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Dr. Wei Wu and Dr. Giray Ökten. Dr. Klassen is one of the greatest mathematicians I have ever

met. He always asks thoughtful questions during my talk, waits for my answer, and corrects errors

in a very polite way. The computational statistics class taught by Dr. Wu was extremely useful. I

applied all the tools I learned to my research. I would also like to thank Dr. Ökten for providing
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data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.5 Histograms of test statistics of Berkeley growth velocity data. . . . . . . . . . . . . . . 54

8.6 Cross-sectional confidence bands for estimated ĝ (left) and ĥ (right) in male growth
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ABSTRACT

The problem of estimating trend and seasonality has been studied over several decades, although

mostly using single time series setup. This dissertation studies the problem of estimating these

components from a functional data point of view, i.e. multiple curves, in situations where seasonal

effects exhibit arbitrary time warpings or phase variability across different observations. Rather

than ignoring the phase variability, or using an off-the-shelf alignment method to remove phase, we

take a model-based approach and seek Maximum Likelihood Estimators (MLEs) of the trend and

the seasonal effects, while performing alignments over the seasonal effects at the same time. The

MLEs of trend, seasonality, and phase are computed using a coordinate descent based optimization

method. We use bootstrap replication for computing confidence bands and for testing hypotheses

about the estimated components. We also utilize log-likelihood for selecting the trend subspace, and

for comparisons with other candidate models. This framework is demonstrated using experiments

involving synthetic data and three real datasets (Berkeley growth velocity, U.S. electricity price,

and USD exchange fluctuation). Our framework is further applied to significance analysis of gene

sets for time-course gene expression data and outperforms the state-of-the-art method.

xii



CHAPTER 1

INTRODUCTION

1.1 The Problem

We investigate the problem of estimating trend and seasonality using multiple curves, as op-

posed to a classical single curve setting. In particular, we tackle a difficult problem where the

seasonality exhibits arbitrary time warping, or phase variability (see [MRS+15] for the notion of

phase variation), in each observation.

This situation arises often in practical situations where the seasonal effect displays cyclostation-

ary behavior, but is seldom aligned perfectly in the observed data. To illustrate this idea, suppose

there are one dimensional signals {fi(t)} as shown in Figure 1.1.

Figure 1.1: Motivation of trend and seasonality estimation.

We observe that for each signal, there is a periodic behavior and all signals have the same number

of peaks and valleys. The forms of {fi(t)} lead to the hypothesis that there may be a underlying

periodic structure g(t) which is called seasonality, seasonal effect, or main structure. Note

that all the peaks and valleys are not exactly aligned in time. For example, the blue signal oscillates

from fast to slow whereas the purple signal does the opposite. This time shifting phenomenon is

modeled as a warping function (or phase shift) γi(t). The combination of g(t) and γi(t) is

called the variable-phase seasonality in the observation fi(t).
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Notice that the signal envelope is between between −1 and 3 when time t = 0. When time

moves to t = 0.5, the signal envelope is bounded by −1 and 1.5. Until the end at t = 1, the signal

envelope is between −2 and 2. Because of this behavior, an underlying trend h(t) that is decreasing

is hypothesized.

Given observed signals {fi(t)}, the problem of interest is to recover the seasonality g(t), warping

functions {γi(t)}, and the underlying trend h(t). This problem hereafter is named as trend and

variable-phase seasonality estimation , or simply trend and seasonality estimation.

The simplest method to analyze the data is to take the cross-sectional mean of all the observed

signals {fi(t)}, that is

f̄(t) =
1

n

n∑
i=1

fi(t).

Figure 1.2 shows the cross-sectional mean f̄(t).

Figure 1.2: Cross-sectional mean of the data in Figure 1.1.

Although the function in Figure 1.2 displays a decreasing trend, it also contains some artifacts

that result mainly from the misalignment of seasonal components across individual observations.

Therefore, an alignment is needed when estimating components in such data. Without considering

all the details, numerical results of trend and seasonality are given in Figure 1.3. The seasonality

g(t) is a periodic cosine function and the trend h(t) is monotone decreasing from 1 to 0.

