[γ

′
x(τ)]− DF (x∗)[γ

′
x(0)]

)
dτ

∥∥∥

=
∥∥∥
∫ 1

0

(
P 0←τ
γx ◦ DF (γx(τ)) ◦ P τ←0

γx − DF (x∗)
)
[γ′x(0)]dτ

∥∥∥

≤ ǫ
(
dist(x∗, x)

)
dist(x∗, x),

where limt→0 ǫ(t) = 0.
Since DF (x∗) is nonsingular, it follows that ∃c0, c1 such that

2c0‖ξx∗‖ ≤ ‖DF (x∗)[ξx∗ ]‖ ≤ 1

2
c1‖ξx∗‖,∀ξx∗ ∈ Tx∗M (2.18)

Take U sufficiently small such that ǫ
(
dist(x∗, x)

)
< c0 and < 1

2c1 for all x ∈ U .
Applying (2.17) yields

‖F (x)‖ = ‖P 0←1
γx F (x)‖ ≤ 1

2
c1dist(x∗, x) +

1

2
c1dist(x∗, x)

= c1dist(x∗, x), for all x ∈ U

and

‖F (x)‖ = ‖P 0←1
γx F (x)‖ ≥ 2c0dist(x∗, x)− c0dist(x∗, x)

= c0dist(x∗, x), for all x ∈ U .

Lemma 2.3.6. Let F be a smooth vector field on a Riemannian manifold M endowed with
a vector transport T and associated retraction R. Let x∗ ∈M be a nondegenerate zero of F .
Then there exists a neighborhood V of 0x∗ ∈ Tx∗M and c0, c1 > 0 such that, for all ξ ∈ V,

c0‖ξ‖ ≤ ‖T −1ξ (F
(
Rx∗(ξ))

)
‖ ≤ c1‖ξ‖. (2.19)
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Proof. Let G(ξ) = T −1ξ (F
(
Rx∗(ξ))

)
and E(ǫ) = G(ǫξ). We have :

T −1ξ

(
F
(
Rx∗(ξ))

)
= E(1)

= E(0) + E′(0) +

∫ 1

0
E′(τ)− E′(0)dτ (2.20)

= E(0) + DG(0)ξ +

∫ 1

0
[DG(τξ) −DG(0)]ξdτ (2.21)

= 0 + D̃F (x∗)ξ +

∫ 1

0
[DG(τξ) −DG(0)]ξdτ . (2.22)

The above (2.20) follows from the fundamental theorem E(1) − E(0) =
∫ 1
0 E

′(τ)dτ ,
and (2.21) comes by the chain rule. Observe that G is a function from Tx∗M to Tx∗M ,
which are vector spaces, thus DG is the classical derivative of G. To get (2.22), observe
that E(0) = T −10x∗

(
F (Rx∗(0x∗))

)
= F (x∗) = 0.

Let D̃F (x) denote the derivative at 0x of the function TxM → TxM : η 7→ T −1η F (Rx(η)).

Since x∗ is the nondegenerate zero of F, D̃F (x∗) is invertible. We have

‖ξ‖ = ‖D̃F (x∗)−1D̃F (x∗)ξ‖ ≤ ‖D̃F (x∗)−1‖‖D̃F (x∗)ξ‖.

i.e.

‖D̃F (x∗)ξ‖ ≥ ‖ξ‖
‖D̃F (x∗)−1‖

. (2.23)

From (2.22), we have

‖T −1ξ (F
(
Rx∗(ξ))

)
‖ ≥ ‖D̃F (x∗)ξ‖ − ‖

∫ 1

0
[DG(τξ) −DG(0)]ξdτ‖

≥ 1

‖D̃F (x∗)−1‖
‖ξ‖ −

∫ 1

0
‖DG(τξ) −DG(0)‖‖ξ‖dτ

≥ 1

‖D̃F (x∗)−1‖
‖ξ‖ −

∫ 1

0
ατ‖ξ‖‖ξ‖dτ,∀ξ ∈ V, (2.24)

≥ 1

‖D̃F (x∗)−1‖
‖ξ‖ − 1

2
α‖ξ‖2,∀ξ ∈ V,

where (2.24) relies on Lipschitz continuity of DG, which holds by taking V bounded since
G is smooth. Taking V smaller if necessary, we have

‖T −1ξ (F
(
Rx∗(ξ))

)
‖ ≥ 1

(̃DF (x∗))−1
‖ξ‖,∀ξ ∈ V

Let c0 =
1

‖(̃DF (x∗))−1‖
, this concludes the first inequality in (2.19).
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From (2.22), we have

‖T −1ξ (F
(
Rx∗(ξ))

)
‖ ≤ ‖D̃F (x∗)ξ‖+ ‖

∫ 1

0
[DG(τξ) −DG(0)]ξdτ‖

≤ ‖D̃F (x∗)‖‖ξ‖ +
∫ 1

0
‖DG(τξ) −DG(0)‖‖ξ‖dτ

≤ ‖D̃F (x∗)‖‖ξ‖ +
∫ 1

0
ατ‖ξ‖‖ξ‖dτ,∀ξ ∈ V,

≤ ‖D̃F (x∗)‖‖ξ‖ +
1

2
α‖ξ‖2,∀ξ ∈ V

≤ ‖D̃F (x∗)‖‖ξ‖ +
1

2
α‖ξ‖,∀ξ ∈ V, (‖ξ‖ ≤ 1).

Let c1 = ‖D̃F (x∗)‖+ 1
2α, this concludes the second inequality in (2.19).

Finally we note that since c1‖R̂x(ξ)−x̂‖ ≤ dist(x,Rx(ξ)) ≤ c2‖R̂xξ−x̂‖, by Lemma 2.3.1,

and R̂xξ = ξ̂+O(ξ̂2), we have that for the retraction R there exist µ > 0, µ̃ > 0 and δµ,µ̃ > 0
such that for ∀x in a sufficiently small neighborhood of x∗ and ξ ∈ TxM, ‖ξ‖ ≤ δµ,µ̃

1

µ̃
‖ξ‖ ≤ dist(x,Rx(ξ)) ≤

1

µ
‖ξ‖. (2.25)

This will be used throughout the remainder of the dissertation.
We are now in a position to state and prove the main result of a necessary and sufficient

condition for superlinear convergence of a basic Riemannian line search algorithm.

Theorem 2.3.1 (Riemannian Dennis-Moré Condition.). LetM be a manifold endowed with
a C2 vector transport T and an associated retraction R. Let F be a C2 tangent vector field
on M . Also let M be endowed with an affine connection ∇. Let DF (x) denote the linear
transformation of TxM defined by DF (x)[ξx] = ∇ξxF for all tangent vectors ξx to M at
x. Let {Bk} be a sequence of bounded nonsingular linear transformations of TxkM , where
k = 0, 1, · · · , xk+1 = Rxk(ηk), and ηk = −B−1k F (xk). Assume that DF (x∗) is nonsingular,
xk 6= x∗,∀k, and lim

k→∞
xk = x∗. Then {xk} converges superlinearly to x∗ and F (x∗) = 0 if

and only if

lim
k→∞

‖[Bk − TξkDF (x∗)T −1ξk
]ηk‖

‖ηk‖
= 0, (2.26)

where ξk ∈ Tx∗M is defined by ξk = R−1x∗ (xk), i.e. Rx∗(ξk) = xk.

Proof. Assume first that (2.26) holds. Since, for ξk ∈ Tx∗M and ηk ∈ TxkM we have

0 = Bkηk + F (xk)

= (Bk − TξkDF (x∗)T −1ξk
)ηk + F (xk) + TξkDF (x∗)T −1ξk

ηk, (2.27)

we have

−T −1ηk
F (xk+1) = (Bk − TξkDF (x∗)T −1ξk

)ηk + (−T −1ηk
F (xk+1) + F (xk) + TξkDF (x∗)T −1ξk

ηk)

= (Bk − TξkDF (x∗)T −1ξk
)ηk + (−T −1ηk

F (xk+1) + F (xk) + D̃F (xk)ηk)

+(TξkD̃F (x∗)T −1ξk
− D̃F (xk))ηk + Tξk(DF (x∗)− D̃F (x∗))T −1ξk

ηk (2.28)
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Recall that D̃F (x) denotes the derivative at 0x of the function TxM → TxM : η 7→
T −1η F (Rx(η)), we have

lim
k→∞

‖(−T −1ηk
F (xk+1) + F (xk) + D̃F (xk)ηk)‖

‖ηk‖
= 0.

Since F be C2, we have

lim
k→∞

‖(Tξk D̃F (x∗)T −1ξk
− D̃F (xk))ηk‖

‖ηk‖
= 0 (2.29)

Since lim
k→∞

xk = x∗, we have lim
k→∞

‖ηk‖ = 0 and lim
k→∞

‖F (xk)‖ = 0 if Bk is bounded. So

F (x∗) = 0
From Proposition 5.5.6 in [4] which says that D̃F (0v) = DF (xv) if v is a critical point,

we have
‖Tξk(DF (x∗)− D̃F (x∗))T −1ξk

ηk‖
‖ηk‖

= 0,

Thus (2.28) yields

lim
k→∞

‖T −1ηk
F (xk+1)‖
‖ηk‖

= 0. (2.30)

From Lemma 2.3.6, we have

‖T −1ξk+1
F (xk+1)‖ ≥ α‖ξk+1‖,∀k ≥ k0 (2.31)

where ξk+1 ∈ Tx∗M and Rx∗(ξk+1) = xk+1.

‖T −1ηk
F (xk+1)‖ (2.32)

= ‖T −1ηk
F (xk+1)‖ − ‖F (xk)‖+ ‖F (xk)‖ − ‖T −1ξk+1

F (xk+1)‖+ ‖T −1ξk+1
F (xk)‖

≥ ‖T −1ξk+1
F (xk)‖ −

∣∣∣‖T −1ηk
F (xk+1)‖ − ‖F (xk)‖

∣∣∣ −
∣∣∣‖F (xk)‖ − ‖T −1ξk+1

F (xk+1)‖
∣∣∣

≥ α‖ξk+1‖ − L′‖F (xk)‖dist(xk, xk+1)− L′‖F (xk)‖dist(x∗, xk+1) (2.33)

≥ α‖ξk+1‖ − c4‖ξk+1‖
(
dist(xk, xk+1) + dist(x∗, xk+1)

)
, (2.34)

where (2.33) follows from (2.31) with k0 sufficiently large and Lemma 2.3.3, and (2.34)
follows from Lemma 2.3.5 and (2.25).

We have also

1/µ̃‖ηk‖ ≤ dist(xk, xk+1) ≤ dist(xk, x
∗) + dist(xk+1, x

∗) ≤ 1/µ‖ξk‖+ 1/µ‖ξk+1‖,
that is

‖ηk‖ ≤ µ̃/µ(‖ξk‖+ ‖ξk+1‖).
We have

0 = lim
k→∞

‖T −1ηk
F (xk+1)‖
‖ηk‖

≥ lim
k→∞

α‖ξk+1‖
‖ηk‖

(
1− c4

α

(
dist(xk, xk+1) + dist(xk+1, x∗)

))

= lim
k→∞

α‖ξk+1‖
‖ηk‖

≥ lim
k→∞

α‖ξk+1‖
µ̃/µ(‖ξk‖+ ‖ξk+1‖)

= lim
k→∞

α‖ξk+1‖/‖ξk‖
µ̃/µ(1 + ‖ξk+1‖/‖ξk‖)

.
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Hence

lim
k→∞

‖ξk+1‖
‖ξk‖

= 0.

This is superlinear convergence and this concludes the if portion of the proof.

Conversely, assume that {xk} converges superlinearly to x∗ and F (x∗) = 0. Since

‖T −1ηk
F (xk+1)‖

dist(xk+1, xk)
=

‖T −1ηk
F (xk+1)− TξkF (x∗)‖

dist(xk, x∗)
· dist(xk, x

∗)

dist(xk+1, xk)
, (2.35)

from

∣∣∣∣∣
dist(xk+1, xk)

dist(xk, x∗)
− dist(xk, x

∗)

dist(xk, x∗)

∣∣∣∣∣ ≤
dist(xk+1, x

∗)

dist(xk, x∗)
,

we have

lim
k→∞

dist(xk+1, xk)

dist(xk, x∗)
= 1. (2.36)

(2.36) and the hypothesis on DF implies (2.30) holds. It then follows from (2.27) that (2.26)
is satisfied. This concludes the only if portion of the proof.

2.4 Convergence Analysis of RBFGS Algorithm

In this section, we generalize the two main convergence theorems in the literature for
BFGS in Rn to RBFGS on a Riemannian manifoldM . These results generalize earlier work
by Gabay [15] who gave an outline of a proof of superlinear convergence of RBFGS based
on parallel transport on a submanifold of Rn. Specifically, we show under some reasonable
assumptions and the requirement that parallel transport is used, the sequence created by
Algorithm 2 converges globally to the minimizer of a convex cost function, Theorem 2.4.3,
and with a few more assumptions achieves local superlinear convergence, Theorem 2.4.5,
for a more general cost function. The work in this section is strongly related to the proofs
of the related results given by Dennis and Schnabel [12] and Nocedal and Wright [22]. Our
proofs follow their outlines closely when possible with all of the basic objects and properties
promoted appropriately to a Riemannian manifold.

A key assumption made for the two main results in their form below is that parallel
transport is used. This is more restrictive than the result above in Theorem 2.3.1 where
an isometric vector transport was allowed. In fact, our experiments provide substantial
evidence that, in practice, both isometric and nonisometric vector transport achieve super-
linear convergence with RBFGS. Theorem 2.3.1 is probably a key part of the explanation
for this behavior.

2.4.1 The global convergence of RBFGS

For BFGS in Rn given some basic assumptions, preserving the symmetric positive-
definiteness when updating the matrix (or its inverse) that defines the basic step is a suffi-
cient condition to achieve global convergence for a convex cost function and local superlinear
convergence for a general cost function. In Sections 2.4.1 and 2.4.2, we show similar re-
sults for the update of linear transformation Bk on TxkM to linear transformation Bk+1 on
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Txk+1
M in the general form of RBFGS. The arguments are expressed in terms of general

linear transformations on and between tangent spaces and are not dependent on particular
choices of bases. Lemma 2.4.1 is a generalization of the [12, Lemma 9.2.1] to a Riemannian
manifold. It is used to justify the update step of the Algorithm 2 and to show that it
preserves the positive-definiteness and self-adjointness of all Bk when the vector transport
used is an isometry.

It is straightforward to prove that the linear transformation B : TxM → TxM is self-
adjoint and positive definite with respect to the Riemannian metric, g, if and only if there
exists some invertible linear transformation J : TxM → TxM such that

B = JJ ∗ (2.37)

where J ∗ represents the adjoint operator of J and superposition denotes composition of
transformations. In fact, there may be more than one such J . When discussing linear
transformations in terms of a matrix on Rn typically some normalization for the matrix J
where B = JJT is chosen such as lower triangular with positive diagonal elements, i.e., the
Cholesky factorization.

Lemma 2.4.1. Let sk, yk ∈ Txk+1M be as defined in Algorithm 2, sk 6= 0 and assume Tη
represents an isometric vector transport in direction η. Let {Bk} be a sequence of bounded
invertible linear transformation of TxkM , where k = 0, 1, · · · . If Bk on TxkM is self-adjoint
and positive definite with respect to the Riemannian metric, g, then there exists an invertible
linear transformation, Jk+1, on Txk+1

M such that

yk = Jk+1J ∗k+1sk (2.38)

if and only if g(sk, yk) > 0. (2.39)

Proof. Suppose there is an invertible linear transformation Jk+1 on Txk+1
M such that

Jk+1J ∗k+1sk = yk.

If vk = J ∗k+1sk then

0 < g(vk, vk) = g(J ∗k+1sk,J ∗k+1sk) = g(sk,Jk+1J ∗k+1sk) = g(sk, yk).

which proves the only if portion of the Lemma.
Now assume that g(sk, yk) > 0. The linear transformation Bk is assumed self-adjoint

and positive definite on TxkM . B̃k = TηkBk(Tηk)−1 is a self-adjoint positive definite linear
transformation on Txk+1

M since for any ζk+1 ∈ Txk+1
,

g(ζk+1, B̃kζk+1) = g(ζk+1,TηkBk(Tηk)−1ζk+1)

= g(T ∗ηkζk+1,Bk(Tηk)−1ζk+1) = g(ζk,Bkζk) > 0,

where ζk = T −1ηk
ζk+1 = T ∗ηkζk+1 ∈ TxkM since Tηk is an isometry. Furthermore, we know

that

B̃k = TηkBk(Tηk)−1 = TηkJk(Tηk)−1TηkJ ∗k (Tηk)−1 = TηkJk(Tηk)−1TηkJ ∗k (Tηk)∗ = J̃kJ̃ ∗k
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where J̃k and Jk are invertible linear transformations on Txk+1
M and TxkM respectively.

We want Jk+1 to be a simple update of J̃k such that

Jk+1J ∗k+1sk = yk (2.40)

Jk+1vk = yk (2.41)

J ∗k+1sk = vk (2.42)

Taking Jk+1 = J̃k and vk = J̃−1k yk satisfies (2.41) but in general not (2.42). However, for
almost any vk there exists a linear transformation E(vk) on Txk+1

M such that

Jk+1vk = (J̃k + E(vk))vk = yk

One such low complexity transformation is

E(vk) =
rkv

♭
k

g(vk, vk)
, where rk = yk − J̃kvk

To satisfy (2.42), vk must satisfy

vk = J ∗k+1sk = (J̃k + E(vk))∗sk = J̃ ∗k sk + vk
r♭k(sk)

g(vk, vk)
(2.43)

the derivation of which uses the following relations:

(ab♭)∗ = ba♭, (La)♭ = a♭L∗.

This can only be satisfied if

vk = αkJ̃ ∗k sk for some αk ∈ R. (2.44)

Substituting (2.44) into (2.43) and simplifying yields

α2
k =

g(yk, sk)

g(sk, B̃ksk)
(2.45)

which has a real solution if and only if g(yk, sk) > 0, since g(sk, B̃ksk) > 0. Choosing the
positive root yields

vk = +
( g(yk, sk)

g(sk, B̃ksk)
)1/2

J̃ ∗k sk. (2.46)

It is easily shown that Jk+1 is invertible. Therefore, Bk+1 = Jk+1J ∗k+1 is self-adjoint and
positive definite with respect to the Riemannian metric g.

It remains to show the relationship between the update considered in Lemma 2.4.1 is
equivalent to the update given in Algorithm 2.

Lemma 2.4.2. Using the notation and assumptions of Lemma 2.4.1, the sequence of lin-
ear transformations Bk defined by the Lemma is the same as the the sequence defined by
Algorithm 2.
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Proof. Starting with the definition of the update from Lemma 2.4.1 yields

αk = +
( y♭k(sk)

(B̃∗ksk)
♭(sk)

)1/2

Bk+1 = Jk+1J ∗k+1

=
(
J̃k +

(yk − J̃kvk)v♭k
g(vk, vk)

)(
(J̃k)∗ + vk

(yk − J̃kvk)♭
g(vk, vk)

)

= J̃k(J̃k)∗ +
J̃kvk(y♭k − v♭k(J̃k)∗)

v♭kvk
+

(yk − J̃kvk)v♭k(J̃k)∗
v♭kvk

+
(yk − J̃kvk)v♭kvk(y♭k − v♭k(J̃k)∗)

(v♭kvk)
2

= B̃k +
yky

♭
k − J̃kvkv♭k(J̃k)∗

v♭kvk

= B̃k +
yky

♭
k − J̃kαkJ̃ ∗k skαk(J̃ ∗k sk)♭J̃ ∗k

αk(J̃ ∗k sk)♭αkJ̃ ∗k sk

= B̃k −
B̃ksk(B̃∗ksk)♭
(B̃∗ksk)♭(sk)

+
yky

♭
k

y♭k(sk)
,

which is identical to the update of Algorithm 2.

We have therefore shown that Algorithm 2 produces a series of linear transformations
Bk on TxkM that are all self-adjoint and positive definite with respect to the Riemannian
metric g if an isometric vector transport is used to define the update. Note that we have
not bounded the condition number of Bk.

If we restrict the algorithm considered then global convergence to a set of critical points
can be shown. If we restrict the cost function somewhat we can guarantee global convergence
to a minimizer.

Definition 2.4.1 ([4], Definition 7.4.3). (Lipschitz continuous differentiability) As-
sume that (M,g) has a positive injectivity radius i(M) > 0. A real function f on M is
Lipschitz continuous differentiable if it is differentiable and if there exists β1 such that, for
all x, y in M with dist(x, y) < i(M), it holds that

‖P 0←1
α grad f(y)− grad f(x)‖x ≤ L dist(y, x), (2.47)

where α is the unique minimizing geodesic with α(0) = x and α(1) = y. Note that (2.47) is
symmetric in x and y. It follows that

‖P 0←1
α grad f(y)− grad f(x)‖x = ‖grad f(y)− P 1←0

α grad f(x)‖y.