2



(a) seasonality (b) trend

Figure 1.3: Estimation results from the data in Figure 1.1.

Results for three additional estimations are given in Figures 1.4, 1.5, and 1.6.

Figure 1.4: Illustration of trend and seasonality estimation. Top left: observations. Top right:
cross-sectional mean of observations. Bottom left: recovered seasonality. Bottom right: recovered
trend.
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Figure 1.5: Description is same as Figure 1.4

Figure 1.6: Description is same as Figure 1.4

4



1.2 Overview of the Dissertation

This dissertation develops a statistical model for trend and variable-phase seasonality estima-

tion. An algorithm that, given observed signals {fi}, recovers estimates of seasonality, trend, and

warping functions is derived and evaluated. The dissertation is organized as follows.

• Chapter 2 starts with a literature review of related work, such as trend and seasonality esti-

mation of a single curve, estimation of a mean function from multiple curves, and registration

of curves. A brief discussion of the signal separation problem is given. Finally, several as-

sumptions and the statistical model for estimating the trend and variable-phase seasonality

are presented.

• In Chapter 3, we convert the estimation problem into a constrained functional optimization

problem and derive a method for its solution.

• In Chapter 4, we describe methods of bootstrap analysis to provide confidence bands around

estimates of the trend and the seasonal effect. We also illustrate the strength of the bootstrap

framework in formulating hypothesis tests associated with the estimated trends and seasonal

effects.

• In Chapter 5, we develop methods for choosing effective parameters in our model.

• Chapter 6 discusses several related models, their assumptions, and their limitations.

• In Chapter 7, experiments with synthetic data are used to study the effect of noise and

to demonstrate the robustness of the estimates. Also, results of bootstrap analysis and

comparisons of all models are presented.

• In Chapter 8, we study trend and seasonality estimation on three real datasets (Berkeley male

growth rates, US electricity prices, and USD currency exchange fluctuations).

• In Chapter 9, we consider significance analysis of gene sets of time-course gene expression

data. We utilize the bootstrap analysis in Chapter 4 to select the significant gene sets and

show that the statistical power of our method outperforms the state-of-the-art method.

• Chapter 10 summarizes the contribution of this dissertation, and discusses topis for future

consideration.
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CHAPTER 2

PROBLEM FORMULATION

2.1 Literature Review

Before presenting our model-based solution for trend and seasonality estimation, we summarize

the main ideas present in the literature, and point out their limitations and shortcomings. The

summary divides relevant literature into four categories, each representing a sub-model of our trend

and variable-phase seasonality model.

2.1.1 Trend and Seasonality Estimation from a Single Observation

The problem of estimating trend and seasonality from a single curve originated in economics

([Ner64] and [GK64]), followed by more formal developments in statistics, see [GN70], [CT76],

[BHT78], [HT82], [HT83]. Please refer to the review paper by [ABD+12] on this subject, and to

U.S. Census Bureau’s website1 for a larger list of papers on this topic. The structure time-series

model (also termed the classical decomposition model by [BD06]) was formalized in [HT83] as:

f(t) = h(t) + g(t) + ε(t) .

The goal is to recover the trend h and the seasonality g, from a single observation f . Further

special cases of this model result from assuming either h or g to be zero. Common approaches for

estimating trend include parametric least squares ([BD06]), moving averages ([BD06]), and local

linear smoothing ([FHT01]). On the other hand, the seasonality estimation is often handled by

finding cycles (intervals of cyclostationarity) and averaging over those cycles.

For estimating both trend and seasonality, popular approaches include autoregressive-integrated-

moving average ([HT82], [HT83]), STL filtering ([CCMT90]), small trend method ([BD06]), mov-

ing average estimation ([BD06]), and differencing at lag period ([BD06]). While these methods are

based on the assumption of equally-spaced observations, [Eck12] studied the case of unevenly-spaced

observations.

1http://www.census.gov/srd/www/sapaper/
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Note that none of these models address the issue of temporal misalignment of seasonal effects

across cycles.