Since we enforce the Wolfe conditions, we have the following strong statement about the
angles between the direction vectors and gradients at each step that generalizes a result of
Zoutendijk as given in [22, Theorem 3.2] to Riemannian manifolds. In this case, we assume
that the Riemannian line search algorithm uses the exponential map as the retraction to
define the next iterate, xk+1, and use the Lipschitz condition in Definition 2.4.1 which is
defined in terms of parallel transport. No restriction is placed on the manner in which the
direction vector ηk is generated beyond the assumptions given in the theorem.
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Theorem 2.4.1 (Riemannian Exponential Map Zoutendijk Condition.). Consider any it-
eration of form xk+1 = Expxk(αkηk), where ηk is a descent direction and αk satisfies the
Wolfe conditions (2.2) and (2.3). Suppose that f is bounded below on M and that f is con-
tinuously differentiable in an open set N containing the level set L = {x : f(x) ≤ f(x0)},
where x0 is the starting point of the iteration. Assume also that the gradient grad f is
Lipschitz continuous on N , then

∑

k≥0

cos2 θk‖grad f(xk)‖2 <∞, where cos θk =
−g(grad f(xk), ηk)
‖grad f(xk)‖‖ηk‖

. (2.48)

Proof. Define γαkηk(t) = Expxk(tαkηk). Since the retraction is the exponential map, the
curvature condition (2.3) is equivalent to

g
(
P 0←1
γαkηk

grad f(Expxk(αkηk))− grad f(xk), ηk

)
≥ (c2 − 1)g(grad f(xk), ηk),

where P 1←0
γαkηk

is parallel transport. The righthand inequality of (2.25) holds globally when
working with the exponential map and parallel transport along the geodesic. This and the
Lipschitz condition (2.47) imply that

g
(
P 0←1
γαkηk

grad f(Expxk(αkηk))− grad f(xk), ηk

)
≤ αk(L/µ)‖ηk‖2.

By combining these two inequalities, we have

αk ≥
(c2 − 1)µ

L

g(grad f(xk), ηk)

‖ηk‖2
. (2.49)

Substituting (2.49) into the first Wolfe condition (2.2), we obtain

f(xk+1) ≤ f(xk)− c1
(1 − c2)µ

L

g(grad f(xk), ηk)
2

‖ηk‖2

This is

f(xk+1) ≤ f(xk)− c cos2 θk‖grad f(xk)‖2, where c = c1(1− c2)(µ/L).

By summing this expression over all indices less than or equal to k, we have

f(xk+1) ≤ f(x0)− c
k∑

j=0

cos2 θj‖grad f(xj)‖2. (2.50)

since f is bounded below, we have that f(x0)− f(xk+1) is less than some positive constant
for all k, hence by taking limits in (2.50), we obtain

∞∑

k=0

cos2 θk‖grad f(xk)‖2 <∞
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It is obvious that lim
k→∞

‖gradf(xk)‖ = 0 provided that the search directions are never too

close to orthogonality with the gradient, i.e. cos2 θk stay away from 0. This implies that the
algorithm would achieve global convergence to a set of stationary points. In practice, given
the instability of an iteration at stationary points, such an algorithm is often effective at
converging to an isolated minimizer when starting close enough, i.e., the global convergence
result is used in a local manner.

We can now prove a generalization of [22, Theorem 8.5] that guarantees global con-
vergence of Algorithm 2 by verifying that the search directions and stepsizes satisfy the
conditions of Theorem 2.4.1. We follow a generalized version of the proof of [22, Theorem
8.5] using the notion of an average Riemannian Hessian and a function defined in terms of
the trace and determinant of a linear transformation on a tangent space that is self-adjoint
positive definite with respect to the Riemannian metric g. The proof below depends on the
use of parallel transport in the definition of the average Riemannian Hessian and since the
Exponential map version of the Zoutendijk condition is used the line search is restricted in
the form of its determination of the next iterate.

The assumptions under which we consider the problem are:

Assumptions 2.4.2.

1. The objective function f is twice continuously differentiable .

2. The level set Ω = {x ∈ M : f(x) ≤ f(x0)} is geodesically convex. Let (M, g) be a
Riemannian manifold. A subset C of M is said to be a geodesically convex set if, given
any two points in C, there is a geodesic arc contained within C that joins those two
points.

3. There exists positive constants n and N such that

ng(z, z) ≤ g(G(x)z, z) ≤ Ng(z, z) for all z ∈ TxM and x ∈ Ω (2.51)

where G(x) denotes the lifted Hessian G(x) = Hess f̂x(ξ) = Hess f(Rx(ξ)).

Theorem 2.4.3. Let x0 be starting point for which Assumptions 2.4.2 is satisfied and let B0

be any linear transformation on Tx0M that is self-adjoint and positive definite with respect
to the Riemannian metric g. The sequence {xk} generated by Algorithm 2 using parallel
transport and the exponential map as the retraction converges to the minimizer x∗ of f .

Proof. Define the function F : [0, 1] → Txk+1
M : t 7→ F (t) ∈ Txk+1

F (t) := P 1←t
γηk

grad f(γηk(t)) ∈ Txk+1
M, (2.52)

F (1) = grad f(xk+1), F (0) = P 1←0
γηk

grad f(xk) (2.53)

and denote
γηk : t→ Exp(tηk), γ̇ηk(t) = P t←0

γηk
γ̇ηk(0). (2.54)

We have γηk(1) = xk+1 and

F (t− ǫ) = P 1←t
γηk

P t←t−ǫγηk
grad f(γηk(t− ǫ)). (2.55)
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F ′(t) = lim
ǫ→0

F (t)− F (t− ǫ)

ǫ
= − d

dǫ
F (t− ǫ)

∣∣∣
ǫ=0

= −P 1←t
γηk

d

dǫ
P t←t−ǫγηk

grad f(γηk(t− ǫ))
∣∣∣
ǫ=0

= −P 1←t
γηk

Hessf(γηk(t))
[ d
dǫ
γηk(t− ǫ)

]∣∣∣
ǫ=0

= P 1←t
γηk

Hessf(γηk(t))γ̇ηk (t)

From F (1)− F (0) =
∫ 1
0 F

′(t)dt, we have

grad f(xk+1)− P 1←0
γηk

grad f(xk)

=

∫ 1

0
P 1←t
γηk

Hessf(γηk(t))[γ̇ηk(t)]dt

=

∫ 1

0
P 1←t
γηk

Hessf(γηk(t))P
t←1
γηk

dtγ̇ηk(1)

=

∫ 1

0
P 1←t
γηk

Hessf(γηk(t))P
t←1
γηk

dtsk,

where sk = γ̇ηk(1).
If we define

Ḡk =

∫ 1

0
P 1←t
γηk

Hessf(γηk(t))P
t←1
γηk

dt, (2.56)

it follows that

yk = grad f(xk+1)− P 1←0
γηk

grad f(xk) = Ḡkγ̇ηk(1) = Ḡksk (2.57)

and using (2.51) and (2.57) we obtain

g(yk, sk)

g(sk, sk)
=
g(Ḡksk, sk)

g(sk, sk)
≥ n. (2.58)

Defining zk = Ḡ
1/2
k sk and using the relation (2.57), we have

g(yk, yk)

g(yk, sk)
=
g(Ḡksk, Ḡksk)

g(Ḡksk, sk)
=
g(zk, Ḡkzk)

g(zk, zk)
≤ N. (2.59)

and

nk =
g(yk, sk)

g(sk, sk)
, Nk =

g(yk, yk)

g(yk, sk)
. (2.60)

Using (2.58) and (2.59), we have

nk ≥ n,Nk ≤ N. (2.61)

Recall that the values of the Riemannian metric, g, and the determinant and trace of
a linear transformation on a finite dimensional vector space is independent of the basis
(coordinates) used to represent the tangent space and the transformation. So we can work
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with the abstract operators Bk, B̃k and Bk+1 and tangent vectors, ξk and ξk+1 and rewrite
expressions originally written in terms matrix and Euclidean vectors. Since P 1←0

γηk
is an

isometry, we have

trace(B̃k) = trace(P 1←0
γηk

◦ Bk ◦ (P 1←0
γηk

)−1) = trace(Bk)
det(B̃k) = det(P 1←0

γηk
◦ Bk ◦ (P 1←0

γηk
)−1) = det(Bk).

and B̃k is self-adjoint and positive definite with respect to the Riemannian metric g.
From Step 6 of Algorithm 2, we obtain that

trace(Bk+1) = trace(Bk)−
‖B̃ksk‖2
g(sk, B̃ksk)

+
‖yk‖2
g(yk, sk)

. (2.62)

Also equation (8.45) in [22] can be converted from Euclidean coordinates for vectors, ma-
trices and inner products to the general form

det(Bk+1) = det(Bk)
g(yk, sk)

g(sk, B̃ksk)
. (2.63)

It can be shown that cos θk from (2.48) can be written as

cos θk =
g(sk, B̃ksk)
‖sk‖‖B̃ksk‖

, qk =
g(sk, B̃ksk)
g(sk, sk)

(2.64)

so that θk is the angle between sk and B̃ksk then we obtain

‖B̃ksk‖2
g(sk, B̃ksk)

=
‖B̃ksk‖2‖sk‖2
g(sk, B̃ksk)2

g(sk, B̃ksk)
‖sk‖2

=
qk

cos2 θk
. (2.65)

In addition, we have from (2.60) that

det(Bk+1) = det(Bk)
g(yk, sk)

g(sk, sk)

g(sk, sk)

g(sk, B̃ksk)
= det(Bk)

nk
qk
. (2.66)

Therefore, since B0 is self-adjoint and positive definite and parallel transport is an isometry,
from Lemma 2.4.1, we know Bk+1 is self-adjoint and positive definite if g(sk, yk) > 0.

Since yk = grad f(xk+1)− P 1←0
γηk

grad f(xk), the condition g(sk, yk) > 0 is equivalent to

g(grad f(xk+1), sk) ≥ g(P 1←0
γηk

grad f(xk), sk). (2.67)

If the line search in Algorithm 2 satisfies the curvature condition (2.3), then (2.67) holds
since parallel transport is an isometry. Even without the requirement of (2.3) in Algo-
rithm 2, (2.67) can usually be satisfied if it is in a region without significant negative
curvature.

We now combine the trace and determinant with the intent of implicitly bounding the
condition number by introducing the following function of a self-adjoint positive definite
linear transformation B:

ψ(B) = trace(B)− ln(det(B)). (2.68)
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It is not difficult to show that ψ(B) > 0. By using (2.60) and (2.62)- (2.68), we have that

ψ(Bk+1) = ψ(Bk) +Nk −
qk

cos2 θk
− lnnk + ln qk

= ψ(Bk) + (Nk − lnnk − 1) + [1− qk
cos2 θk

+ ln
qk

cos2 θk
] + ln cos2 θk.(2.69)

Now, since the function h(t) = 1 − t+ ln t ≤ 0 is nonpositive for all t > 0, the term inside
the square bracket is nonpositive, and thus from (2.63) and (2.69) we have

0 < ψ(Bk+1) ≤ ψ(B1) + ck +
k∑

j=1

ln cos2 θj , (2.70)

where we assume the constant c = N − lnn− 1 to be positive, without loss of generality.
From ηk = −B−1k grad f(xk) and sk = P 1←0

γηk
(αηk), we know cos θk is the angle between

the steepest decent direction and the search direction. From (2.48) we know that the
sequence ‖grad f(xk)‖ generated by the line search algorithm is bounded away from zero
only if cos θj → 0.

Let us now proceed by contradiction and assume that cos θj → 0. Then there exists
k1 > 0 such that for all j > k1, we have

ln cos2 θj < −2c, (2.71)

where c is the constant defined above. using this inequality in (2.70). We find the following
relations to be true for all k > k1:

0 < ψ(B1) + ck +

k1∑

j=1

ln cos2 θj +

k∑

j=k1+1

(−2c)

= ψ(B1) +

k1∑

j=1

ln cos2 θj + 2ck1 − ck.

However, the right-hand-side is negative for large k, giving a contradiction.Therefore, there
exists a subsequence of indices {jk} such that {cos θjk} ≥ δ > 0.

By Theorem 2.4.1, this limit implies that liminf ‖grad f(xk)‖ → 0. Since the problem
is strongly geodesically convex, the latter limit is enough to prove that xk → x∗.

Note that the convexity of the cost function is only used to guarantee that there is
a unique minimizer. One way for this to happen is if f(x) is convex function for the
entire domain of interest. However, Theorem 2.4.3 can be used to justify two important
conclusions for a more general nonconvex cost function f(x).

Corollary 2.4.1. Suppose f(x) is a nonconvex cost function on M and let x∗ ∈ M be a
nondegenerate local minimizer of f , i.e., grad f(x∗) = 0 and Hess f(x∗) is positive definite.
Let x0 be starting point that is close enough to x∗ so that it is in the neighborhood around
x∗ where the Hessian is positive definite, i.e., for which Assumptions 2.4.2 are satisfied and

28



let B0 be any linear transformation on Tx0M that is self-adjoint and positive definite with
respect to the Riemannian metric g.

The sequence {xk} generated by Algorithm 2 using parallel transport and the exponential
map as the retraction converges to the minimizer x∗ of f , i.e., it is locally convergent to
any nondegenerate minimizer.

Additionally, if the convexity assumption is removed from Assumptions 2.4.2 then from
any x0 the sequence {xk} generated by Algorithm 2 using parallel transport and the expo-
nential map as the retraction converges to a set of critical points of f , i.e., there is global
convergence to such a set.

2.4.2 The superlinear convergence of RBFGS

While the theorems above guarantee convergence under certain circumstances, we are
interested in achieving acceptably rapid convergence for RBFGS, e.g., superlinear, as is
guaranteed with BFGS in Rn. The convergence results for BFGS presented in, for example
[22, Theorem 8.6], are given for the general form of RBFGS using parallel transport and
the exponential map in Theorem 2.4.5 .

Theorem 2.3.1 identifies a key requirement on the evolution of the action of Bk in the
direction of ηk relative to the action of the covariant derivative. Note that this requirement is
quite general and only requires the transport be twice continuously differentiable. In order
to apply it to proving the superlinear convergence theorem of RBFGS (Theorem 2.4.5),
we must identify sufficient conditions on the transport and retraction used in the RBFGS
iteration that guarantee the required action of Bk.

The Riemannian manifold version of [22, Theorem 8.6] can be shown by generalizing its
proof given the following assumption:

Assumptions 2.4.4. Let x∗ ∈M be a nondegenerate local minimizer of f , i.e., grad f(x∗) =
0 and Hess f(x∗) is positive definite. There is L > 0 such that, for all ξ ∈ Tx∗M and all
η ∈ TR(ξ)M small enough, we have

‖(P t←0
γη )−1Hessf(y)P t←0

γη − P 1←0
γξ

Hessf(x∗)(P 1←0
γξ

)−1‖ ≤ Lmax{dist(y, x∗), dist(x, x∗)},

for 0 ≤ t ≤ 1 where x = Expx∗(ξ), y = Expx(η) and γξ(t) and γη(t) are the associated
geodesics.

Theorem 2.4.5. Suppose that f is twice continuously differentiable and that the iterates,
xk, generated by the RBFGS Algorithm 2 using parallel transport and the exponential map
converge to a nondegenerate minimizer x∗ ∈M at which Assumption 2.4.4 holds. If

∞∑

k=1

dist(xk, x
∗) <∞ (2.72)

holds then xk converges to x∗ superlinearly.

Proof. The algorithm defines xk+1 = Expxk(ηk), i.e., the stepsize has been included in the

definition of ηk. The tangent vectors ξk, ξk+1 ∈ Tx∗M are defined by ξk = Exp−1x∗ (xk) and
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ξk+1 = Exp−1x∗ (xk+1) and we use the geodesics

γξk+1
(tξk+1) = Expx∗(tξk+1), γξk+1

(0) = x∗, γξk+1
(1) = xk+1

γξk(tξk) = Expx∗(tξk), γξk(0) = x∗, γξk(1) = xk

γηk(tηk) = Expxk(tηk), γηk(0) = xk, γηk(1) = xk+1

We also use the parallel transports

P 1←0
γξk+1

: Tx∗M → Txk+1
M

P 1←0
γξk

: Tx∗M → TxkM

P 1←0
γηk

: TxkM → Txk+1
M

Note that

∀t ∈ Tx∗M, ‖P 1←0
γξk+1

t− P 1←0
γηk

◦ P 1←0
γξk

t‖xk+1
≤ ĉ‖t‖x∗ max{dist(xk+1, x

∗),dist(xk, x
∗)}

sk = P 1←0
γηk

(ηk)

yk = grad f(xk+1)− P 1←0
γηk

(grad f(xk))

B̃k = P 1←0
γηk

Bk(P 1←0
γηk

)−1

The ’average’ Hessian Ḡ is as defined in (2.56). Let G∗ = G(x∗) = Hessf(x∗) be
invertible, define

G̃∗ = P 1←0
γξk+1

G∗(P
1←0
γξk+1

)−1.

Note that G̃∗ is a function of k and the self-adjoint square roots satisfy

G̃
1/2
∗ = P 1←0

γξk+1
G

1/2
∗ (P 1←0

γξk+1
)−1.

Define the quantities

s̄k = G̃
1/2
∗ sk, ȳk = G̃

−1/2
∗ yk, B̂k+1 = G̃

−1/2
∗ Bk+1G̃

−1/2
∗ , and B̄k = G̃

−1/2
∗ B̃kG̃−1/2∗ .

cos θ̄k =
g(s̄k, B̄ks̄k)
‖s̄k‖‖B̄ks̄k‖

, q̄k =
g(s̄k, B̄ks̄k)

‖s̄k‖2
(2.73)

and

n̄k =
g(ȳk, s̄k)

g(s̄k, s̄k)
, N̄k =

g(ȳk, ȳk)

g(ȳk, s̄k)
. (2.74)

By pre- and post-multiplying the RBFGS update formula (2.5) by G̃
−1/2
∗ and grouping

terms appropriately, we obtain

B̂k+1 = B̄k −
B̄ks̄k(B̄ks̄k)♭
s̄♭k(B̄ks̄k)

+
ȳkȳ

♭
k

ȳ♭k(s̄k),

This expression has the same form as (2.5), it follows from the steps leading to (2.69)
that

ψ(B̂k+1) = ψ(B̄k) + (N̄k − ln n̄k − 1) + [1− q̄k
cos2 θ̄k

+ ln
q̄k

cos2 θ̄k
] + ln cos2 θ̄k (2.75)
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From Taylor’s theorem,

f̂xk(ηk) = f̂xk(0xk) + 〈gradf(xk), ηk〉xk +
1

2
〈Hess f̂xk(τηk)[ηk], ηk〉xk (2.76)

holds for some τ ∈ (0, 1). It follows that yk = grad f(xk+1)− P 1←0
γηk

(grad f(xk)) = Ḡksk.
From

yk − G̃∗sk = (Ḡk − G̃∗)sk

we have
ȳk − s̄k = G̃

−1/2
∗ (Ḡk − G̃∗)G̃

−1/2
∗ s̄k

Using the norms induced by the Riemannian metric g and by assumption (2.4.4) and the
isometry of P 1←0

γξk+1
, we have

‖ȳk − s̄k‖ ≤ ‖G̃−1/2∗ ‖2‖Ḡk − G̃∗‖‖s̄k‖
≤ Lǫk‖G̃−1/2∗ ‖2‖s̄k‖,

where ǫk is defined by

ǫk = max{dist(xk+1, x
∗),dist(xk, x

∗)}. (2.77)

So
‖ȳk − s̄k‖

‖s̄k‖
≤ c̄ǫk, for some positive constant c̄. (2.78)

From (2.78), we have

‖ȳk‖ − ‖s̄k‖ ≤ c̄ǫk‖s̄k‖ and ‖s̄k‖ − ‖ȳk‖ ≤ c̄ǫk‖s̄k‖.

and therefore
(1− c̄ǫk)‖s̄k‖ ≤ ‖ȳk‖ ≤ (1 + c̄ǫk)‖s̄k‖. (2.79)

By squaring (2.78) and using (2.79), we obtain

(1− c̄ǫk)
2‖s̄k‖2 − 2g(ȳk, s̄k) + ‖s̄k‖2 ≤ ‖ȳk‖2 − 2g(ȳk, s̄k) + ‖s̄k‖2 ≤ c̄2ǫ2k‖s̄k‖2,

and therefore

2g(ȳk, s̄k) ≥ (1− 2c̄ǫk + c̄2ǫ2k + 1− c̄2ǫ2k)‖s̄k‖2 = 2(1 − c̄ǫk)‖s̄k‖2.

From the definition of n̄k, we have

n̄k =
g(ȳk, s̄k)

‖s̄k‖2
≥ 1− c̄ǫk. (2.80)

By combining (2.79) and (2.80), we obtain

N̄k =
‖ȳk‖2
g(ȳk, s̄k)

≤ 1 + c̄ǫk
1− c̄ǫk

. (2.81)
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Since xk → x∗, we have that ǫk → 0, and by (2.81) there exists a positive constant c > c̄
such that

N̄k ≤ 1 +
2c̄

1− c̄ǫk
ǫk ≤ 1 + cǫk, for all sufficiently large k (2.82)

Since h(t) = 1− t+ ln t is nonpositive, we have

−x
1− x

− ln(1− x) = h
( 1

1− x

)
≤ 0.

For k large enough, we assume that c̄ǫk <
1
2 , and therefore

ln(1− c̄ǫk) ≥
−c̄ǫk
1− c̄ǫk

≥ −2c̄ǫk.