2.1.2 Estimating Mean Function from Multiple Curves

In the case where multiple observations are available, one can use techniques from functional

data analysis. For instance, one can pose a model of the type:

fi(t) = h(t) + εi(t), i = 1, 2, . . . , n.

Under the zero-mean assumption of εi(t), an unconstrained estimator of h is the cross-sectional

mean, ĥ(t) = 1
n

∑n
i=1fi(t). If h is assumed to belong to a certain subspace, then there are several

techniques available to estimate h: B-splines ([BCF97]), smoothing splines ([BR98]), basis functions

([Ram06]), least squares ([Ram06]), roughness penalty ([Ram06]), and local polynomial kernel

([ZC+07]). This model will perform badly in situations where the data contains some seasonal

effects. We mention in passing that although the model used in [Gho01],

fi(t) = h(t) + gi(t) + εi(t),

seems different from the one stated above, it is effectively the same given the authors’ assumption

that
∑
gi(t) = 0.

2.1.3 Alignment of Multiple Curves

The third related area is registration or alignment of functions. Here, the model does not have

a trend component and only considers time warpings of g according to:

fi(t) = g(γi(t)) + εi(t), i = 1, ..., n .

where g(γi(t)) denotes the misalignment of the seasonality (see more details in Section 2.2). Given

several observations {fi}, try to remove the effect of {γi} and estimate g.

The simplest case is aligning two signals which was first studied by Sakoe and Chiba [SC78] in

1978 in the signal processing literature. Ten years later, the problem of aligning multiple signals

gained substantial interest in the statistics community as the “Registration/Alignment Problem”.

Table 2.1 summarizes highly cited curve registration papers from 1978 to 2015.
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Table 2.1: History review of curve registration methods.

Year Method Authors

1978 Dynamic Time Warping (two curves) [SC78] Sakoe and Chiba;

1992 Landmark Registration [KG92] Kneip and Gasser

1997 Dynamic Time Warping (multiple curves) [WG97] Wang and Gasser

1998 Procrustes Fitting Criterion [RL98] Ramsay and Li

2000 Registration by Local Regression[KLMR00] Kneip, Li, MacGibbon, Ramsay

2001 Nonparametric MLE [Ron01] Ronn

2004 Area Under the Curve [LM04] Liu and Muller

2004 Self-Modeling Registration [GG04] Gervini and Gasser

2005 Minimum Second Eigenvalue [Ram06] J. O. Ramsay and X. Li

2007 Moment-Based Method [Jam07] James

2008
Principal Analysis by

Conditional Expectation
[TM08] Tang and Muller

2010 k-means Alignment [SSVV10b, SSVV10a]
Sangalli, Secchi,

Vantini , and Vitelli

2011 Fisher-Rao Method [SWK+11, KSW11]
Srivastava, Wu, Kurtek,

Klassen, and Marron

2014 Simultaneous Likelihood Inference [RSM14] Rakêt, Sommer, and Markussen

2015 Bayesian registration [CDH+15] Cheng, Dryden, and Huang

The alignment properties of the six most common alignment techniques from Table 2.1 are

summarized in Table 2.2. Note the Fisher-Rao method is the only method in which the metric is

symmetric and isometry to warpings. Moreover, the computational time of the Fisher-Rao method

[SWK+11] is less than PACE [TM08] and MBM [Jam07] but higher than AUTC [LM04] and SMR

[GG04].

Table 2.2: Comparison of alignment methods.

Methods

alignment

performance

(visually)

[SWK+11]

alignment

performance

(numerically)

[SWK+11]

consistent

theorem

provided

metric is

symmetric

isometry

to warping

FTC [RL98] Low Low No No No

AUTC [LM04] Low Low Yes Yes No

SMR [GG04] Low Low Yes No No

MBM [Jam07] Median Median Yes No No

PACE [TM08] Low Low Yes No No

F-R [SWK+11] High High Yes Yes Yes

The majority of the techniques in Table 2.1 formulate the alignment problem using the standard

L2 metric. As pointed out in [MRS+15], this leads to degeneracy in the form of the pinching effect,
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and also asymmetry in the solution. Srivastava et al. [SWK+11] presented a natural solution that

extends the Fisher-Rao metric to general function spaces and uses a square-root velocity function

(SRVF) representation of curves for alignment (see also [SK16]). This transformation is supported

by a fundamental result that the Fisher-Rao Riemannian metric, with its nice invariance properties,

transforms to the L2 inner-product under the SRVF transformation.