From this relation and (2.80), we have

ln n̄k ≥ ln(1− c̄ǫk) ≥ −2c̄ǫk ≥ −2cǫk, for all sufficiently large k. (2.83)

From (2.75), (2.82), (2.83), and ψ(B̄k+1)− ψ(B̂k+1) ≤ ĉǫk+1, we can deduce that

0 < ψ(B̂k+1) ≤ ψ(B̂k) + (3c+ ĉ)ǫk +
[
1− q̄k

cos2 θ̄k
+ ln

q̄k
cos2 θ̄k

]
+ ln cos2 θ̄k (2.84)

By summing (2.84) and using (2.72) we have that

∞∑

j=0

(
ln

1

cos2 θ̄j
−

[
1− q̄j

cos2 θ̄j
+ ln

q̄j

cos2 θ̄j

])
≤ ψ(B̂0) + (3c + ĉ)

∞∑

j=0

ǫj <∞. (2.85)

Notice the term in the square brackets is nonpositive, and since ln 1
cos2 θ̄j

≥ 0 for all j, we

obtain

lim
j→∞

ln
1

cos2 θ̄j
= 0, lim

j→∞

[
1− q̄j

cos2 θ̄j
+ ln

q̄j

cos2 θ̄j

]
= 0,

which implies that
lim
j→∞

cos θ̄j = 1, lim
j→∞

q̄j = 1. (2.86)

Recalling (2.65), we have

‖G̃−1/2∗ (B̃k − G̃∗)sk‖2

‖G̃1/2
∗ sk‖2

=
‖(B̄k − I)s̄k‖2

‖s̄k‖2
(2.87)

=
‖B̄ks̄k‖2 − 2g(s̄k, B̄ks̄k) + g(s̄k, s̄k)

g(s̄k, s̄k)
(2.88)

=
q̄2k

cos2 θ̄k
− 2q̄k + 1. (2.89)

By (2.86),

lim
k→∞

q̄2k
cos2 θ̄k

− 2q̄k + 1 = 0 (2.90)
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It is straightforward to show the bound

‖G̃1/2
∗ ‖2 ‖G̃

−1/2
∗ (B̃k − G̃∗)sk‖

‖G̃1/2
∗ sk‖

≥ (B̃k − G̃∗)sk‖
‖sk‖

Combining this bound, the limit (2.90) and that ‖G̃−1/2∗ ‖ is constant with respect to the
iteration we have the limit

lim
k→∞

‖(B̃k − P 1←0
γξk+1

Hessf(x∗)(P 1←0
γξk+1

)−1)sk‖
‖sk‖

= 0. (2.91)

Finally, substituting the appropriate definitions and using the bound on composition of
parallel transports yields the limit

lim
k→∞

‖(Bk − P 1←0
γξk

Hessf(x∗)(P 1←0
γξk

)−1)ηk‖
‖ηk‖

= 0. (2.92)

The desired result that the rate of convergence is superlinear follows from Theorem 2.3.1.

33



CHAPTER 3

RIEMANNIAN BFGS ALGORITHM

IMPLEMENTATION

A practical implementation of RBFGS requires the following ingredients: (i) an efficient
numerical representation for points x on M , tangent spaces TxM and the inner products
gx(ξ1, ξ2) on TxM ; (ii) an implementation of the chosen retraction Rx : TxM →M ; (iii) effi-
cient formulas for f(x) and grad f(x); (iv) an implementation of the chosen vector transport
Tηx and its inverse (Tηx)−1; (v) a method for solving

Bkηk = −grad f(xk), (3.1)

where Bk is defined recursively through (2.5), or alternatively, a method for computing

ηk = −Hkgrad f(xk) (3.2)

where Hk is defined recursively by (2.8). In this section, we summarize our implementation
options and their analytical bases.

We consider first the structure of linear transformations on a submanifold of Rn and
the properties of self-adjointness and isometry with respect to the Riemannian metric. A
unifying perspective on the design of efficient vector transport/inverse vector transport pairs
using the structure is then given in terms of that structure. We then discuss the two main
options for the matrix representation of Bk. The choice between these two is the main
distinguishing feature in the basic implementations of RBFGS. Refinements are considered
for specific submanifolds of Rn to enhance efficiency. Finally, the case whenM is a quotient
manifold is discussed using the implementation choices for the Grassmann manifold.

3.1 Transformations and Symmetry on a Submanifold of Rn

When implementing RBFGS on a submanifold of Rn, the structure of the n× n matrix
representations of vector transport and inverse vector transport must be considered from
an analytical point of view to preserve symmetry when used in the update of Bk to Bk+1

and from a computational point of view to guarantee efficiency. Since tangent spaces are
identified with subspaces of Rn transformations between subspaces must be considered with
respect to symmetry and isometry relative to the Riemannian metric. We have developed
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a unified point of view of these issues that also lends itself to deriving computationally
efficient transport pairs.

Suppose we are given a subspace S and an inner product g(x, y) for x, y ∈ S. We can
then analyze the symmetry of a linear operator A ∈ Rn×n restricted to S. We have the
usual basis-free characterization of symmetry

Definition 3.1.1. A ∈ Rn×n is symmetric with respect to the inner product g on S if

g(PAPx, y) = g(x, PAPy)

where P is a projector onto S.

Symmetry restricted to S can also be characterized in terms of any basis for S. Suppose
the columns of Ud, denoted ui, are a basis for S and for any x, y ∈ S we write x = Udx̂ and
y = Udŷ for unique x̂, ŷ ∈ Rd. The inner product g can be written in terms of the basis as

g(x, y) = g(Udx̂, Udŷ) = x̂T Ĝŷ, êTi Ĝêj = g(ui, uj)

where êi ∈ Rd, 1 ≤ i ≤ d, are the canonical basis of Rd. Note Ĝ = ĜT since the inner
product must be commutative. We therefore have

Definition 3.1.2. Given a basis and an inner product g for S, the linear operator A ∈ Rn×n

is symmetric on S with respect to g if

ÂT Ĝ = ĜÂ

where Â ∈ Rd×d is A restricted to S relative to the basis and Ĝ ∈ Rd×d defines g in terms
of the basis.

If we change the basis from Ud to Ũd = UdMd whereMd ∈ Rd×d is nonsingular the inner
product and symmetry is invariant but must be expressed in terms of modified matrices.

In the convergence analysis discussion the constraint that the vector transport be an
isometry was stated as a sufficient condition for preserving symmetry. This can be formal-
ized as the following theorem.

Theorem 3.1.1. Suppose (S1, g1) and (S2, g2) are inner product spaces with dimension d
embedded in Rn using bases given by the columns of U1 ∈ Rn×d and U2 ∈ Rn×d respectively
and the inner products g1 and g2 are defined by Ĝ1 ∈ Rd×d and Ĝ2 ∈ Rd×d relative to U1

and U2 respectively Let the linear maps B1 : S1 → S1 and T : S1 → S2 be defined as

B1 = U1B̂1U
†
1 ∈ R

n×n, T = U2T̂U
†
1 ∈ R

n×n, T † = U1T̂
−1U †2 ∈ R

n×n, T̂ , B̂1 ∈ R
d×d

If B1 is symmetric on (S1, g1) and Ĝ1 = (T̂ T Ĝ2T̂ ) or equivalently T is an isometry, i.e.,
g1(x1, y1) = g2(Tx1, T y1) for all x1, y1 ∈ S1, then the linear map B2 is symmetric on (S2, g2)
where

B2 = TB1T
† = U2(T̂ B̂1T̂

−1)U †2 = U2B̂2U
†
2 ∈ R

n×n
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Proof. Note the generalized inverse satisfies

TT † = U2U
†
2 = I|S2

T †TU1U
†
1 = I|S1

Since B1 is symmetric on S1 with respect to g1, we have the following equivalences for
B2 being symmetric on S2 with respect to g2:

Ĝ2B̂2 = B̂T
2 Ĝ2

⇔ Ĝ2T̂ B̂1T̂
−1 = (T̂ B̂1T̂

−1)T Ĝ2

⇔ Ĝ2T̂ B̂1T̂
−1 = T̂−T B̂1T̂

T Ĝ2

⇔ (T̂ T Ĝ2T̂ )B̂1 = B̂1(T̂
T Ĝ2T̂ )

Therefore, we have the sufficient condition

Ĝ1 = (T̂ T Ĝ2T̂ ) ⇒ Ĝ2B̂2 = B̂T
2 Ĝ2 (3.3)

and B2 is symmetric on S2 with respect to g2.
If x1 = U1x̂1 ∈ S1 and y1 = U1ŷ1 ∈ S1 then
Tx1 = U2T̂ x̂1 = U2x̂2 ∈ S2 and Ty1 = U2T̂ ŷ1 = U2ŷ2 ∈ S2. It follows that

g1(x1, y1) = x̂T1 Ĝ1ŷ1 = x̂T1 T̂
T Ĝ2T̂ ŷ1 = x̂T2 Ĝ2ŷ2 = g2(x2, y2) = g2(Tx1, T y1)

and therefore condition (3.3) is equivalent to T being an isometry between (S1, g1) and
(S2, g2).

If S1 and S2 inherit their inner products from the inner product on Rn defined by
< x, y >= xTGy then we have the following corollary.

Corollary 3.1.1. Using the definitions of Theorem 3.1.1, let U1 and U2 be any pair of
orthonormal bases for S1 and S2 respectively and assume additionally that the inner products
g1 and g2 are defined via the inner product < x, y >= xTGy on Rn. T is an isometry if
and only if T̂ T T̂ = Id. In which case, B2 is symmetric on (S2, g2).

Proof. choose U1 and U2 so that they have orthonormal columns relative to the inner
product defined by G.

Id = T̂ T T̂ = T̂ TUT2 GU2T̂

UT1 GU1 = T̂ TUT2 GU2T̂

= UT1 (U
†
1 )
T T̂ TUT2 GU2T̂U

†
1U1

= UT1 T
TGTU1

We have

xT1Gy1 = xT1 T
TGTy1

∴, g2(x2, y2) = g2(Tx1, T y1) = g1(x1, y1), for ∀x1, y1 ∈ S1,
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B2 is symmetric on (S2, g2) follows from Theorem 3.1.1.

Under the assumptions of inherited inner products of Corollary 3.1.1 we can characterize
a family of useful isometries. We assume U1 ∈ Rn×d and U2 ∈ Rn×d with Ĝ1 = UT1 GU1 =
UT2 GU2 = Ĝ2 = Id, and S1 = R(U1) and S2 = R(U2). Consider the linear map T : Rn → S2

and its restricted inverse defined by projection given by

T = U2U
†
2U1U

†
1 = U2T̂U

†
1 and T † = U1T̂

−1UT2 G = U1T̂
−1U †2

The transformed map is

B2 = TB1T
† = U2(T̂ B̂1T̂

−1)U †2 = U2B̂2U
†
2 ∈ R

n×n

If T̂ =WΣV T is the full SVD of T̂ then we have

B̂2 =WΣV T B̂1V Σ−1W T =WΣB̃1Σ
−1W T

where B̃1
T
= B̃1. Since, in general, Σ 6= Id we have B̂2 6= B̂T

2 and therefore the sufficient
condition of Corollary 3.1.1 is not satisfied and symmetry of B2 on (S2, g2) cannot be
guaranteed. Taking T̂ = Q ∈ Rd×d with QTQ = QQT = Id defines a pair of isometries
where

B̂2 = QB̂1Q
T

B̂T
2 Ĝ2 = B̂T

2 = QB̂T
1 Q

T = QB̂1Q
T = B̂2 = B̂2Ĝ2

and symmetry on (S2, g2) follows.
A particularly useful and easily derived member of this family is an isometry based on

canonical bases for S1 and S2. We have T̂ =WΣV T which in general is not an orthogonal
matrix. Let T̂ =WV T and we have

W TUT2 GU1V = Σ = ŨT2 GŨ1 and T = U2T̂U
†
1 = Ũ2Ũ

†
1

Ũ1 and Ũ2 are the canonical bases with respect to the inner product defined by G and T is
an isometry.

Note this family also includes the economical QR-based approach with G = In

P2|S1 = U2U
T
2 U1U

T
1 and T = qf(U2U

T
2 U1)U

T
1 = Ũ2U

T
1

where qf(A) is the rectangular factor with orthonormal columns in the economical QR
factorization of A.

The particular implementation of the canonical angle/bases isometry, which also hap-
pens to be a vector transport/inverse vector transport pair, is not always efficient com-
putationally. However, it can often be made so by looking at equivalent formulations of
the transformation. Using the point of view of general projection allows us to characterize
isometric and nonisometric transformations between subspaces of Rn in both an analytical
and computationally useful manner. We assume K = R(K), L = R(L) , K⊥ = R(K⊥),
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L⊥ = R(L⊥), and K 6= L. Projection yields the decomposition of Rn and the associated
split of the identity matrix

K⊕ L
⊥ = R

n and In = P + P⊥

We also know by definition

∀z ∈ R
n, P z ∈ K, z − Pz ∈ L

⊥, ∴ P = K(LTK)−1LT

∀z ∈ R
n, P⊥z ∈ L

⊥, z − P⊥z ∈ K, ∴ P⊥ = L⊥(K
T
⊥L⊥)

−1KT
⊥

For computational purposes, we can use either of the two forms for P and P⊥ and choose
the most efficient given the relative sizes of n and the dimension of the manifold d:

P = K(LTK)−1LT and P = I − L⊥(K
T
⊥L⊥)

−1KT
⊥

P⊥ = L⊥(K
T
⊥L⊥)

−1KT
⊥ and P⊥ = I −K(LTK)−1LT

The effectiveness of this viewpoint is nicely demonstrated by considering an intuitive
choice of transformation that is a vector transport but is not, in fact, an isometry. Suppose
M, a manifold with dimension d is embedded in Rn. So all elements of the manifold and
the tangent bundle are encoded as n-vectors. We assume that for each x ∈ M we have a
matrix Qx ∈ Rn×d such that Tx = R(Qx) and Q

T
xQx = Id and a matrix Nx ∈ Rn×n−d such

that T⊥x = R(Nx) and N
T
x Nx = In−d. The canonical Riemannian metric is

g(t1, t2) =< t1, t2 >= tT1 t2

for any (t1, t2) ∈ Tx × Tx and x ∈ M.

For each x ∈ M we need a vector transport, T : Tx → Tx̃ and inverse vector transport
T † : Tx̃ → Tx where x̃ = Rx(d) for some direction vector d ∈ Tx and Rx(d) : Tx → M is a
retraction. From our discussion above, if these maps are represented as n×n matrices they
have the form

T = Qx̃T̂Q
T
x and T † = QxT̂

−1QTx̃ .

Taking the core mapping T̂ such that T̂ T T̂ = Id guarantees the preservation of symmetry of
a transported operator. The reconciliation of this form with efficiency, the requirements of
vector transport, and the appropriate convergence properties must be considered carefully.

The use of projection to map from an arbitrary v ∈ Rn to a subspace can be used to
define a transform/inverse transform pair. Intuitively we start with defining the orthogonal
projectors

K = L = Tx̃ = R(Qx̃), K
⊥ = L

⊥ = T⊥x̃ = R(Nx̃)

P : Rn → Tx̃, Pv 7→ Qx̃Q
T
x̃ v and P⊥ : Rn → T⊥x̃ , P⊥v 7→ Nx̃N

T
x̃ v
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Figure 3.1: Orthogonal and oblique projections relating t and t̃

We can add a projector onto Tx to create the form consistent with our earlier analysis

T = PQxQ
T
x = Qx̃Q

T
x̃QxQ

T
x = Qx̃(Q

T
x̃Qx)Q

T
x = Qx̃T̂Q

T
x

T † = QxT̂
−1QTx̃ .

The two transformation pairs are equivalent when applied to elements of Tx. Computation-
ally we do not need to include the QxQ

T
x factor if the input is restricted to vectors in Tx.

So for the transformation we have the straightforward computational choices of

T = Qx̃Q
T
x̃ and T = I − T⊥ = I −Nx̃N

T
x̃

T⊥ = Nx̃N
T
x̃ and T⊥ = I −Qx̃Q

T
x̃

It is easily verified that these are a pair of inverses on Tx and Tx̃. The pair is also a
vector/inverse vector transport pair but that has not been demonstrated here and charac-
terizing them as such is discussed later. Note, however, that since, in general, T̂ T T̂ 6= Id
symmetry is not preserved under this transformation. The geometry of t ∈ Tx, t̃ = T t ∈ Tx̃,
Tx and Tx̃ is shown in Figure 3.1. While T is an orthogonal projector we must have T † is
an oblique projector.

Considering Figure 3.1 yields the intuitive notion that taking two oblique projectors
using Tx, Tx̃ and a third space L common to both projectors and to which both residuals
are orthogonal might yield an orthogonal matrix T̂ . The proposed situation is shown in
Figure 3.2.

Such a space L always exists under mild assumptions. This yields a pair of isometries
and with some care they can be made a vector transport/inverse vector transport pair. This
is summarized in the following theorem.
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Figure 3.2: Orthogonal and oblique projections relating t and t̃

Theorem 3.1.2. Let K, K̃ ∈ Rn×d be such that KTK = K̃T K̃ = Id, Tx = R(K) and
Tx̃ = R(K̃). If Tx ∩ Tx̃ = ∅ then for any orthogonal matrix T̂ ∈ Rd×d there exists L ∈ Rn×d

with orthonormal columns of the form

L = KM + K̃M̃

with nonsingularM, M̃ ∈ Rd×d that defines a space L = R(L) and the associated projectors

P = K̃T̂KT , T̂ = (LT K̃)−1(LTK)

P̃ = KT̂−1K̃T , T̂−1 = (LTK)−1(LT K̃)

such that

PP̃ = K̃K̃T and P̃P = KKT .

The projectors define a transform and its inverse between subspaces Tx and Tx̃ that are
isometries and given the operators

A : Tx → Tx

Ã = PAP̃ : Tx̃ → Tx̃

the symmetry of A on Tx implies the symmetry of of Ã on Tx̃ and vice versa.
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Proof. Let
L = KM + K̃M̃

where M and M̃ are to be determined. Recalling KTK = K̃T K̃ = Id yields

(LTK) = (KM + K̃M̃)TK =MT + M̃T K̃TK

(LT K̃) = (KM + K̃M̃)T K̃ =MTKT K̃ + M̃T

We want

(LTK)Q = (LT K̃)

(MT + M̃T K̃TK)Q = (MTKT K̃ + M̃T )

Now let KT K̃ = UΣV T and define

M = U, M̃ = V, Q = UV T

We then have

MTKT K̃ + M̃T = UTUΣV T + V T = ΣV T + V T

(MT + M̃T K̃TK)Q = UT + V TV ΣUT )(UV T ) = ΣV T + V T

as desired. We have

(LT K̃) = ΣV T + V T = V T (V ΣV T + I) = V T (I − ZΣV T

where Z = −V T

Since Z is orthogonal and Tx ∩ Tx̃ = ∅ we have (LT K̃) is nonsingular and therefore so is
(LTK).

Note that if L = KM + K̃M̃ does not have orthonormal columns one make them so
with L̃ = LR−1 and we have

Q = (LTK)−1(LT K̃) = (L̃TK)−1(L̃T K̃)

The reasoning above can be modified to show that any orthogonal matrix T̂ can be
placed in the isometric pair when there is no intersection and therefore the construction is
universal under those assumptions.

Theorem 3.1.3. Using the assumptions and definitions of Theorem 3.1.2 the orthogonal
matrix T̂ that defines

P = K̃T̂KT

T̂ = (LT K̃)−1(LTK)

P̃ = KT̂−1K̃T

T̂−1 = (LTK)−1(LT K̃)
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can be taken to be any orthogonal matrix and the space L and an associated orthonormal
basis can be determined of the form

L = KM + K̃M̃

with nonsingular M, M̃ ∈ Rd×d.

Proof. Suppose we want T̂ = Q where QTQ = QQT = Id. We keep M = U and look for
M̃ as a function of Q. The proof of Theorem 3.1.2 enforces the equality

(QTUΣV T − I)M̃ = (V ΣUT −QT )U

Defining V̂ = QTU we have

M̃ = V (V̂ Σ− V )−1(V Σ− V̂ )

The matrix is well-defined when Σ < I which is guaranteed when Tx ∩ Tx̃ = ∅.

Theorem 3.1.2 requires no intersection between the spaces and exploits the result that
certain related matrices are nonsingular. If Tx ∩Tx̃ 6= ∅ then the sufficient condition cannot
be guaranteed since the canonical bases yield a singular B. The following lemma gives the
required basic facts.

Lemma 3.1.1.

• If Q1 ∈ Rn×d and Q2 ∈ Rn×d are such that QT1Q1 = QT2Q2 = Id then

QT1Q2 = UΓV T , UTU = V TV = Id

Γ = diag(cos(θ1), . . . , cos(θd)), 0 ≤ θ1 ≤ · · · ≤ θd ≤ π/2

• ‖QT1Q2‖2 ≤ 1 since ‖A‖2 = maxi σi where σi are the singular values of A

• If R(Q1) ∩R(Q2) = ∅ then cos(θi) < 1 for 1 ≤ i ≤ d and ‖QT1Q2‖2 < 1.

• If θd < π/2, i.e., R(Q1) and R(Q2) have no subspaces that are orthogonal to each
other, then QT1Q2 is nonsingular.

• If ‖A‖2 < 1 then

(I −A)−1 =

∞∑

k=0

Ak

We therefore have

Corollary 3.1.2.

• If R(Q1) ∩R(Q2) = ∅ then B = (Id −Q1
TQ2) is nonsingular.

• If R(Q1) ∩ R(Q2) 6= ∅ then ∃T1, T2 ∈ Rd×d such that T T1 T1 = T T2 T2 = Id and
B = (Id − T T1 Q1

TQ2T2) is singular, i.e. there are bases for which it is singular.
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Proof. The nonsingular result follows directly from the lemma since R(Q1) ∩ R(Q2) = ∅
implies that ‖Q1

TQ2‖2 < 1.
Singularity for a transformed matrix when there is an intersection of dimension k follows

from the fact that there must exist orthogonal transformations, T1 and T2, such that

Q̃1 = Q1T1 =
(
Q C1

)
, CT1 C1 = Id−k

Q̃2 = Q2T2 =
(
Q C2

)
, CT2 C2 = Id−k

R(Q) = Tx ∩ Tx̃

In this coordinate system we have

Id − Q̃T1 Q̃2 =

(
0 0
0 CT1 C2

)

which is clearly singular. If we are not in that coordinate system then

Id −QT1Q2

may not be singular and
T T1 T2 −QT1Q2

is singular.

If Tx ∩ Tx̃ 6= ∅ we can still create a projection-based isometric transformation pair in
a simple and efficient manner. Let Tx ∩ Tx̃ have dimension k < d with R(Q) = Tx ∩ Tx̃,
QTQ = Ik. Suppose K, K̃ ∈ Rn×d be such that KTK = K̃T K̃ = Id, Tx = R(K) and
Tx̃ = R(K̃). We can then choose the bases so that

K =
(
Q K1

)
, KT

1 K1 = Id−k

K̃ =
(
Q K̃1

)
, K̃T

1 K̃1 = Id−k

The projectors that form the pair can be formed by leaving the component of the tangent
vectors in Tx ∩ Tx̃ 6= ∅ untouched and applying Theorem 3.1.2 to get the pair of transfor-
mations between R(K1) and R(K̃1). Defining

L =
(
Q L1

)
, LT1 L1 = Id−k

and noting that

R(K1) ⊥ R(Q) and R(K1) ⊥ R(Q) ⇒ R(L1) ⊥ R(Q)

we have from Theorem 3.1.2

P =
(
QQT + K̃1(L

T
1 K̃1)

−1LT1

)
KKT (3.4)

P̃ =
(
QQT +K1(L

T
1K1)

−1LT1
)
K̃K̃T (3.5)

These projectors assume knowledge of the bases associated with all the related spaces.
This, of course, could be prohibitive computationally so it is crucial that knowledge of the
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structure of the tangent spaces and normal spaces be exploited to gain time and space
efficiency or to show that efficiency is not possible.

These results give us a mechanism defining and analyzing the isometry and nonisometry
properties of transformations between tangent spaces. By virtue of the projection framework
it also gives us a set of formulations of the pair of transforms out of which we may select
the most computationally efficient.

3.2 Vector Transport on a Submanifold of Rn

Since M is assumed to be a submanifold of Rn, tangent spaces TxM are naturally
identified with subspaces of Rn (see[ [4]§3.5.7] for details). The isometric and nonisometric
transformation pairs between such subspaces discussed above are not all vector/inverse
vector transport pairs. They must satisfy additional constraints. Using the framework
above we have developed the final link in the theory required to analyze and implement
vector transport on a submanifold of Rn.

Definition 3.2.1. A subspace matching function is a smooth (partial) function

ℓ : Gr(d, n)×Gr(d, n) → L(Rn,Rn),

where L(Rn,Rn) denotes the set of all linear maps from Rn into itself, with the following
conditions:

1. The domain of definition of ℓ, denoted by dom(ℓ), contains a neighborhood of the
diagonal ∆Gr(d,n) = {(X ,X ) : X ∈ Gr(d, n)}.

2.

ℓ(X ,Y)X ⊆ Y. (3.6)

3.

ℓ(X ,Y)X⊥ = {0}. (3.7)

4. Consistency:

ℓ(X ,X )|X = idX , for all X ∈ Gr(d, n). (3.8)

If moreover ℓ(X ,Y)|X is an isometry for all (X ,Y) ∈ dom(ℓ), where the metric is the one
induced from the canonical metric in Rn, then we say that ℓ is isometric. We say that ℓ
is isotropic if

ℓ(UX , UY) = Uℓ(X ,Y)UT

for all U ∈ On; in this case, ℓ is fully determined by specifying ℓ(col(In,d),Y) for all Y ∈
Gr(d, n).

We will abuse notation and write ℓ(X,Y ) for ℓ(col(X), col(Y )). From now on, let M
denote a manifold endowed with a retraction R.

We have the following characterization of vector transport.
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Theorem 3.2.1. If ℓ is a subspace matching function (Definition 3.2.1), then T defined by

Tηxξx = ℓ(TxM, TR(ηx)M)ξx (3.9)

is a vector transport.

Proof. From (3.9), we have

Tηxξx = ℓ(TxM, TR(ηx)M)ξx ∈ TR(ηx)M
so the associated retraction condition in the definition of vector transport is satisfied.

From (3.8), we have

T0xξx = ℓ(TxM, TR(0x)M)ξx = ℓ(TxM, TxM)ξx = idTxMξx = ξx.

This is the consistency condition of vector transport. We also have

Tηx(aξx + bζx) = ℓ(TxM, TR(ηx)M)(aξx + bζx)

= ℓ(TxM, TR(ηx)M)aξx + ℓ(TxM, TR(ηx)M)bζx

= aTηx(ξx) + bTηx(ζx).
This is the linearity condition of vector transport.

In view of (3.6) and (3.7), and restricting from now on to orthonormal X and Y , we
can write

ℓ(X,Y ) = Y QX,YX
T , (3.10)

where
QXM,Y N = NTQX,YM (3.11)

to ensure that ℓ induces a function on Gr(d, n) × Gr(d, n) through ℓ(col(X), col(Y ) =
ℓ(X,Y ). The smoothness condition imposes that (X,Y ) 7→ QX,Y is smooth. The con-
sistency condition imposes that

QX,X = I. (3.12)

Mapping ℓ is isometric if and only if

QX,Y ∈ Od. (3.13)

Finally, we have the following result that relates fundamental properties of the mapping
ℓ defined in terms of a specific form of the core operator QX,Y .

Theorem 3.2.2. If Q is defined by

QX,Y =Wρ(Σ)V T , (3.14)

where Y TX = WΣV T is an SVD and where ρ is such that, for all signed permutation
matrix P ,

Pρ(P TΣP )P T = ρ(Σ), (3.15)

then isotropy holds for ℓ defined through (3.10). Assuming (3.14) and (3.10), consistency
holds if and only if ρ(I) = I, in which case ℓ defines a vector transport through (3.9). Still
assuming (3.14) and (3.10), isometry holds if and only if ρ(Σ) ∈ Od.
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Proof. Isotropy:

For any U ∈ On, we have (UY )TUX = Y TX, so

QUX,UY = QX,Y =Wρ(Σ)V T , where Y TX =WΣV T , and

ℓ(UX,UY ) = (UY )QUX,UY (UX)T = UYWρ(Σ)V TXTUT

= U(YWρ(Σ)V TXT )UT = Uℓ(X,Y )UT .

Consistency:

If ρ(I) = I, then since XTX = Id,d = WΣV T , we have W = Σ = V = Id,d are all
identity matrices.

ℓ(X,X)|X = XQX,XX
T |X = XWρ(Σ)V TXT |X

= Xρ(Id,d)X
T |X = XId,dX

T |X = IdX , for all X.

Conversely, if ℓ is consistent, then

In,nX = ℓ(X,X)X = XQX,XX
TX = XWρ(Σ)V TXTX

= Xρ(Id,d)X
TX = Xρ(Id,d), for all X.

So ρ(Id,d) = I.

Isometry:

If ρ(Σ) ∈ Od, then, W,ρ(Σ), V
T in (3.14) are all orthogonal. We have that QX,Y is also

orthogonal. From (3.13), isometry of ℓ(X,Y ) is equivalent to QX,Y ∈ Od.
Conversely, if ℓ is isometric, we know QX,Y ∈ Od.

From (3.14), we have ρ(Σ) = W TQX,Y V . So QX,Y ∈ Od implies that ρ(Σ) ∈ Od since
W and V are all orthogonal.

Theorem 3.2.2 characterizes vector transport and isometric vector transport and there-
fore can be used with the projection framework to analyze and design efficient vector trans-
port/inverse vector transport pairs.

3.3 Matrix Representations of Bk on a Submanifold of Rn

When implementing RBFGS or related methods on a submanifold of Rn a key consider-
ation is the method in which the linear transformations are represented as matrices. These
include Bk, Jk, Hk, and Tαkηk . The choice centers on the efficiency of an n × n matrix or
a d × d matrix along with a n × d matrix whose columns form a basis for an appropriate
tangent space. In general, we expect a combination of all approaches when considering all
of the transformations above.
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3.3.1 Approach 1: n× n matrix representations

Approach 1 realizes Bk as an n×n matrix B
(n)
k . When considering M as a submanifold

of Rn and its tangent spaces TxM naturally identified with subspaces of Rn, it is very
common to use the same notation for a tangent vector and its corresponding element of Rn.
However, to explain Approach 1, it is useful to distinguish the two objects. To this end, let
ιx denote the natural inclusion of TxM in Rn, ιx : TxM → Rn, ξx 7→ ιx(ξx).

To represent Bk, we pick B
(n)
k ∈ Rn×n such that, for all ξxk ∈ TxkM ,

B
(n)
k ιxk(ξxk) = ιxk(Bkξxk). (3.16)

Solving the linear system (3.1) then amounts to finding ιxk(ηk) in ιxk(TxkM) that satisfies

B
(n)
k ιxk(ηk) = −ιxk(grad f(xk)). (3.17)

Note that condition (3.16) does not uniquely specify B
(n)
k ; its action on the normal space

is irrelevant or an available degree of freedom depending on the point of view. As a result,

B
(n)
k may be a singular matrix, i.e., rank(B

(n)
k ) = d < n. In any case, (3.17) will be a

consistent set of equations that must be solved on each step of the form of RBFGS that

uses (3.1). The matrix B
(n)
k could be made nonsingular directly by regularization, but when

considering the transport of the operator to get the matrix representations of B̃k and Bk+1,

the matrix form of the transport and its properties determine the rank of B
(n)
k . The n× n

matrix representation of transport that naturally arises from the earlier discussion is a rank
deficient matrix expressed in terms of an efficient projection form using information about
the tangent spaces or the normal spaces involved in the transport. The null space of the
transformations would include appropriate normal spaces. In this case, we would have Tηk
represented by T

(n)
αηk ∈ Rn×n that satisfies T

(n)
αηk ιxk(ξxk) = ιxk+1

(Tαηkξxk) for all ξxk ∈ TxkM

and T
(n)
αηkζk = 0 for all ζk ⊥ ιxk(TxkM).

The update (2.5) must be expressed using this representation. Since M is an embedded
submanifold of Rn, the Riemannian metric is given by g(ξx, ηx) = ιx(ξx)

T ιx(ηx) and the
update equation (2.5) is then

B
(n)
k+1 = B̃

(n)
k − B̃

(n)
k ιxk+1

(sk)ιxk+1
(sk)

T B̃
(n)
k

ιxk+1
(sk)T B̃

(n)
k ιxk+1

(sk)
+
ιxk+1

(yk)ιxk+1
(yk)

T

ιxk+1
(yk)T ιxk+1

(sk)
,

where B̃
(n)
k = T

(n)
αηkB

(n)
k

(
(Tαηk)

(n)
)†

and † denotes the pseudoinverse. The pseudoinverse is
used here for the inverse vector transport to emphasize that the n × n representation of
the vector transport/inverse vector transport pair may not be full rank as a transformation

on Rn. Clearly, if rank(T
(n)
αηk) 6= n then rank(B̃

(n)
k ) 6= n since the update affects only

the action on the tangent spaces. So for this approach, the typical situation is that T
(n)
αηk

is expressed efficiently via some projection-like expression and therefore applying it to a

vector or matrix in Rn or Rn×n is efficient; and B
(n)
k , B

(n)
k+1 and B̃

(n)
k will be expressed as

dense n×n matrices that are singular but symmetric and positive definite on the subspaces
representing the appropriate tangent space of M .
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If RBFGS is expressed in terms of (3.2) and propagating H
(n)
k ∈ Rn×n to represent Hk

similar rank statements can be made. In this case, however, there is no issue of solving

consistent singular systems and the update of H
(n)
k is essentially propagating (B

(n)
k )†. As

above the typical representation is dense n× n and symmetric and positive definite on the
appropriate subspace.

Solving (3.17) usingB
(n)
k can be done in three main ways. The first is the most costly and

least efficient. A factorization of B
(n)
k , possibly rank-revealing, could be computed on each

step. A very straightforward second way to solve (3.17) is to exploit the CG iterative method
for consistent singular systems or ill-conditioned systems. It is straightforward to show that

if B
(n)
k is symmetric and positive definite on a subspace then given initial conditions in the

subspace the CG iteration in Rn using B
(n)
k is equivalent (in exact arithmetic) to CG on

problem projected onto the subspace where it is nonsingular. For RBFGS we know that
the positive definiteness is preserved but safeguards similar to that used in trust region and
line search methods on Rn, e.g., Steighaug CG [22], are easily incorporated. The efficiency
concern here centers on the need to perform O(n2) operations per step of CG on the dense

matrix B
(n)
k .

The third way is to propagate a Cholesky or similar factorization that would be a
matrix representation in Rn×n of the operator Jk discussed earlier. A key issue in the
efficiency of this approach is whether or not the factor is such that its rank is apparent.
Recall, that Jk was transported in our earlier abstract discussion and therefore its matrix

representation would be multiplied with the usually singular T
(n)
αηk and (T

(n)
αηk )

†. When, for

example, we start with B
(n)
0 in a factored form (similar to the basis-based Approach 2

below), a strategy that propagates a low-rank factorization based on the Cholesky update
idea could for some manifolds result in a very efficient computation. A similar idea of

propagating a factorization of H
(n)
k could yield for some manifolds a very efficient matrix-

vector product for each iteration. These ideas are very much in the spirit of Approach 2
discussed next.

3.3.2 Approach 2: d× d matrix representations

As noted above the representations T
(n)
αηk and (T

(n)
αηk)

† are expressed in terms of efficient
projection-based forms. However, since all of the transformations are only of interest on
the d-dimensional subspaces corresponding to the appropriate tangent spaces they can all
be expressed

An = UdÂdU
†
d

where the columns of Ud form a basis for a tangent space or

An = U2ÂdU
†
1

where the columns of U1 and U1 form bases for the associated tangent spaces. As a result,
Approach 2 determines a basis for each d-dimensional space of interest and applies the
updates and solves systems on the coordinate forms of tangent vectors and linear transfor-
mations relative to those bases. All of the formulas have at their core matrix operations
using the core transformations. The main efficiency concern is the cost of transport and/or
creation of the required bases and the cost of projecting onto the subspaces.
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Approach 2 realizes Bk by a d×d matrix B
(d)
k using bases, where d denotes the dimension

of M . Given a basis Ek = (Ek,1, . . . , Ek,d) of TxkM , if ĝk ∈ Rd is the vector of coefficients

of grad f(xk) in the basis and B
(d)
k is the d × d matrix representation of Bk in the basis,

then we must solve B
(d)
k η̂k = −ĝk for η̂k ∈ Rd, and the solution ηk of (3.1) is given by

ηk =
∑d

i=1Ek,i(η̂k)i. From (3.16), we have

E†kB
(n)
k Ek E

†
kixk(ηk) = −E†kixk(grad f(xk))
B

(d)
k η̂k = −ĝk (3.18)

where E†k = (ET
kEk)

−1ETk . The update (2.5) is easily expressed in terms of Rd. Which
approach is superior depends on the manifold type and the size of the manifold which are
critical in the complexity of creating basis of the tangent space.

Solving (3.18) can be done by computing a factorization on each step or more efficiently
the Cholesky factor is easily propagated using the formulas presented abstractly in Lem-

mas 2.4.1 and 2.4.2 on the core B
(d)
k = L

(d)
k (L

(d)
k )T and transportation of the bases. The

update of L
(d)
k to L̃

(d)
k and L

(d)
k+1 can be done efficiently using a QR factorization-based

strategy presented in [12].

3.4 Transport on the Unit Sphere

We view the unit sphere Sn−1 = {x ∈ Rn : xTx = 1} as a Riemannian submanifold
of the Euclidean space Rn with the inherited inner product on each tangent space. The
tangent space at x, orthogonal projection onto the tangent space at x, and the retraction
chosen are given by

TxS
n−1 = {ξ ∈ R

n : xT ξ = 0}
Pxξ = ξ − xxT ξ

Rx(ηx) = (x+ ηx)/‖(x + ηx)‖,

where ‖ · ‖ denotes the Euclidean norm.
Tx = R(Qx) has dimension n−1 so the projection-based non-isometric vector transport

using Px = QxQ
T
x is not useful computationally. If we apply the projection framework and

choose the most efficient form of the vector transport/inverse vector transport pair we easily
get the orthogonal projector/oblique projector pair on Sn−1 given by

Tηxξx =

(
I − (x+ ηx)(x+ ηx)

T

‖x+ ηx‖2
)
ξx (3.19)

(Tηx)−1(ξRx(ηx)) =

(
I − (x+ ηx)x

T

xT (x+ ηx)

)
ξRx(ηx) (3.20)

If ET
k+1Ek = UΣW T is a full SVD, where Ek+1 and Ek are orthonormal basis of Txk+1

and Txk respectively then the projection-based isometric vector transport/inverse vector
transport pair based on canonical angles and vectors is

T = Ek+1U(EkW )T and T −1 = EkWUTETk+1 (3.21)
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This is also computationally unacceptable. If we apply the projection framework and choose
the most efficient form of the vector transport/inverse vector transport pair we easily get
the oblique projector pair on Sn−1 whose actions can be described as follows: for any t ∈ Tx
and t̃ ∈ Tx̃ where T t = t̃ and t = T †t̃ we have the unique decompositions

t = tc + t∩ and t̃ = t̃c + t∩, t∩ ∈ Tx ∩ Tx̃

and the computationally efficient formulas

r̃ = (I − x̃x̃T )x, q̃ = r̃/‖r̃‖2, r = (I − xxT )x̃, q = r/‖r‖2

t∩ = t− xxT t− qqT t = t− x̃x̃T t− q̃q̃T t

t̃ = t∩ + T̂ tc = (q̃qT )(qqT )t+ t∩ = q̃qT t+ t∩

t = t∩ + T̂ †t̃c = (qq̃T )q̃q̃T t̃+ t∩ = qq̃T t̃+ t∩

For the unit sphere, the Levi-Civita parallel transport of ξ ∈ TxS
n−1 along the geodesic,

γ, from x in direction η ∈ TxSn−1 is [8]

P t←0
γ ξ =

(
In + (cos(‖η‖t) − 1)

ηηT

‖η‖2 − sin(‖η‖t)xη
T

‖η‖
)
ξ.

This parallel transport and its inverse have computational costs comparable to the efficient
forms of the vector transports and their inverses.

3.5 Transport on the compact Stiefel manifold St(p, n)

We view the compact Stiefel manifold St(p, n) = {X ∈ Rn×p : XTX = Ip} as a Rie-
mannian submanifold of the Euclidean space Rn×p endowed with the canonical Riemannian
metric g(ξ, η) = tr(ξT η). The tangent space at X and the associated orthogonal projection
are given by

TXSt(p, n) = {Z ∈ R
n×p : XTZ + ZTX = 0}

= {XΩ +X⊥K : ΩT = −Ω,K ∈ R
(n−p)×p}

PXξX = (I −XXT )ξX +Xskew(XT ξX)

We use the retraction given by RX(ηX) = qf(X + ηX), where qf(A) denotes the Q factor
of decomposition of A ∈ R

n×p
∗ as A = QR, where R

n×p
∗ denotes the set of all nonsingular

n×p matrices, Q ∈ St(p, n) and R is an upper triangular n×p matrix with strictly positive
diagonal elements.

Vector transport and its inverse on St(p, n) are given by

TηX ξX = (I − Y Y T )ξX + Y skew(Y T ξX)

(TηX )−1ξY = ξY + ζ,
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where Y := RX(ηX), ζ is in the normal space at Y which implies ζ = Y S where S is
a symmetric matrix, and (ξY + Y S) ∈ TxSt(p, n) which implies XT (ξY + Y S) is skew
symmetric. We therefore have

XTY S + SY TX +XT ξY + ξTYX = 0.

Therefore, S can be found by solving a Lyapunov equation.

We can also create the projection-based isometric vector transport/inverse vector trans-
port pair in the same way as illustrated in the Unit Sphere ( 3.21).

Or the economical QR-based approach

T = qf(Ek+1E
T
k+1Ek)E

T
k

where qf(A) is the rectangular factor with orthonormal columns in the economical QR
factorization of A.

For St(p, n), the parallel transport of ξ 6= H along the geodesic γ(t) from Y in direction
H, denoted by w(t) = P t←0

γ ξ, satisfies [14, §2.2.3]:

w′(t) = −1

2
γ(t)(γ′(t)Tw(t) + w(t)T γ′(t)), w(0) = ξ. (3.22)

In practice, the differential equation is solved numerically and the computational cost of
parallel transport may be significantly higher than that of vector transport.

3.6 Transport on OB(n,N)

Let X = [x1, x2, · · · , xN ] ∈ OB(n,N), where xi ∈ Rn, xTi xi = 1, for i = 1 to N . The
dimension d of OB(n,N)) is (n− 1)N .

We view Sn−1 × · · · × Sn−1 as a Riemannian submanifold of the Euclidean space Rn ×
· · · × Rn endowed with the canonical Riemannian metric:

≪ Z,W ≫X = 〈z1, w1〉x1 + · · ·+ 〈zN , wN 〉xN
= zT1 w1 + · · ·+ zTNwN = tr(ZTW ), for ∀Z,W ∈ TXM

The tangent space at X

TxM = {Z = [z1, · · · , zN ] ∈ R
n×N

∣∣∣∣xT1 z1 = xT2 z2 = · · · = xTNzN = 0}

A choice of retraction is

RX(Z) =
[ x1 + z1
‖x1 + z1‖

, · · · , xN + zN
‖xN + zN‖

]
(3.23)

The orthogonal projection to tangent space is

PXW = [(I − x1x
T
1 )w1, · · · , (I − xNx

T
N )wN ] (3.24)
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Vector transport (and their inverses) of

ξX = [ξ1, ξ2, · · · , ξN ] ∈ TxM

defined by directions

ηX = [η1, η2, · · · , ηN ] ∈ TxM

simply apply the corresponding transport mechanisms from Sn−1 componentwise. Denote

vt i = I −
(
X(:, i) + η(:, i)

)(
X(:, i) + η(:, i)

)T

‖X(:, i) + ηX(:, i)‖2

vt inv i = I −
(
X(:, i) + η(:, i)

)
X(:, i)T

X(:, i)T
(
X(:, i) + η(:, i)

) , for i = 1, 2, · · · , N

The vector transport is:

vec{TηX ξX} = diag([vt 1; vt 2; · · · ; vt N ])vec{ξX} (3.25)

The inverse vector transport is:

vec{(TηX )−1ξRX(ηX)} = diag([vt inv 1; vt inv 2; · · · ; vt inv N ])vec{ξRX(ηX )} (3.26)

Parallel transport and its inverse is computed by simply replacing the componentwise vector
transports on Sn−1 with the parallel transports on Sn−1. Hence, as with the unit sphere,
the parallel and efficient vector transport costs are similar on OB(n,N).

Let N be the number of Sn−1, X = [x1, x2, · · · , xN ] ∈ Sn−1 × · · · × Sn−1, xTi xi =
1, for i = 1 to N .

Denote vt i = I −
(
X(:,i)+η(:,i)

)(
X(:,i)+η(:,i)

)T

‖X(:,i)+ηX (:,i)‖2

vt inv i = I −
(
X(:,i)+η(:,i)

)
X(:,i)T

X(:,i)T
(
X(:,i)+η(:,i)

) , for i = 1, 2, · · · , N
The vector transport is:

vec{TηX ξX} =




vt 1
vt 2

· · ·
vt N


 vec{ξX}

The inverse vector transport is:

vec{(TηX )−1ξRX(ηX)} =




vt inv 1
vt inv 2

· · ·
vt inv N


 vec{ξRX(ηX )}
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3.7 Implementation on the Grassmann Manifold Grass (p, n)

All of the manifolds discussed so far were embedded submanifolds. Grass(p, n) has
Riemannian quotient manifold structure. Let the structure space M be the noncompact
Stiefel manifold R

n×p
∗ = {Y ∈ Rn×p : Y full rank }.

As the Grassmann manifold is not directly defined as a submanifold of a Euclidean space,
we must choose a representation for elements of the manifold and their tangent vectors. We
choose to represent an element of Grass(p, n), a p-dimensional subspace of Rn, by a full-rank
n× p matrix whose columns span that subspace.

The set of matrices that represent the same subspace as a matrix Y is the fiber YGLp =
{YM : det(M) 6= 0}. The vertical space at Y is the tangent space to the equivalence class.

Vy = {YM :M ∈ R
p×p}.

A real function f on Grass(p, n) is represented by its lift f↑Y = f(colsp(Y )). To represent
a tangent vector ξ to Grass (p, n) at a point Y = colsp(Y ), first define a horizontal space
HY whose direct sum with VY is the whole Rn×p ; then ξ is uniquely represented by its
horizontal lift ξ↑Y defined by the following two conditions: (i) ξ↑Y ∈ HY and (ii) Df(Y)[ξ] =
Df↑(Y )[ξ↑Y ] = ξ for all real functions f on Grass(p, n). Therefore, the horizontal space HY

represents the tangent space TY Grass(p, n). We define the horizontal space as

HY = {Z ∈ R
n×p : Y TZ = 0}.

We then define a noncanonical metric on Grass(p, n) as

gY (ξ, ζ) = trace((Y TY )−1ξT↑Y ζ↑Y )

If Y ∈ St(n, p), then the tangent space of Grassmannian manifold is given by [17]

TYGrass(p, n) =
{
Z ∈ R

n×p : Z = Y ⊥K : K ∈ R
(n−p)×p

}

We will use the retraction
RY(ξ) = span(Y + ξ↑Y ) (3.27)

In order to avoid ill-conditioning, we use qf(Y + ξ↑Y instead of span(Y + ξ↑Y as a basis for
the subspace RY(ξ). where Y = colsp(Y ), qf(A) denotes the Q factor of decomposition of
A ∈ R

n×p
∗ as A = QR, where Q belongs to St(p, n) and R is an upper triangular n × p

matrix with strictly positive diagonal elements.
The non-isometric vector transport/inverse transport pair on the Grassmann manifold

can be defined. Let PhY : TY N̄ → HY , then the vector transport is:

(TηY ξY)↑(Y +η↑Y ) = PhY+η↑Y
ξ↑Y ,

where PhY Z =
(
I − Y (Y TY )−1Y T

)
Z and the inverse vector transport is:

(
TηY

)−1
ξRY (ηY ) =

(
I − (Y + η↑Y )

(
Y T (Y + η↑Y )

)−1
Y T

)
ξRY (ηY ),

Finally, the isometric vector transport/inverse vector transport pair is the same as defined
by (3.21).
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Parallel transport on Grassmannian manifold can be defined as follows. Let H and ∆
be tangent vectors to the Grassmann manifold at Y . The parallel translation of ∆ along
the geodesic in the direction Y (0) = H is then

T∆(t) =
(
(Y V U)−

(
−sinΣt
cosΣt

)
UT + (I − UUT )

)
∆.

where UΣV T is the compact singular value decomposition of H.
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CHAPTER 4

RIEMANNIAN ADAPTIVE

REGULARIZATION USING CUBICS

4.1 The Algorithm

The ARC method in Rn, [9, 10], for a cost function f(x) consists of adding to the current
iterate x ∈ Rn the update vector η ∈ Rn solving the ARC subproblem

min
η∈Rn

m(η) = f(x) + ∂f(x)η +
1

2
ηTBη +

1

3
σ‖η‖3

where ∂f = (∂1f, ..., ∂nf) is the differential of f, and Bk is, typically, a symmetric approx-
imation to the local Hessian H(xk). Both parameters in the cubic model, Bk and σk > 0,
are dynamic. The quality of the model m is assessed by forming the quotient

ρ =
f(x)− f(x+ η)

m(0)−m(η)

Depending on the value of ρ, the new iterate will be accepted or discarded and the parameter
σ will be updated.

The analogue with trust region methods on Rn is clear. As a result, the paradigm devel-
oped for the Riemannian trust-region (RTR) method [2, 6] and [4, Chapter 7.0] is sufficient
to describe, RARC, the Riemannian optimization form of ARC. RARC uses a series of flat
spaces and associated optimization problems to replace the optimization problem on the
curved space. The tangent spaces of the iterates xk provide a natural series of flat spaces.
The retraction is used to map tangent vectors back to the manifold and to define the lifted
cost function f̂xk(η) where η ∈ TxkM.

A series of unconstrained optimization problems in Rd are considered. For each, the
lifted cost function is reduced sufficiently, the resulting tangent vector is retracted to the
manifold, and a decision on step acceptance or rejection is made. The parameters of the
local model are updated by considering the relationship between the lifted cost function
f̂xk(η), its local model mx(η), and the cost function f(x). For RTR, despite using several
lifted cost functions f̂xk(η) to define a series of problems, the method converges globally to
the critical points of f(x) and has local superlinear convergence under mild assumptions on
the retraction, the cost function and the solution of the local unconstrained optimization
problems. We have observed and proven similar results for RARC. In the remainder of this
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chapter we follow closely the development and analysis of Cartis et al. [9] for ARC. We
generalize each of their results that are required to prove the corresponding convergence
results on an arbitrary Riemannian manifold and to generate an efficient computational form
of the Riemannian algorithm. In some cases these proofs require significant modification to
handle the general Riemannian situation.

The structure of the RARC method on a Riemannian manifold (M,g ) with retraction
R is as follows. Given a cost function f : M → R and a current iterate xk ∈ M , we use
Rxk to locally map the minimization problem for f on M into a minimization problem for
the cost function

f̂xk : TxkM → R : ξ → f(Rxkξ) (4.1)

The Riemannian metric g turns TxkM into a Euclidean space endowed with the inner

product gxk(· , · ). We use the following model as the approximation of f̂xk

m̂xk(η) = f(xk) + 〈grad f(xk), η〉xk +
1

2
〈Bk[η], η〉xk +

1

3
σk‖η‖3xk (4.2)

where ‖η‖xk =
√

〈η, η〉xk =
√
g(η, η). Here η ∈ TxkM, 〈· , · 〉xk = gxk(· , · ), where Bxk :

TxkM → TxkM is some symmetric linear operator, i.e., gxk(Bxkξ, χ) = gxk(ξ,Bxkχ), ξ, χ ∈
TxM. The RARC subproblem on TxkM is

min
η∈TxkM

m̂xk(η) (4.3)

An approximate solution ηk of the RARC subproblem (4.3) is computed using any available
method. The candidate for the new iterate is then given by x+ = Rxk(ηk). The decision to
accept or not accept the candidate and to update the regularization parameter, σk, is based
on the quotient

ρk =
f(xk)− f(Rxk(ηk))

m̂xk(0xk)− m̂xk(ηk)
=

f̂xk(0xk)− f̂xk(ηk)

m̂xk(0xk)− m̂xk(ηk)
(4.4)

If ρk is exceedingly small, then the model is very inaccurate: the step is rejected and σ is
increased. If ρk is small but less dramatically so, then the step is accepted but σ is still
increased. If ρk is close to 1, then there is a good agreement between the model and the
function over the step, and σ can be decreased.

We assume in this section that

grad f(xk) 6= 0, for all k ≥ 0. (4.5)

The following statement is a straightforward adaptation of Theorem 3.1 in [9] to the
case of the RARC subproblem on TxkM as expressed in (4.3).

Theorem 4.1.1. Any η∗k is a global minimizer of m̂xk over TxkM if and only if it satisfies
the system of equations

(Bk + λ∗kI)η
∗
k = −grad f(xk), (4.6)

where λ∗k = σk‖η∗k‖ and Bk + λ∗kI is positive semidefinite. If Bk + λ∗kI is positive definite,
η∗k is unique.
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Using this theorem, after some manipulations, solving the subproblem is equivalent to
finding the root of the secular equation

φ1(λk) =
1√
‖ηk‖

− σk
λk

and the solution of a sequence of linear equations

(Bk + λkI)ηk = −grad f(xk).

For acceptable convergence, we need only choose iterates that improve on the associated
Cauchy points. An idealized view of this procedure can be formalized as Algorithm 3.

Algorithm 3 Riemannian Adaptive Regularization using Cubics(RARC) algorithm

Require: Complete Riemannian manifold(M, g); real-valued function f on M ; retraction
Rx from TxM to M
Parameters: γ2 ≥ γ1 > 1, 1 > ξ2 ≥ ξ1 > 0, and σ0 > 0
Input: Initial iterate x0 ∈M
Output: Sequence of iterates xk ∈M
for k=0, 1, 2 . . . until convergence do

Obtain a step ηk in tangent space of xk, TxkM, for which

m̂xk(ηk) ≤ m̂xk(η
C
k ), (4.7)

where we define the Cauchy point ηCk , element of TxkM , as the solution of the one-
dimensional problem

ηCk = −αCk grad f(xk) and αCk = argmin
α∈R+

m̂xk(−αgrad f(xk))

Evaluate ρk from (4.4)
if ρk < ξ1 then

σk+1 ∈ [γ1σk, γ2σk]) [unsuccessful iteration]
else if ρk > ξ2 then

σk ∈ (0, σk] [very successful iteration]
else

σk+1 ∈ [σk, γ1σk] [successful iteration]
end if

if ρk ≥ ξ1 then

xk+1 = Rxk(ηk)
else

xk+1 = xk
end if

end for

In order to turn this into an effective and efficient procedure ARC uses an idea that is
applied in various forms in trust region methods. The local cubic model is approximately
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minimized or more precisely sufficiently reduced in a sequence of nested subspaces related
to the current iterate xk. This idea was developed for the Riemannian trust-region (RTR)
method by generalizing the truncated CG approach to the trust region method on Rn [2, 6]
and [4, Chapter 7.0].

In the following, we require that ηk satisfies

〈grad f(xk), ηk〉xk + 〈Bk[ηk], ηk〉xk + σk‖ηk‖3xk = 0, k ≥ 0 (4.8)

〈Bk[ηk], ηk〉xk + σk‖ηk‖3xk ≥ 0, k ≥ 0 (4.9)

Note that since grad m̂xk(ηk) = grad f(xk) +Bk[ηk] + σk‖ηk‖xkηk, (4.8) is equivalent to

〈grad m̂xk(ηk), ηk〉xk = 0.

If ηk is a minimizer of m̂xk(ηk) in a subspace Sj, then (4.8) is satisfied due to the following:

ηk ∈ argmin
η∈Sj

m̂xk(ηk) =⇒ 〈grad m̂xk(ηk), ξ〉xk = 0, for ∀ξ ∈ Sj

Lemmas 3.2 and 3.3 of [9] are easily generalized to Lemmas 4.1.1 and 4.1.2.

Lemma 4.1.1. If ηk is the global minimizer of m̂xk(η), for η ∈ Lk, where Lk is a subspace
of TxkM , then ηk satisfies (4.8) and (4.9). Furthermore, letting Qk denote any orthogonal
matrix whose columns form a basis of Lk, we have that

QTkBkQk + σk‖ηk‖xkI is positive semidefinite.

In particular, if η∗k is the global minimizer of m̂xk(η), η ∈ TxkM , then η∗k achieves (4.8) and
(4.9).

Lemma 4.1.2. Suppose that ηk satisfies (4.8). Then

f̂xk(0xk)− m̂xk(ηk) =
1

2
〈Bk[ηk], ηk〉xk +

2

3
σk‖ηk‖3xk (4.10)

Additionally, if ηk also satisfies (4.9), then

f̂xk(0xk)− m̂xk(ηk) ≥
1

6
σk‖ηk‖3xk (4.11)

Proof. From (4.2), we have

f(xk)− m̂xk(η) = −〈grad f(xk), η〉xk − 1

2
〈Bk[η], η〉xk − 1

3
σk‖η‖3xk (4.12)

From (4.8), we have

−〈grad f(xk), ηk〉xk = −〈Bk[ηk], ηk〉xk − σk‖ηk‖3xk = 0, k ≥ 0 (4.13)

Equation (4.12) becomes (4.10). From (4.9), we get that 〈Bk[ηk], ηk〉xk ≥ −σk‖ηk‖3xk , which
we substitute into (4.10) to get (4.11).
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We assume for the remainder of the discussion that the Cauchy condition (4.7) holds.
From (4.5), we have that if ηk satisfies (4.8) then

ηk 6= 0. (4.14)

As done in ARC we use the Lanczos method to build an orthogonal basis {q0, · · · , qj} for
the Krylov space

K(Bk, grad f(xk)) = span{grad f(xk), Bkgrad f(xk), B2
kgrad f(xk) . . . , B

j
kgrad f(xk)}.

The basic results of Section 6.2 of [9] generalize easily.
Letting Qj = (q0, · · · , qj) Equation (6.16) of [9] becomes for any two qr, qs ∈ Qj

γ0q0 = grad f(xk), 〈qr, qs〉 = δr,s, 〈[Bk]qr, qs〉 = tr,s (4.15)

all the tr,s form a symmetric tridiagonal matrix Tj. The vector ηj solves the following
problem:

minimize
η∈Sj

m̂xk(η)

where

η ∈ Sj = {η ∈ TxM
∣∣η =

j∑

i=0

uiqi, ui ∈ R, i = 0, · · · , j}

It is easily shown that this problem has the form

minimize
u∈Rj+1

m̂j(

j∑

i=0

qiui) = f(x) + 〈grad f(x), η〉x +
1

2
〈Bk[η], η〉x +

1

3
σ‖η‖3x

= f(x) + γ0e
T
1 u+

1

2
uTTju+

1

3
σ(uTu)3/2 (4.16)

where u = (u0, u1, · · · , uj)T , e1 is the first unit vector of approximate length. This is the
generalized form of Equation (6.19) of [9].

Equation (4.6) becomes

(Tk + λ∗kI)u
∗
k = −grad f(xk),

and the secular equation becomes

φ1(λk) =
1

‖u(λk)‖2
− σk
λk

= 0

During each step of RARC, one solves a series of cubic models (4.16) that result from
projection to find a point that achieves acceptable reduction in the full cubic model and
the cost function. Each reduced, tridiagonal model (4.16) is solved exactly rather than
iteratively in the sense its global minimizer is found rather than an approximation to it
as one does for each major iteration k. This is done using the Newton method described
in Algorithm 4. The vector ηk is determined by the Generalized Lanczos Adaptive Reg-
ularization using Cubics method(GLARC) described in Algorithm 5. Its execution is the
dominant computational cost of each moving from xk to xk+1 for RARC.
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Algorithm 4 Newton’s method to solve φ1(λ)=0

Require: Let λ > max(0, -λ1) be given
Step1. Factorize Tj(λ) = Tj + λI = LLT

Step2. Solve LLTu = −γ0e1 for u
Step3. Solve Lw=u for w

Step4. Compute the Newton correction ∆λN =
λ
(
‖u‖−λ

σ

)

‖u‖+λ
σ

(
λ‖w‖2

‖u‖2

)

Step5. Replace λ by λ+∆λN

Algorithm 5 The Generalized Lanczos Adaptive Regularization using Cubics (GLARC)
method

Let t0 = grad f(xk−1), w−1 = 0, and,
for j = 0, 1 , . . . , k until convergence, perform the iteration:
yj =M−1tj;
γ(j) =

√
〈tj , yj〉,

wj = tj/γ(j),
qj = yj/γ(j),
δj = 〈qj, Bk[qj]〉,
tj+1 = Bkqj − δjwj − γ(j)wj−1,
Obtain Tj from Tj−1 using the formula:

T (j, j) = δ(j)

T (j − 1, j) = γ(j)

T (j, j − 1) = T (j − 1, j)′

Solve the tridiagonal RARC subproblem (4.16) to obtain uj .
end for: test for convergence using the termination criterion
Recover ηk = Qkuk by rerunning the recurrences or obtaining Qk from backing store.
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To achieve rapid convergence, we stop as soon as the approximate solution of the RARC
algorithm satisfies certain termination criteria. As with ARC, the design of this termination
criterion is central to the convergence analysis of RARC. Below we generalize the discussion
of Section 3.3 of [9].

The simplest stopping criterion for Algorithm 5 is to stop after a fixed number of itera-
tions. In order to improve the convergence rate, another choice, also used with trust-region
methods, is to stop as soon as an iteration j is reached for which

‖grad m̂xk(ηi,k)‖ ≤ θi,k‖grad f(xk)‖xk (4.17)

where

θi,k
def
= κθmin(1, hi,k), (4.18)

the ηi,k are the inner iterates generated by the solver, κθ is any constant in (0, 1), and hi,k
is a positive parameter. These are the Riemannian forms of Equations (3.23) and (3.24) of
[9].

Two choices for hi,k are used

hi,k = ‖ηi,k‖, i ≥ 0, k ≥ 0, (4.19)

and

hi,k = ‖grad f(xk)‖1/2xk
, i ≥ 0, k ≥ 0. (4.20)

Equations (4.17) and (4.18) allow us to generalize the three termination criteria of [9],
which we label in the same manner to facilitate comparison of the results in the remainder
of this chapter with the Euclidean results of [9].

TC.h ‖grad m̂xk(ηk)‖ ≤ θk‖grad f(xk)‖xk , where θk = κθmin(1, hk), k ≥ 0,

where hk
def
= hi,k > 0 with i being the last inner iteration. For the choice (4.19), we have

TC.s ‖grad m̂xk(ηk)‖ ≤ θk‖grad f(xk)‖xk , where θk = κθmin(1, ‖ηk‖xk), k ≥ 0,

while for the choice (4.20),we obtain

TC.g ‖grad m̂xk(ηk)‖ ≤ θk‖grad f(xk)‖xk , where θk = κθmin(1, ‖grad f(xk)‖1/2xk
), k ≥ 0,

This inner convergence criterion seeks linear convergence early on, and superlinear conver-
gence after some threshold. It is referred to as the κ/θ convergence criterion.

4.2 Convergence Analysis

The convergence analysis for RARC in this section successfully generalizes the very
satisfactory results available for ARC on Rn. In particular, we are able to show under a
series of increasingly tight assumptions that RARC converges globally to first-order critical
points, converges Q-superlinearly or Q-quadratically to nondegenerate local minimizers, and
finally converges globally to second-order critical points.

Beginning in Section 4.2.1, there are many theorems and lemmas concerning the con-
vergence property of RARC. The proofs of some are the straight-forward generalizations of
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those of corresponding results in [9] and are skipped. In general, however, we follow the
proof techniques of Cartis, Gould and Toint [9] very closely, generalizing as needed. We
use a similar manner of labeling assumptions and notation as close as possible to that in
[9] in order to facilitate comparison of the Euclidean and Riemannian results. Specifically,
our assumptions labeled RM.# are Riemannian versions of the assumptions on the model
and correspond to the assumptions labeled AM.# in [9]. Our assumptions labeled RF.#
are Riemannian versions of the assumptions on the cost function. Their correspondence to
those labeled AF.# in [9] are as follows:

• RF.1 corresponds to AF.3.

• RF.2 corresponds to AF.2 but is slightly weaker in the Riemannian version.

• RF.2 ′ has no direct corresponding assumption in terms of Riemannian generalization
but it plays the role of AF.4 in the proofs.

• RF.3 corresponds to AF.5.

• RF.4 corresponds to AF.6.

It is also important when comparing to remember that the metric g (and therefore norms
of tangent vectors) is defined in each tangent space and is not identical to distance on the
manifold, and that our expressions and statements are abstract and are true for any choice
of representation of vectors in, or operators on, a particular tangent space.

4.2.1 Global Convergence to First-order Critical Points

The results in this section generalize those of Section 2.2 of [9]. The index set of all
successful iterations of the RARC algorithm is denoted by

S def
= {k ≥ 0 : iteration k successful or very successful }. (4.21)

Lemma 4.2.1 generalizes [9, Lemma 2.1] and shows that the difference between the cost
function and the cubic model value is bounded below.

Our first assumption concerns the continuity of the cost function.

RF.1 f ∈ C2(M)

Lemma 4.2.1. If RF.1 holds and ηk satisfies (4.7) then for k ≥ 0, we have

f̂xk(0xk)− m̂xk(ηk) ≥ f̂xk(0xk)− m̂xk(η
C
k )

≥ ‖grad f(xk)‖2xk
6
√
2max[1 + ‖Bk‖xk , 2

√
σk‖grad f(xk)‖xk ]

=
‖grad f(xk)‖xk

6
√
2

min

[
‖grad f(xk)‖xk
1 + ‖Bk‖xk

,
1

2

√
‖grad f(xk)‖xk

σk

]
. (4.22)
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Lemma 4.2.2 generalizes [9, Lemma 2.2] and shows that the norm of the step is bounded
above. We assume, as in [9] that

RM.1 ‖Bk‖ ≤ κB , for all k ≥ 0 and some κB ≥ 0 where the norm is the operator
norm induced by the metric g on the tangent space TxkM .

Lemma 4.2.2. If RF.1 holds and ηk satisfies (4.7) then

‖ηk‖xk ≤ 3

σk
max(κB ,

√
σk‖grad f(xk)‖xk), k ≥ 0. (4.23)

As with the Euclidean results we must show when under certain conditions, a step k is
very successful. If f̂xk(0xk) > m̂xk(ηk) and given ρk in (4.4) it follows that

ρk > ξ2 ⇐⇒ rk = f̂xk(ηk)− f̂xk(0xk)− ξ2[m̂xk(ηk)− f̂xk(0xk)] < 0 (4.24)

and we have

rk = f̂xk(ηk)− m̂xk(ηk) + (1− ξ2)[m̂xk(ηk)− f̂xk(0xk)], k ≥ 0. (4.25)

We will show in Theorem 4.2.1 that at least one accumulation point of {xk} is a crit-
ical point of f . The following definition is required to generalize the required Euclidean
assumptions

Definition 4.2.1. (radially L-C1 function [[4], Definition 7.4.1]) Let f̂ : TM → R

be defined as in (4.1). We say that f̂ is radially Lipschitz continuously differentiable if there
exist reals βRL > 0 and δRL > 0 such that, for all x ∈ M, for all ξ ∈ TxM with ‖ξ‖ = 1,
and for all t < δRL, it holds that

∣∣∣ d
dτ
f̂x(τξ)|τ=t −

d

dτ
f̂x(τξ)|τ=0

∣∣∣ ≤ βRLt. (4.26)

The convergence result requires that m̂xk(ηk) be a sufficiently good approximation of

f̂xk(ηk). In classical proofs, this is often guaranteed by the assumption that the Hessian of
the cost function is bounded. It is however possible to weaken this assumption, which leads
us to consider the following assumption.

RF.2 f̂ is radially L− C1 (See Definition 4.2.1) with βRL > 1

The following convergence result for RARC that generalizes [9, Theorem 2.5] in straight-
forward manner and therefore the proof is omitted. The generalization of [9, Corollary 2.6]
in Corollary 4.2.1 below, however, requires more careful consideration for the Riemannian
situation.

Theorem 4.2.1. If RF.1, RF.2 and RM.1 hold and {f(xk)} is bounded below then

lim inf
k→∞

‖grad f(xk)‖xk = 0. (4.27)
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In order to show the next convergence result, we need to make an additional regularity
assumption on the cost function f , that is, the Lipschitz continuous differentiability given
in Definition 2.4.1.

Moreover, we place one additional requirement on the retraction R, that there exist
µ > 0 and δµ > 0 such that

‖ξ‖x ≥ µdist(x,Rxξ), for all x ∈M, for all ξ ∈ TxM, ‖ξ‖x ≤ δµ. (4.28)

In contrast to the Euclidean case, ‖ηk‖xk is, in general, different from dist(xk, Rxk(ηk)). We
use (4.28) to fall back to a suitable bound. We then have the following generalization of [9,
Corollary 2.6].

Corollary 4.2.1. Let RF.1, RF.2 and RM.1 hold and assume {f(xk)} is bounded below.
If, additionally, f is Lipschitz continuously differentiable (Definition 2.4.1), and (4.28) is
satisfied for some µ > 0, δµ > 0 then

lim
k→∞

‖grad f(xk)‖xk = 0. (4.29)

Proof. Based on the assumptions we know there are infinitely many successful iterations.
Since {f(xk)} is bounded below and there is a subsequence of successful iterates, indexed
by {ti} ⊆ S such that

‖grad f(xti)‖xti ≥ 2ǫ (4.30)

for some ǫ > 0 and for all i. We only consider the successful iterates. For each ti, there is
a first successful iteration li > ti such that ‖gradf(xli)‖ < ǫ . Thus {li} ⊆ S and

‖grad f(xk)‖xk ≥ ǫ, for ti ≤ k < li, and ‖grad f(xli)‖ < ǫ. (4.31)

Let

K def
= {k ∈ S : ti ≤ k < li}, (4.32)

where the subsequences {ti} and {li} were defined above. Since K ⊆ S, the construction of
the RARC algorithm, RM.1 and Lemma 4.2.1 provide that for each k ∈ K,

f(xk)− f(xk+1) ≥ ξ1[m̂xk(0xk)− m̂xk(ηk)]

≥ ξ1

6
√
2
‖grad f(xk)‖xk ·min

(
1

2

√
‖grad f(xk)‖xk

σk
,
‖grad f(xk)‖xk

1 + κB

)
. (4.33)

Using (4.31) gives the equivalent form

f(xk)− f(xk+1) ≥
ξ1ǫ

6
√
2
·min

(
1

2

√
‖grad f(xk)‖xk

σk
,

ǫ

1 + κB

)
, k ≥ K. (4.34)

{f(xk)} is convergent since it is monotonically decreasing and bounded from below, and
(4.34) implies

σk
‖grad f(xk)‖xk

→ ∞, k ∈ K, k → ∞, (4.35)
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and furthermore, due to (4.31),

σk → ∞, k ∈ K, k → ∞. (4.36)

It follows from (4.35) that

√
σk

‖grad f(xk)‖xk
≥ 1 + κB

2ǫ
, for all k ∈ K sufficiently large, (4.37)

and from (4.34) we then have

√
‖grad f(xk)‖xk

σk
≤ 12

√
2

ξ1ǫ
[f(xk)− f(xk+1)], for all k ∈ K sufficiently large. (4.38)

For each li and ti, we have

dist(xli , xti) ≤
li−1∑

k=ti,k∈K

dist(xk, xk+1) =

li−1∑

k=ti,k∈K

dist(xk, Rxk(ηk)) ≤
li−1∑

k=ti,k∈K

1

µ
‖ηk‖xk .

(4.39)

Recall now the upper bound (4.23) on ‖ηk‖xk , k ≥ 0, in Lemma 2.2. It follows from
(4.31) and (4.36) that

√
σk‖grad f(xk)‖xk ≥ κB , for all k ∈ K sufficiently large,

and thus (4.23) becomes

‖ηk‖xk ≤ 3

√
‖grad f(xk)‖xk

σk
, for all k ∈ K sufficiently large.

Now (4.38) and (4.39) provide

dist(xli , xti) ≤
3

µ

li−1∑

k=ti,k∈K

√
‖grad f(xk)‖xk

σk
≤ 36

√
2

ξ1ǫ
[f(xti)− f(xli)]

for all ti and li sufficiently large. Observe that {f(xti)− f(xli)} converges to zero as i→ ∞
since {f(xj)} is convergent. Therefore, dist(xli , xti) converges to zero as i → ∞, and by
Lipschitz continuous differentiability, ‖P 0←1

α grad f(xli)−grad f(xti)‖xti tends to zero. This
is a contradiction, since (4.30) and (4.31) imply

‖P 0←1
α grad f(xli)− grad f(xti)‖xti ≥ ‖grad f(xti)‖xti − ‖grad f(xli)‖xli ≥ ǫ.
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4.2.2 Fast Convergence

In the following, we analyze the local convergence of Algorithm 3 around nondegenerate
local minima. We show asymptotic convergence properties of the RARC in the presence of
local convexity. We then prove the RARC algorithm converges at least Q-superlinearly.

We assume that grad f(xk) 6= 0, for all k ≥ 0 and we have the following generalizations
of the Euclidean assumptions of [9]

RF.2 ′ ‖Hess f̂x‖x ≤ κH for all x ∈ X and some κH ≥ 1,

where X is some subset of TM containing the line segments in each TMxk defined by
tηk where 0 ≤ t ≤ 1, k ∈ S, and S is as defined in (4.21).

RF.3 Hess f̂x is Lipschitz-continuous at 0x uniformly in a neighborhood of v, (v ∈
M is a nondegenerate local minimizer of f , i.e., grad f(v) = 0 and Hess f(v) is positive
definite) i.e., there exists L∗ > 0, δ1 > 0, and δ2 > 0 such that, for all x ∈ Bδ1(v) and all
ξ ∈ Bδ2(0x), it holds that

‖Hess f̂x(ξ)−Hess f̂x(0x)‖x ≤ L∗‖ξ‖x. (4.40)

RM.2
‖(Bk−Hess f̂xk (0xk ))ηk‖xk

‖ηk‖xk
→ 0, whenever ‖grad f(xk)‖xk → 0,

RM.3 ‖Hess f̂xk(0xk)−Bk‖xk → 0, k → ∞,whenever ‖grad f(xk)‖xk → 0, k → ∞,

RM.4 ‖(Hess f̂xk(0xk)−Bk)ηk‖xk ≤ C‖ηk‖2xk , for all k ≥ 0, and some constant C >
0.

Let

Rk(ηk)
def
=

〈Bk[ηk], ηk〉xk
‖ηk‖2xk

(4.41)

denote the Rayleigh quotient of ηk with respect to Bk, representing the curvature of the
quadratic part of the model mk along the step. Lemma 4.2.3 generalizes [9, Lemma 4.1].

Lemma 4.2.3. If RF.1 holds and ηk satisfies (4.8) then

f̂xk(0xk)− m̂xk(ηk) ≥
1

2
Rk(ηk)‖ηk‖2xk , (4.42)

where Rk(ηk) is the Rayleigh quotient (4.41). In particular,

f̂xk(0xk)− m̂xk(ηk) ≥
1

2
λmin(Bk)‖ηk‖2xk ,

where λmin(Bk) denotes the leftmost eigenvalue of Bk.

Lemma 4.2.4 generalizes [9, Lemma 4.2] and shows the relationship of the norm of ηk
and that of ‖grad f(xk)‖xk when the Rayleigh quotient (4.41) is positive.

Lemma 4.2.4. Suppose that RF.1 holds and that ηk satisfies (4.8). If the Rayleigh quotient
(4.41) is positive, then

‖ηk‖xk ≤ 1

Rk(ηk)
‖grad f(xk)‖xk (4.43)
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and if Bk is positive definite, then

‖ηk‖xk ≤ 1

λmin(Bk)
‖grad f(xk)‖xk . (4.44)

Proof. The Cauchy-Schwarz inequality and (4.8) imply

Rk(ηk)‖ηk‖2xk ≤ 〈Bk[ηk], ηk〉xk + σk‖ηk‖3xk = −〈grad f(xk), ηk〉xk ≤ ‖grad f(xk)‖xk · ‖ηk‖xk .

By definition Rk(ηk) > 0 and (4.14) implies ηk 6= 0. Therefore, the first and the last
terms above give (4.43) and the bound (4.44) follows from (4.43) and the Rayleigh quotient
inequality.

Theorem 4.2.2 generalizes [9, Theorem 4.3] and shows that under some further assump-
tion all iterations are eventually very successful and σk is bounded from above.

Theorem 4.2.2. If RF.1,RF.2, RM.1 and RM.2 hold, ηk satisfies (4.8), and

xk → x∗, as k → ∞, (4.45)

where Hess f(x∗) is positive definite then there exists Rmin > 0 such that

Rk(ηk) ≥ Rmin, for all k sufficiently large. (4.46)

We also have

‖ηk‖xk ≤ 1

Rmin
‖grad f(xk)‖xk , for all k sufficiently large, (4.47)

all iterations are eventually very successful, and σk is bounded from above.

Proof. {f(xk)} is bounded below due to the continuity of f and the limit (4.45).By Corol-
lary 4.2.1 x∗ is a first-order critical point and ‖grad f(xk)‖xk → 0. RM.2 and ‖grad f(xk)‖xk →
0 imply

‖(Hess f̂xk(0xk)−Bk)ηk‖xk
‖ηk‖xk

→ 0, k → ∞ (4.48)

We therefore have a Riemannian Dennis−Moré condition that holds. Since Hess f̂x∗(0∗) =
Hess f(x∗) is positive definite, so is Hess f̂xk(0xk) in a neighborhood of x∗, i.e., for all k
sufficiently large, and there must exist a constant Rmin such that

〈ηk,Hess f̂xk(0xk)ηk〉xk
‖ηk‖2xk

> 2Rmin > 0 (4.49)

for all sufficiently large k.
It follows from (4.41), (4.48) and (4.49), that for all sufficiently large k,

2Rmin‖ηk‖2xk ≤ 〈ηk,Hess f̂xk(0xk)ηk〉xk = 〈ηk, [Hessf̂xk(0xk)−Bk]ηk〉xk + 〈ηk, Bk[ηk]〉xk
≤ [Rmin +R(ηk)]‖ηk‖2xk .
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This gives (4.46). The bound (4.47) results from (4.43) and (4.46).

It follows from (4.22) and (4.5) that

f(xk) > m̂xk(ηk), k ≥ 0. (4.50)

From (4.50), we know that (4.24) holds. Let rk be the expression in (4.25), we show it is
bounded above and negative for all k sufficiently large.

From Taylor’s Theorem, we have

f̂xk(ηk) = f̂xk(0xk) + 〈gradf(xk), ηk〉xk +
1

2
〈Hess f̂xk(τηk)[ηk], ηk〉xk (4.51)

for some τ ∈ (0, 1). It follows that

f̂xk(ηk)− m̂xk(ηk)

=
1

2
〈Hessf̂xk(τηk)[ηk], ηk〉xk −

1

2
〈Bk[ηk], ηk〉xk −

1

3
σk‖η‖3xk

≤ 1

2
〈Hessf̂xk(τηk)−Bk)[ηk], ηk〉xk ,

and thus

f̂xk(ηk)− m̂xk(ηk) ≤
1

2
‖(Hessf̂xk(τηk)−Bk)ηk‖xk · ‖ηk‖xk , (4.52)

where τηk belongs to the line segment between 0xk and ηk. It follows from (4.42) in
Lemma 4.2.3 and (4.46) that for all sufficiently large k

f̂xk(0xk)− m̂xk(ηk) ≥
1

2
Rmin‖ηk‖2xk . (4.53)

Using (4.25), (4.52) and (4.53) yields for all sufficiently large k

rk ≤
1

2
‖ηk‖2

{‖(Hess f̂xk(τηk)−Bk)ηk‖
‖ηk‖xk

− (1− ξ2)Rmin

}
. (4.54)

For k ≥ 0, we have

‖(Hess f̂xk(τηk)−Bk)ηk‖xk
‖ηk‖xk

≤ ‖Hess f̂xk(0xk)−Hess f̂xk(τηk)‖xk +

‖(Hess f̂xk(0xk)−Bk)ηk‖xk
‖ηk‖xk

. (4.55)

The bound ‖τηk−0xk‖ ≤ ‖ηk‖xk follows since τηk is on the line segment between 0xk and
ηk. This along with (4.47) and ‖grad f(xk)‖xk → 0, imply ‖τηk−0xk‖ → 0 which combined

with (4.45) and Hess f̂x continuous implies that ‖Hess f̂xk(0xk) − Hess f̂xk(τηk)‖ → 0, as
k → ∞. We have that as k → ∞

‖(Hess f̂xk(τηk)−Bk)ηk‖xk
‖ηk‖xk

→ 0,
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from (4.48) and (4.55). Therefore, for all sufficiently large k

‖(Hess f̂xk(τηk)−Bk)ηk‖xk/‖ηk‖xk < (1− ξ2)Rmin.

This, together with (4.14) and (4.54), imply for all sufficiently large k that rk < 0 and the
iteration k is very successful. Finally, σk is bounded from above since on the very successful
steps of the RARC algorithm σk is cannot increase.

Theorem 4.2.3 generalizes a combination of [9, Theorems 4.4 and 4.5] and shows that,
the sequence of iterates {xk} converges to a local minimizer under certain conditions.

Theorem 4.2.3. Let x∗ be a nondegenerate local minimizer of f , i.e., grad f(x∗) = 0 and
Hess f(x∗) is positive definite, and assume there exists λ > 0 such that

λmin(Bk) ≥ λ (4.56)

on a neighborhood of x∗ and that (4.28) holds for some µ > 0 and δµ > 0. If RF.1, RF.2,
RM.1 and (4.8) hold, {f(xk)} is bounded below, then there exists a neighborhood V of x∗
such that, for all x0 ∈ V, the sequence {xk} generated converges to x∗.

Proof. Take δ1 > 0 with δ1 < δµ such that (4.56) holds on Bδ1(x∗), that Bδ1(x∗) contains
only x∗ as critical point, and that f(x) > f(x∗) for all x ∈ B̄δ1(x∗). (In view of the
assumptions, such a δ1 exists.)

From Lemma 4.2.4, we have

‖ηk‖xk ≤ 1

λ
‖grad f(xk)‖xk .

From [4, Lemma 7.4.8], we have, given c > λmax, the maximal eigenvalue of Hess f(x∗),
there exists a neighborhood V of x∗ such that, for all xk ∈ V, it holds that

‖grad f(xk)‖xk ≤ c dist (x∗, xk).

Take δ2 small enough, such that dist(x∗, xk) ≤ δ2 ≤ λµ
c+λµδ1, for all xk ∈ Bδ2(x∗), then

‖ηk‖xk ≤ µ(δ1 − δ2).

From (4.28), the following inequalities hold

dist(xk, x+) ≤
1

µ
‖ηk‖xk ≤ δ1 − δ2.

It follows from the equation above that x+ is in Bδ1(x∗). Moreover, since f(x+) ≤ f(x), it
follows that x+ ∈ V . Thus V is invariant. But the only critical point of f in V is x∗, so
{xk} goes to x∗ whenever x0 is in V .

We next show (Corollaries 4.2.2 and 4.2.3) that the RARC algorithm is at least Q-
superlinearly convergent under certain conditions. We begin with Lemma 4.2.5 that gener-
alizes [9, Lemma 4.6].
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Lemma 4.2.5. If RF.1, RF.2 ′ and TC.h hold then for each k ∈ S, with S defined in
(4.21), we have

(1− κθ)‖gradf̂xk(ηk)‖xk ≤
∥∥∥
∫ 1

0
Hessf̂xk(τηk)dτ −Hessf̂xk(0xk)

∥∥∥
xk
‖ηk‖xk+

‖(Hessf̂xk(0xk)−Bk)ηk‖xk + κθκHhk‖ηk‖xk + σk‖ηk‖2xk ,
(4.57)

where κθ ∈ (0, 1) occurs in TC.h.

Proof. For k ∈ S we have

‖gradf̂xk(ηk)‖xk ≤ ‖gradf̂xk(ηk)− grad m̂xk(ηk)‖xk + ‖grad m̂xk(ηk)‖xk
≤ ‖gradf̂xk(ηk)− grad m̂xk(ηk)‖xk + θk‖grad f(xk)‖xk , (4.58)

where the last inequality follows from TC.h.
We have

grad f̂xk(η) = grad f̂xk(0xk) +

∫ 1

0
Hess f̂xk(τη)[η]dτ

and
grad m̂xk(ηk) = gradf(xk) +Bkηk + σk〈η, η〉

1
2 η

and it follows that

‖grad f̂xk(η) − grad m̂xk(ηk)‖xk ≤
∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Bk)[ηk]dτ

∥∥∥+ σk‖ηk‖2xk . (4.59)

Using Taylor’s Theorem and RF.2 ′ gives

‖grad f(xk)‖xk =
∥∥∥gradf̂xk(ηk)−

∫ 1

0
Hess f̂xk(τηk)[ηk]dτ

∥∥∥ ≤ ‖gradf̂xk(ηk)‖xk + κH‖ηk‖xk .
(4.60)

Substituting (4.60) and (4.59) into (4.58), yields

(1− θk)‖gradf̂xk(ηk)‖xk ≤
∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Bk)[ηk]dτ

∥∥∥
xk

+ θkκH‖ηk‖xk + σk‖ηk‖2xk .
(4.61)

and, since θk ≤ κθhk and θk ≤ κθ for TC.h, this is equivalent to

(1− θk)‖gradf̂xk(ηk)‖xk ≤
∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Bk)[ηk]dτ

∥∥∥
xk

+ κθκHhk‖ηk‖xk + σk‖ηk‖2xk .
(4.62)

Combining (4.62) and the triangle inequality

∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Bk)[ηk]dτ

∥∥∥
xk

≤
∥∥∥
∫ 1

0
Hess f̂xk(τηk)dτ −Hess f̂xk(0xk)

∥∥∥
xk

· ‖ηk‖xk+

‖(Hess f̂xk(0xk)−Bk)ηk‖xk
yields (4.57).
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Lemma 4.2.6 generalizes [9, Lemma 4.7] and shows that ηk is bounded below under
certain conditions when the TC.h criterion is used.

Lemma 4.2.6. Suppose k → ∞ we have xk → x∗ and let RF.1, RF.2 ′, RM.2 hold. If
TC.h is satisfied with

hk → 0, as k → ∞, k ∈ S. (4.63)

then ηk satisfies

‖ηk‖xk(dk + σk‖ηk‖xk) ≥ (1− κθ)‖gradf̂xk(ηk)‖xk for all k ∈ S, (4.64)

where dk > 0 for all k ≥ 0, and

dk → 0, as k → ∞, k ∈ S. (4.65)

Proof. The inequality (4.57) can be expressed as

(1− κθ)‖gradf̂xk(ηk)‖xk ≤
[∥∥∥

∫ 1

0
(Hess f̂xk(τηk)−Hess f̂xk(0xk))dτ

∥∥∥
xk
+

‖(Hess f̂xk(0xk)−Bk)[ηk]‖xk
‖ηk‖xk

+ κθβRLhk

]
‖ηk‖xk + σk‖ηk‖2xk ,

where k ∈ S . If dk denotes the expression multiplying ‖ηk‖xk then since hk > 0 we have

dk > 0 . Since the Hess f̂x is continuous and τηk is on the line segment between 0xk and ηk
for all τ ∈ (0, 1), and xk → x∗, it follows that as k → ∞

∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Hess f̂xk(0xk))dτ

∥∥∥
xk

→ 0. (4.66)

Recalling that ‖grad f(xk)‖ → 0 due to Corollary 4.2.1, RM.2, (4.63) and (4.66) imply that
dk → 0, as the index k ∈ S increases.

Corollary 4.2.2 generalizes [9, Corollary 4.8] and shows that the RARC algorithm is
asymptotically Q-superlinearly convergent.

Corollary 4.2.2. If RF.1, RF.2, RF.2 ′, RM.1 and RM.2 hold, ηk satisfies (4.8), and

xk → x∗, as k → ∞, (4.67)

where Hess f(x∗) is positive definite and if, additionally, TC.h holds with hk → 0, k →
∞, k ∈ S then

‖grad f(xk+1)‖xk+1

‖grad f(xk)‖xk
→ 0, as k → ∞ (4.68)

and
dist(xk+1, x∗)

dist(xk, x∗)
→ 0, as k → ∞. (4.69)

The limits (4.68) and (4.69) hold when hk = ‖ηk‖xk or hk = ‖grad f(xk)‖1/2xk ,
k ≥ 0, which are the termination criteria TC.s and TC.g, respectively.
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Proof. Since the hypothesis in this corollary also satisfies the conditions of Lemma 4.2.6,
considering the conclusion in Theorem 4.2.2, (4.64) gives

‖ηk‖xk(dk + σsup‖ηk‖xk) ≥ (1− κθ)‖gradf̂xk(ηk)‖xk ,∀k sufficiently large, (4.70)

where σsup is the upper bound of σk, dk > 0 and κθ ∈ (0, 1). From (4.47), (4.70) can be
written for all sufficiently large k as

1

Rmin

(
dk +

σsup
Rmin

‖grad f(xk)‖xk
)
‖grad f(xk)‖xk

≥ ‖ηk‖xk(dk + σsup‖ηk‖xk)
≥ (1− κθ)‖gradf̂xk(ηk)‖xk ,

and since grad f(xk) 6= 0 and [[3], Lemma 4.9], we have

‖grad f(xk+1)‖xk+1

‖grad f(xk)‖xk
≤ c5

‖gradf̂xk(ηk)‖xk
‖grad f(xk)‖

≤ c5

(
Rmindk + σsup‖grad f(xk)‖xk

R2
min(1− κθ)

)
,∀k sufficiently large. (4.71)

From (4.65), the fact that all iterations with sufficiently large k are successful and Corol-
lary 4.2.1, we have the following

dk → 0 and ‖grad f(xk)‖xk → 0, as k → ∞. (4.72)

It follows that as k → ∞ The right-hand side of (4.71) tends to zero and therefore (4.68)
holds.

Using Taylor expansions of grad f(xk) and grad f(xk+1) around x∗, and recalling that
gradf(x∗) = 0 with positive definite Hess f̂x∗(0) yields the limit (4.69).

The limit ‖grad f(xk)‖xk → 0 and (4.47) imply that the choices of hk in TC.s and TC.g
converge to zero, and thus the limits (4.68) and (4.69) hold for these choices of hk .

Lemma 4.2.7 generalizes [9, Lemma 4.9]. It makes a local Lipschitz continuity assump-
tion on Hess f̂x in a neighborhood of a nondegenerate local minimizer of f , i.e., RF.3.

Lemma 4.2.7. Let RF.1, RF.2, RF.3, RM.4 and TC.s hold. Suppose also that xk → x∗,
as k → ∞. If

σk ≤ σmax for all k ≥ 0 (4.73)

for some σmax > 0, then ηk satisfies

‖ηk‖xk ≥ κ∗g

√
‖gradf̂xk(ηk)‖xk , for all sufficiently large k ∈ S, (4.74)

where κ∗g is the positive constant

κ∗g
def
=

√
1− κθ

1
2L∗ + C + σmax + κθβRL

. (4.75)
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Proof. Since the conditions of Lemma 4.2.5 are satisfied with hk = ‖ηk‖xk and given RM.4
and (4.73), it follows that for any sufficiently large k ∈ S, (4.57) can be written

(1− κθ)‖gradf̂xk(ηk)‖xk ≤
∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Hess f̂xk(0xk))dτ

∥∥∥
xk

· ‖ηk‖xk +

C‖ηk‖2xk + (σmax + κθβRL)‖ηk‖2xk . (4.76)

Given xk → x∗, RF.3 and the fact that τηk is on the line segment defined by 0xk and ηk for
any τ ∈ (0, 1), imply that for all sufficiently large k ∈ S we have

∥∥∥
∫ 1

0
(Hess f̂xk(τηk)−Hess f̂xk(0xk))dτ

∥∥∥ ≤
∫ 1

0
‖Hess f̂xk(τηk)−Hess f̂xk(0xk)‖dτ

≤ 1

2
L∗‖ηk‖xk

The result (4.74) follows from (4.75) and writing (4.76)

(1− κθ)‖gradf̂xk(ηk)‖xk ≤ (
1

2
L∗ +C + σmax + κθβRL)‖ηk‖2xk . (4.77)

Corollary 4.2.3 generalizes [9, Corollary 4.10] and shows that the RARC algorithm is
asymptotically Q-quadratic convergent.

Corollary 4.2.3. Assume that RF.1, RF.2, RF.3, RM.1, RM.2, RM.4 and TC.s hold. If
xk → x∗, as k → ∞, where Hess f(x∗) is positive definite, and ηk satisfies (4.8) then, as
k → ∞, grad f(xk) converges to zero, and xk to x∗, Q-quadratically.

Proof. The conditions required in Lemma 4.2.7 are assumed to hold, so we have for all
sufficiently large k

‖ηk‖xk ≥ κ∗g

√
‖gradf̂xk(ηk)‖xk , (4.78)

where κ∗g > 0. Therefore, given (4.46) it follows for all sufficiently large k

1

Rmin
‖grad f(xk)‖xk ≥ ‖ηk‖xk ≥ κ∗g

√
‖gradf̂xk(ηk)‖xk .

We have from (4.71) that

‖grad f(xk+1)‖xk+1

‖grad f(xk)‖2xk
≤ c5

‖gradf̂xk(ηk)‖xk
‖grad f(xk)‖2xk

≤ c5
1

R2
min(κ

∗
g)

2
, for all k sufficiently large,

and therefore grad f(xk) converges Q-quadratically. By Taylor’s theorem, the iterates con-
vergent Q-quadratically.
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4.2.3 Global Convergence to Second-order Critical Points

In this section, we prove that the RARC method converges globally to a second order
critical point of the cost function under appropriate assumptions and conditions, including

σk ≥ σmin, for k ≥ 0, (4.79)

for some σmin > 0.
Denote by Bδ(0x) = {ξ ∈ TxM : ξ < δ} the open ball in TxM of radius δ centered at

0x, and Bδ(x) stands for the set {y ∈M : dist(x, y) < δ}.
Lemma 4.2.8 generalizes [9, Lemma 5.1] and shows that the size of the steps ηk ap-

proaches 0 under certain conditions.

Lemma 4.2.8. Suppose {f(xk)} is bounded below by flow. If ηk satisfies (4.8) and (4.9),
σk, satisfies (4.79) and RF.1 holds then we have for k ∈ S

‖ηk‖xk → 0, as k → ∞. (4.80)

Lemma 4.2.9 generalizes [9, Lemma 5.2] and shows that σk is bounded above given the
following assumption on the Hessian of the lifted cost function:

RF.4 Hess f̂x is Lipschitz-continuous at 0x uniformly in x, i.e., there exists L > 0,
δ1 > 0, such that, for all x ∈M and all ξ ∈ Bδ1(0x), it holds that

‖Hess f̂x(ξ)−Hess f̂x(0x)‖ ≤ L‖ξ‖.
Lemma 4.2.9. If RF.1, RF.4 and RM.4 hold then for all k ≥ 0

σk ≤ max(σ0,
3

2
γ2(C + L))

def
= L0. (4.81)

Next, we generalize [9, Theorem 5.3] as Theorem 4.2.4 to show that, at successful steps
ηk, the limit points of the sequence of both Rayleigh quotients of Bk and of the Hessian of
the lifted cost function, Hessf̂xk(0xk), are nonnegative.

Theorem 4.2.4. Suppose {f(xk)} be bounded below by flow, If ηk satisfies (4.8) and (4.9),
σk, satisfies (4.79), RF.1, RF.4 and RM.4 hold then

lim
k→∞
k∈S

inf Rk(ηk) ≥ 0 and lim
k→∞
k∈S

inf
〈ηk,Hess f̂xk(0xk)[ηk]〉xk

‖ηk‖2xk
≥ 0. (4.82)

Proof. For all k ≥ 0 such that Rk(ηk) < 0, (4.9), (4.14) and (4.81) imply

L0‖ηk‖xk ≥ σk‖ηk‖xk ≥ −Rk(ηk) = |Rk(ηk)|. (4.83)

If k ∈ K, where K = {k ∈ S
∣∣Rk(ηk) < 0}, then (4.80) and (4.83) imply {Rk(ηk)}k∈S → 0

and the first limit in (4.82) follows. Through some manipulation on Rk(ηk) and employing
RM.4, we obtain the following inequalities

Rk(ηk) ≤ ‖(Hessf̂xk(0xk)−Bk)[ηk]‖xk
‖ηk‖xk

+
〈ηk,Hessf̂xk(0xk)[ηk]〉xk

‖ηk‖2xk

≤ C‖ηk‖xk +
〈ηk,Hessf̂xk(0xk)ηk〉xk

‖ηk‖2xk
, k ≥ 0. (4.84)

The second inequality in (4.82) now follows from the first inequality, (4.80) and (4.84).
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A second order retraction is one that either satisfies the zero initial acceleration condition

D2

Dt2
R(tξ)

∣∣∣∣
t=0

= 0 for all ξ ∈ TxM.

When R is a second order retraction, or x is a critical point,

Hess f(x) = Hess (f ◦Rx)(0x).

For a general retraction, the Hessian of the cost function and the lifted cost function do
not match in this manner and we need a more general relationship in order to turn (4.92)
below, which is written in terms of the Hessian of f̂(x), into a statement written in terms
of the Riemannian Hessian Hess f .

In Theorem 4.2.5 we show that for general retractions

lim
k→∞
k∈S

inf{λmin(Q
T
kHessf̂xk(0xk)Qk)} ≥ 0 =⇒ lim

k→∞
k∈S

inf{λmin(Q
T
kHessf(xk)Qk)} ≥ 0,

where Qk is any matrix whose columns form an orthonormal basis of Lk, which is a subspace
of TxkM ,

Qk = (q1, · · · , qj), for any qi, qk ∈ Qk, 〈qi, qk〉 = δi,k.

We will prove this theorem by contradiction. Letting (xk, Qk) represent (xk, q1, · · · , qj)
and {vk}K to denote a set of objects from a sequence with indices in the set K, the main
task is to show that the set {(xk, Qk)}K is a subset of a compact subset of a Whitney
sum, denoted by St(j, U ′), when k is sufficiently large. We first propose two lemmas. In
Lemma 4.2.10, we construct a bijection and C∞ mapping ψ̃ from a Whitney sum to a subset
of Rn×(j+1), and show it equals a particular subset of Rn×(j+1). In Lemma 4.2.11, we show
that ψ̃(St(j, U ′)) is compact subset of Rn×(j+1). The compactness of St(j, U ′) follows from
the fact that

St(j, U ′) = ψ̃−1ψ̃(St(j, U ′)).

Let

St(j,M) := {(x, q1, · · · , qj)
∣∣x ∈M, q1, · · · , qj ∈ TxM, gx(qi, qk) = 〈qi, qk〉x = δi,k,∀i, k ∈ 1, · · · j}

be an orthonormal j frame. Denote the Whitney sum

TM ⊕ · · · ⊕ TM := {(ξ1, · · · , ξj)
∣∣∃x ∈M : ξi ∈ TxM, ∀i = 1, · · · , j}

and observe that TM ⊕ · · · ⊕ TM ⊃ St(j,M).

Lemma 4.2.10. Assume the sequence {xk} converges to a critical point x∗. Let (U,ψ) be
a chart of M with x∗ ∈ U, and ψ̃ be a bijection and C∞ mapping as following:

ψ̃ : U × (TU ⊕ · · · ⊕ TU) 7−→ ψ(U) × R
n×j ⊆ R

n×(j+1) :

(x, ξ1, · · · , ξj) 7−→ (ψ(x),Dψ(x)[ξ1], · · · ,Dψ(x)[ξj ])

Let U ′ be such that ψ(U ′) is compact, x∗ ∈ int(U ′) and ψ(U ′) ⊆ ψ(U), then we have:

ψ̃(St(j, U ′)) = {(y, V ) ∈ ψ(U ′)× R
n×j : V TGyV = I} ⊆ R

n × R
n×j, (4.85)

where eTi Gyek := gψ−1(y)(Dψ
−1(y)[ei],Dψ

−1(y)[ek]).
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Proof. Denote S = {(y, V ) ∈ ψ(U ′)× Rn×j : V TGyV = I}.
(1) Show ψ̃(St(j, U ′)) ⊂ S:

Let

(x, q1, · · · , qj) ∈ St(j, U ′), gx(qi, qk) = 〈qi, qk〉x = δik.

We have

ψ̃(x, q1, · · · , qj) = (ψ(x),Dψ(x)[q1], · · · ,Dψ(x)[qj ]).
set y = ψ(x), V = Dψ(x)[q1], · · · ,Dψ(x)[qj ].

From the definition of Gy, we have

(Dψ(x)[qi])
TGyDψ(x)[qk] = δik.

So

V TGyV = I, ψ̃(St(j, U ′)) ∈ S.

(2) Show S ⊂ ψ̃(St(j, U ′)):
Let

(y, V ) ∈ S, then y ∈ ψ(U ′) and V TGyV = I.

Denote V = [v1, v2, · · · , vj ], and take

(x,Q) = (ψ−1(y),Dψ−1(y)[v1], · · · ,Dψ−1(y)[vj ])

Therefore,

(x,Q) ∈ St(j, U ′), ψ̃(x,Q) = (y, V )

V TGyV = I =⇒ (Dψ(x)[qi])
TGyDψ(x)[qk] = δik

We have

〈vi, vk〉 = δik, (y, V ) ∈ ψ̃(St(j, U ′)).

Lemma 4.2.11. ψ̃(St(j, U ′)) as described in Lemma 4.2.10 is a compact subset of ψ(U)×
Rn×j.

Proof. Since ψ̃(St(j, U ′)) is subset Rn×(j+1), we just need to show it is closed and bounded.
Since y ∈ ψ(U ′) 7−→ Gy is C0 mapping, we know y 7−→ λmin(Gy) is also a C0 mapping.

Also since ψ(U ′) is compact, we have λmin(Gy) > 0,∀y ∈ ψ(U ′). So ∃λ > 0, such that

λmin(Gy) ≥ λ,∀y ∈ ψ(U ′).

Define the norm on Rn × Rn×j

‖(y, V )‖2F = ‖y‖2 + ‖V ‖2F .

Since y is in a compact set ψ(U ′), ∃b1 ≥ 0, such that

‖y‖2 ≤ b1, ∀y ∈ ψ(U ′). (4.86)
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Since V TGyV = I, we have

‖V ‖2F ≤ 1

λ
, ∀y ∈ ψ(U ′). (4.87)

From (4.86) and (4.87), we have

‖(y, V )‖2F ≤ b1 +
1

λ
, ∀(y, V ) ∈ ψ̃(St(j, U ′)). (4.88)

Therefore bounded is proven.

Let {(yk, Vk)}k∈N ⊂ ψ̃(St(j, U ′)), such that {(yk, Vk)} −→ (y∗, V∗). For any k, V
T
k GykVk =

I, we have

V T
∗ Gy∗V∗ = lim

k→∞
V T
k GykVk = I, (4.89)

so (y∗, V∗) ∈ ψ̃(St(j, U ′)). That is any limit point of {(yk, Vk)} is still in ψ̃(St(j, U ′)) and
closed is proven.

We can now prove the required relationship between the Hessian of the cost function
and the Hessian of the lifted cost function for a general retraction.

Theorem 4.2.5.

lim
k→∞
k∈S

inf{λmin(Q
T
kHessf̂xk(0xk)Qk)} ≥ 0 =⇒ lim

k→∞
k∈S

inf{λmin(Q
T
kHessf(xk)Qk} ≥ 0, (4.90)

where Qk is any matrix whose columns form an orthonormal basis of a subspace of TxkM .

Proof. Denote ak = λmin(Q
T
kHessf̂xk(0xk)Qk), bk = λmin(Q

T
kHessf(xk)Qk). Suppose (4.90)

does not hold, then there exists an index set K ⊆ S, such that {bk}K → ǫ, for some ǫ < 0.
Further restrict this index set in such a way that Qk contains a fixed number of columns,
say j. From Lemma 4.2.11, we know {(xk, Qk)}K = (xk, q1, · · · , qj)K ⊂ St(j, U ′), which is a
compact subset of a Whitney sum, for all k sufficiently large, so ∃K′ ⊆ K and critical point
(x∗, Q∗) ∈ St(j, U ′), such that {(xk, Qk)}K′ −→ (x∗, Q∗).

So

lim
k→∞
k∈K′

ak = λmin(Q
T
∗ Hessf̂x∗(0x∗)Q∗) ≥ 0.

By continuity, we have lim
k→∞
k∈K′

bk = λmin(Q
T
∗ Hessf(x∗)Q∗) ≥ 0, which yields the desired con-

tradiction.

The result above shows that (4.92) can be turned into a statement about the Riemannian
Hessian. The proof of Theorem 4.2.6 is straight-forward to generalize from the Euclidean
proof of [9, Theorem 5.4]. It is therefore omitted.

Theorem 4.2.6. Assume that {f(xk)} is bounded below by flow, that σk satisfies (4.79),
that ηk is a global minimizer of m̂xk over a subspace Lk, and let Qk be any orthogonal
matrix whose columns form a basis of Lk.
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If RF.1, RF.4 and RM.4 hold then any subsequence of negative leftmost eigenvalues
{λmin(Q

T
kBkQk)} converges to zero as k → ∞, k ∈ S, and thus

lim
k→∞
k∈S

inf{λmin(Q
T
kBkQk)} ≥ 0. (4.91)

Additionally, if RF.2, RM.1 and RM.3 hold then any subsequence of negative leftmost eigen-
values {λmin(Q

T
kHess f̂xk(0xk)Qk)} converges to zero as k → ∞, k ∈ S , and thus

lim
k→∞
k∈S

inf{λmin(Q
T
kHess f̂xk(0xk)Qk)} ≥ 0. (4.92)

which implies
lim
k→∞
k∈S

inf{λmin(Q
T
kHessf(xk)Qk)} ≥ 0 (4.93)

Furthermore, if Qk becomes a full orthogonal basis of TxM as k → ∞, k ∈ S , then, provided
it exists, any limit point of the sequence of iterates {xk} is second-order critical.
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CHAPTER 5

EXPERIMENTS

5.1 Problems

Four problems are used to illustrate various aspects of the performance of the proposed
Riemannian optimization algorithms: Rayleigh quotient minimization, a matrix Procrustes
problem, Thomson’s problem, and a weighted low-rank matrix approximation problem.
In this section, the cost functions and other relevant information are presented for each
problem.

In [24], the RBFGS is used in for ICA Learning on the Oblique manifold for image pro-
cessing problems for unmixing natural images, brain MRI classification for axial slices and
land typology estimation from multispectral infrared visible imaging spectrometer (MIVIS)
data. The RBFGS method was compared to other ICA methods and a substantial improve-
ment in the solution accuracy and computational efficiency was observed.

Rayleigh quotient minimization on Sn−1

For a symmetric matrix A, the unit-norm eigenvector, v, corresponding to the smallest
eigenvalue, defines the two global minima, ±v, of the Rayleigh quotient f : Sn−1 → R, x 7→
xTAx. The gradient and Hessian of f are given by

grad f(x) = 2Px(Ax) = 2(Ax− xxTAx)

Hessf(x) : TxM → TxM : η → ∇η grad f(x)

where ∇ηgrad f(x) = 2Px(Aη − ηxTAx) = 2(PxAPxη − ηxTAx)

Matrix Procrustes problem on the Stiefel manifold St(p, n)
On St(p, n) we consider a matrix Procrustes problem that minimizes the cost function

f : St(p, n) → R, X → ‖AX −XB‖F given n×n and p× p matrices A and B respectively.
Consider the cost function embedded in Rn×p:

f̄ : Rn×p → R : X → ‖AX −XB‖F , with f = f̄
∣∣
St(p,n)

The gradient of f on the submanifold of Rn×p used to represent St(p, n) is

grad f(X) = PXgrad f̄(X) = Q−Xsym(XTQ), where

Q := ATAX −ATXB −AXBT +XBBT .
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The Hessian is given by

Hess f(X)[Z] = PXDgrad f(X)[Z] = Dgrad f(X)[Z]−Xsym(XTDgrad f(X)[Z])

Dgrad f(X)[Z] = DQ(X)[Z]−Xsym(ZTQ)− Zsym(XTQ)

DQ(X)[Z] = ATAZ −ATZB −AZBT + ZBBT

where sym(Q) is the symmetric part of the matrix Q.

Thomson problem on OB(n,N) : Sn−1 × · · · × Sn−1

Let xi ∈ Rn, 1 ≤ i ≤ N , be such that xTi xi = 1 and consider the cost function

f : [x1, x2, · · · , xN ] 7−→
N∑

i,j=1
i6=j

1

‖xi − xj‖2

The physical meaning of the optimization this cost function is to optimally arrange N
repulsive particles on a sphere and determine the minimum energy configuration of these
particles.

We view this as an optimization problem on OB(n,N) the elements of which have the
form X = [x1, x2, · · · , xN ] ∈M, xTi xi = 1, for i = 1 to N .

To compute the gradient and Hessian of f , we first consider the cost function on entire
embedding space and compute its gradient

f̄ : Rn × R
n × · · · × R

n → R : X →
N∑

i,j=1

i6=j

1

‖xi − xj‖2

Df̄(X)[Z] =
( N∑

j=2

1

(1 − xT
1
xj)2

xTj

)
z1 + · · ·+

( N∑

j=1

j 6=i

1

(1− xTi xj)
2
xTj

)
zi + · · ·+

(N−1∑

j=1

1

(1− xTNxj)
2
xTj

)
zN

It follows that the gradient on a submanifold is the projection of the gradient on the
embedding manifold, grad f(X) = PXgrad f̄(X). The orthogonal projection of W ∈
Rn×N to TxM is

PXW = [(I − x1x
T
1 )w1, · · · , (I − xNx

T
N )wN ]

and therefore

grad f(X) =

[
(I − x1x

T
1 )

N∑

j=2

1

(1− xT1 xj)
2
xj , · · · , (I − xix

T
i )

N∑

j=1
j 6=i

1

(1− xTi xj)
2
xj,

· · · (I − xNx
T
N )

N−1∑

j=1

1

(1− xTNxj)
2
xj

]

Finally the Hessian is given by

Hess f(X)[Z] = PXDgrad f(X)[Z].
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The weighted low-rank matrix approximations on Grass(p, n)
Given a data matrix X ∈ Rp×n and a weighting matrix Q ∈ Rpn×pn that defines

‖X −R‖2Q = vec{X −R}TQvec{X −R},

the problem is to find that matrix R∗ such that

R∗ = arg min
R∈Rp×n

rank{R}≤r

‖X −R‖2Q (5.1)

An alternative formulation, suggested by Brace and Manton [7], is to rewrite (5.1) as
the equivalent double minimization

min
N∈Rn×(n−r)

NT N=1

min
R∈Rp×n

RN=0

‖X −R‖2Q (5.2)

The inner minimization has a closed form solution, call it f(N), given by:

f(N) = vec{X}T (N ⊗ Ip)
[
(N ⊗ Ip)

TQ−1(N ⊗ Ip)
]−1

(N ⊗ Ip)
Tvec{X} (5.3)

This cost function depends only on the range space of N , rather than the actual value of
N . That is, f(NQ) = f(N) for any orthogonal matrix Q. If N minimizes f(N) then the
solution to the original problem (5.1) is the unique matrix R satisfying

vec{R} = vec{X} −Q−1(N ⊗ Ip)
[
(N ⊗ Ip)

TQ−1(N ⊗ Ip)
]−1

(N ⊗ Ip)
T vec{X}

From the retraction formula (3.27), the local cost function (5.3) becomes

g(K) = f(N +N⊥K). (5.4)

Finally, the gradient of g(K) at K = 0 is

grad g(0) = 2(N⊥)T (X − C)TA (5.5)

where A ∈ Rp×(n−r) and C ∈ Rp×n are the unique matrices satisfying

vec{A} =
[
(N ⊗ Ip)

TQ−1(N ⊗ Ip)
]−1

vec{XN}
vec{C} = Q−1vec{ANT }

5.2 RARC Results

The RARC convergence analysis predicts rapid convergence and our observations coin-
cide with our analysis. For each problem several initial conditions were tried and similar
convergence rates and ultimate cost function values were observed. Given that ARC is simi-
lar in spirit to the trust-region method on Rn it was compared in [11] to trust region method
(GLTR). We therefore compare RARC with the Riemannian version of Lanczos-based trust
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Figure 5.1: RARC convergence Rayleigh Quotient problem: n=100

region method (RGLTR). The code is a modified version of the truncated-CG-based Rie-
mannian trust region method (RTR) of C.Baker’s Ph.D. dissertation. The experiments
show correspondingly that the RARC is competitive compared with Riemannian GLTR.
Figures 5.1 and 5.2 show the rapid convergence of RARC for the Rayleigh quotient problem
and for two Thomson problems. For both of these problems the performance of RGLTR
is similar to RARC. Figure 5.3 however illustrates a potential benefit of RARC compared
to RGLTR. Note that the convergence of RGLTR on the Procrustes problem exhibits the
plateau effect so often seen in Lanczos iterations before converging very rapidly and as a re-
sult doing significantly more work. RARC, even though Lanczos is also used, benefits from
its regularization parameter in its local cubic model and exhibits superior performance.

5.3 RBFGS Results

5.3.1 Approach 1 and Approach 2 for Hk update form of RBFGS

We have observed that the Hk update form of RBFGS tends to be more computationally
efficient than the Bk update forms. So in this section we present data that compares the Hk

update form for the three submanifold problems (Rayleigh Quotient, Thomson Problem,
and Procrustes Problem) using Approach 1 or Approach 2. The data uses the most efficient
isometric vector transport for the manifold associated with each problem. We expect the
same convergence rates of course but there is a significant variation in computational cost
between the two approaches and the choices of vector transport.

For the unit sphere and the oblique manifold, the simple and efficient isometric vector
transport is the most efficient of all the isometric vector transports. Its efficiency arises from
careful choice of the projection form used when applying vector transport and its inverse
transport. The choice means we can avoid the need for a basis of the tangent space. The
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Figure 5.2: RARC convergence on two Thomson problems
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Figure 5.3: RARC and RGLTR convergence for the Procrustes problem: n=12, p=7
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other isometric vector transports require generating a basis at each step of the algorithm
(or transporting a basis from the previous step). For the compact Stiefel we do not have
a form of isometric vector transport that is basis-free, but the data below uses the most
efficient available. So, in general, Approach 1 is not completely independent of tangent
space bases computationally. Since Approach 2 works in the core coordinates, it uses the
basis not only for vector transport but also for projection of the problem before transporting
and updating. As a result, we expect it to be more costly computationally.

Table 5.1: Vector transport Approach 1 vs. Approach 2 for Rayleigh quotient problem

Case Approach 1 Approach 1 Approach 2 Approach 2

( n=100) (n=300) (n=100) (n=300)

Time 0.21 4.6 0.54 11
Iteration 68 92 72 97

Table 5.2: Vector transport Approach 1 vs. Approach 2 for Procrustes problem

Case Approach 1 Approach 1 Approach 2 Approach 2

( n=7, p=4) (n=12, p=7) (n=7, p=4) (n=12, p=7)

Time 0.24 1.4 3.17 41
Iteration 47 79 47 79

Table 5.3: Vector transport Approach 1 vs. Approach 2 for Thomson problem

Case Approach 1 Approach 1 Approach 2 Approach 2

( n=30, N=12) (n=50, N=20) (n=30, N=12) (n=50, N=20)

Time 3.12 59 6.5 132
Iteration 22 24 24 25

Since, analytically, the Hk update is identical to the Bk update and Cholesky factor
update form, the only source of convergence differences is numerical. In fact, these forms are
observed to converge at the same rate. Similarly, Approach 1 and Approach 2 are identical
and analytically converge at the same rate. We should, however, expect a potentially large
difference in time. Tables 5.1, 5.2, and 5.3 contain Approach 1 and Approach 2 of the Hk

update form for the three problems with two problem sizes each. For each problem, the
number of iterations are seen to be identical or very close for a given problem size. We also
observe the significant difference in computing time between the two approaches. For the
larger problem sizes on each manifold we have factors of 2.4, 29.3 and 2.2 in computing
time.
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We conclude that Hk update form with Approach 1 is preferred. Also, it is crucial for
efficiency to analyze the computational form of vector transport, as recommended in our
projection framework, to make sure the most efficient and, if possible, a basis-free version
is used. Approach 1 could further benefit from propagating rank factorizations of the n×n
matrices Hk. (In this case, propagation of a low-rank Cholesky factorization would make
the Bk update version competitive as well but that option is not explored in these results.)
Approach 2 has potential savings only if there is an efficient manner of projecting the
problem to the core coordinates. This of course may simply be due to the tangent space
having a relatively small dimension.

5.3.2 Analysis of experimental results using parallel transport and

vector transport

Since parallel transport and vector transport by projection have similar computational
costs on Sn−1, the corresponding RBFGS versions have a similar computational cost per
iteration. Therefore, we would expect any performance difference measured by time to
reflect differences in rates of convergence. Based on the discussions above we consider this
question in this section using the Approach 1 implementation of the Hk update form of
RBFGS. Columns 2 and 3 of Table 5.4 show that vector transport produces a convergence
rate very close to parallel transport and the times are close as expected. This is encouraging
from the point of view that the more flexible vector transport did not significantly degrade
the convergence rate of RBFGS.

Given that vector transport by projection is significantly less expensive computationally
than parallel transport on St(p, n), for the Procrustes problem, we would expect a significant
improvement in performance as measured by time if the vector transport version manages
to achieve a convergence rate similar to parallel transport. The times in columns 4 and 5 of
Table 5.4 show an advantage to the vector transport version larger than the computational
complexity predicts. The iteration counts provide an explanation. Encouragingly, the
use of vector transport actually improves convergence compared to parallel transport. We
note that the parallel transport version performs the required numerical integration of a
differential equation with a stepsize sufficiently small so that decreasing it does not improve
the convergence rate of RBFGS but no smaller to avoid unnecessary computations. The
data here and below provides strong evidence that a careful consideration of the choice of
vector transport may have significant beneficial effects on both cost per step and overall
convergence.

The vector transports used in Table 5.4 for the Rayleigh Quotient problem and Pro-
crustes problem were both efficient isometric forms. Interestingly, even when they are
replaced by a nonisometric vector transport, though they do not guarantee the preservation
of symmetry on every step, they both converge very effectively (97 iterations and 83 for the
the Rayleigh Quotient and Procrustes respectively). As mentioned earlier we have a con-
jecture as to how this can be shown to be consistent with our convergence theory and this
will be pursued further. Figure 5.4 illustrates in more detail the significant improvement in
convergence rate achieved for vector transport in RBFGS on the Procrustes problem. This
does beg the question however of what an isometric vector transport can achieve.

Table 5.5 shows the number of iterations and time required for RBFGS on the Rayleigh
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Table 5.4: RBFGS Isometric Vector transport vs. Parallel transport

Rayleigh Procrustes
n = 300 (n, p) = (12, 7)

Vector Parallel Vector Parallel

Time (sec.) 4.6 4.2 1.4 259

Iteration 92 95 79 175
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Figure 5.4: RBFGS Parallel and Vector Transport for Procrustes. n=12, p=7.
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Quotient using an efficient nonisometric vector transport, the SVD form of the canonical-
based isometric vector transport and an equivalent but computationally efficient form of the
canonical-based isometric vector transport. As expected, the isometric vector transports
converge at the same rate, as does the nonisometric version, while the efficient isometric
vector transport derived by using the variety of implementations apparent from the projec-
tion framework uses less time than the SVD based implementation and is competitive with
the efficient nonisometric version. Figure 5.5 shows the convergence of the nonisometric
vector transport and the isometric vector transport in RBFGS on the Rayleigh Quotient
compared to transformation between tangent spaces that is not a vector transport but has
similarly high computational efficiency. In fact this transformation is the efficient isometric
vector transport with a malicious sign change added that violates the requirements of vec-
tor transport. The results show that the vector transport property is crucial in achieving
the desired results and much more important that the efficiency of each application of a
transformation between tangent spaces.

Table 5.6 includes results with three different vector transports: nonisometric, canonical-
based isometric and QR-based isometry denote isometric(QF) . They all have similar con-
vergence rate for the Procrustes problem. But the nonisometric on has better efficiency.
This is further evidence that the nonisometric vector transport can converge effectively.

The low-rank matrix approximation problem compares our rigorously analyzed RBFGS
algorithms to the highly heuristic and computationally inexpensive per step RBFGS al-
gorithm of Brace and Manton [7, Algorithm 2] that essentially completely ignores vector
transport. Figure 5.6 shows that the convergence using RBFGS with the canonical-based
vector transport is significantly better than the Brace-Manton heuristic form. Even more
important is the fact that the RBFGS version required only 7 seconds vs. 21 seconds
required by Brace-Manton. Other experiments show that nonisometric vector transport
and canonical-based vector transports have similar timing and convergence results for the
low-rank approximation problem.
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Figure 5.5: RBFGS with 3 transports for Rayleigh quotient. n=100.
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Table 5.5: Non-isometric vs. Canonical-based isometric vs. Simple implementation

Rayleigh
n = 300

Non-isometric Canonical isometric Simple imple. Isometric(QF)

Time (sec.) 4.0 20 4.6 17.5

Iteration 97 92 92 99

Table 5.6: RBFGS vector transports: nonisometric vs. canonical isometric (SVD)
vs. isometric(QF)

Procrustes
n = 12, p = 7

Non-isometric Canonical isometric Isometric(QF)

Time (sec.) 4.0 1.4 1.3

Iteration 83 79 80
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Figure 5.6: Low-rank (rank 3)approximation problem on Grass(p, n). n=12, p=9
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CHAPTER 6

CONCLUSIONS

We have generalized quasi-Newton algorithms to a Riemannian manifold (with an emphasis
on RBFGS) and we have proven several important convergence results. The most general,
and perhaps most significant, is the Riemannian Dennis-Moré Condition, Theorem 2.3.1,
that gives a necessary and sufficient condition for a Riemannian quasi-Newton algorithm
that defines its search direction based on vector transport, its associated retraction and the
transport of a linear transformation to achieve superlinear convergence.

We have given a generalization of the Wolfe conditions that is a key aspect of the
convergence analysis of Riemannian quasi-Newton algorithms. This discussion includes an
alternative curvature condition associated with a general vector transport.

For the general form of RBFGS given as Algorithm 2, if the vector transport is assumed
to be an isometry then Lemma 2.4.1 shows the crucial fact that the transport and update of
the linear transformation that defines RBFGS preserves the self-adjoint and positive definite
properties that are very important in proving convergence of RBFGS.

Our main convergence results for Algorithm 2 currently require the restriction to the use
of parallel transport with the exponential map as the associated retraction. The restriction is
due to our reliance on an average Hessian in the convergence analysis in a manner analogous
to that of [22]. The assumption allows the derivation of the Riemannian Exponential Map
Zoutendijk Condition in Theorem 2.4.1. This condition along with the positive definite
property provides the basis for proceeding to demonstrate convergence of RBFGS using
parallel transport by showing that linear transformation also has bounded condition.

Theorems 2.4.3 and 2.4.5 are the main results specific to RBFGS using parallel transport.
Theorem 2.4.3 guarantees

1. global convergence of RBFGS using parallel transport to a unique minimizer when
the cost f(x) is convex on the domain of interest.

2. global convergence of RBFGS using parallel transport to a set of stationary points
when the cost f(x) is not convex on the domain of interest.

3. local convergence of RBFGS using parallel transport to a nondegenerate minimizer,
x∗, when the cost f(x) is not convex on the domain of interest but the initial guess
x0 is sufficiently close to x∗.
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Given a converging iteration to a nondegenerate minimizer Theorem 2.4.5 guarantees su-
perlinear convergence for RBFGS using parallel transport by showing that the Riemannian
Dennis-Moré condition is satisfied.

We have therefore generalized to a Riemannian manifold all of the key convergence
theorems for BFGS, in particular, and transport-based quasi-Newton algorithms, in general
without relying on special assumptions such as M being a submanifold of Rn. The key
limitation to our results is the fact that the reliance on the use of the average Hessian
requires, thus far, the restriction to RBFGS using parallel transport. A generic vector
transport/retraction pair does not satisfy all of the properties needed for this approach to
the convergence proofs. For any particular choice, the required properties may be satisfied,
depending on the method of construction of the vector transport/retraction pair, and can
be specifically checked.

The fundamental results Theorem 2.3.1 and Lemma 2.4.1 do not have this restriction
and they indicate that a more general result for RBFGS with isometric vector transport
should be possible. In our experiments, RBFGS using isometric vector transport produces
a bounded condition in addition to the positive definiteness guaranteed by Lemma 2.4.1
and therefore superlinear convergence is expected. In fact, our experiments with RBFGS
using both isometric and nonisometric vector transport indicate that Theorem 2.3.1 and
Lemma 2.4.1 are satisfied and superlinear convergence has been observed consistently.

As an alternative to earlier work on the Riemannian Trust Region family of methods, we
have successfully generalized the Euclidean ARC algorithm and completed the convergence
analysis for the resulting algorithm RARC. It successfully generalizes the very satisfactory
convergence results available for ARC on Rn. In particular, we have shown under a series
of reasonable assumptions that RARC:

• converges globally to first-order critical points,

• converges Q-superlinearly or Q-quadratically to local minimizers,

• and converges globally to local minimizers.

We have provided leading empirical evidence that RARC can converge reasonably quickly
for a set of simple test problems. Further work comparing RARC, as we have implemented
it, to other more aggressively optimized methods such C. Baker’s numerical library of a
Riemannian trust-region family of methods [6] based on a Steighaug CG-like approach to
solving the local minimization problem is needed.
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