Once the registration problem is solved, a natural extension is to estimate the seasonality g(t).

This can be accomplished by taking the cross-sectional mean of these aligned SRVFs, see [KSW11]

and [CWS16].

Our work differs from the work of Srivastava et al. [SWK+11], Kurtek et al. [KSW11], and

Cleveland et al. [CWS16] due to the presence of the trend.

2.1.4 Decomposition of Multiple Signals

Determining the seasonality and the underlying trend can also be regarded as a nonlinear signal

separation problem. A standard linear signal separation problem from signal processing is the blind

source separation (BSS) [CiA02, HKO01]. The model is

~x(t) = A~s(t) + ε(t)

where ~x(t) is a vector of observed signals, ~s(t) is a vector of source signals, A is a mixing matrix

and ε(t) is Gaussian noise. Given the observed signals ~x(t), blind source separation attempts to

recover the source signal ~s(t) and the mixing matrix A.

Our problem is different from blind source separation due to nonlinear mixing. Also, the trend

and seasonality estimation model handles only two signals while blind source separation typically

considers mixing many signals.

2.2 Problem Formulation

2.2.1 The Model

To describe the mixing of the seasonality g(t) and the underlying trend h(t), we use an additive

model g(t)+h(t). However, the phase/time shifting phenomenon of the seasonality that we discussed

in Figure 1.1 is not yet included. We make the warping of the seasonality g(t) to be g(γi(t))
√
γ̇i(t)

where γ̇ means the derivative with respect to the time t. Combining all above, the model for the
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trend and variable-phase seasonality estimation is

fi(t) = h(t) + g(γi(t))
√
γ̇i(t) + εi(t), i = 1, ..., n. (2.1)

On the right, the different terms are:

• Time, denoted by t. Without loss of generosity, the time is set to be [0, 1].

• Observations, denoted by fi ∈ L2([0, 1],R), i = 1, ..., n.

• Trend, denoted by h ∈ L2([0, 1],R), captures the long-term evolution of the data. Generally,

we are interested in h being either a lower order polynomial representing a null, constant,

linear, quadratic shapes, or slowly varying sinusoid.

• Warping function, denoted by γi(t). We define γi : [0, 1]→ [0, 1] be a boundary-preserving

diffeomorphism. In other words, the warping functions {γi} are assumed to be elements of

the set:

Γ = {γ : [0, 1]→ [0, 1] | γ(0) = 0, γ(1) = 1, γ is a diffeomorphism} .

This set has been studied extensively for function and curve representation in shape and

functional data analysis [SKJJ11, SWK+11, SK16]. Notice that Γ is a group with composition

as group operation and the identity element γid(t) = t. For each γ ∈ Γ, there exists a unique

element γ−1 such that γ ◦ γ−1 = γ−1 ◦ γ = γid.

• Seasonal effect, denoted by g ∈ L2([0, 1],R), captures seasonal or period effects in the data,

Instead of assuming the seasonal effect to be fixed, or perfectly aligned across observations,

we make the model more general by including a temporally-misaligned version of g. That is,

we utilize the term g(γi(t))
√
γ̇i(t), instead of g(t), which represents a time warping of g by a

function γi, i.e. a variable-phase seasonality g.

• Observation noise, denoted by εi : [0, 1]→ R with the assumption that εi are i. i. d. with

E[εi(t)] = 0 for all i and t.

Remark 1. We assume the time warping to be g 7→ (g(γ))
√
γ̇, rather than the traditional g 7→

g(γ), as suggested for SRVFs in [SWK+11] and [SK16]. In other words, the model is posed in

the SRVF space, rather than the original function space. This warping is norm-preserving, i.e.

‖g‖ = ‖(g(γ))
√
γ̇‖, with ‖ · ‖ denoting the L2 norm, for any time warping function γ, and thus has

fundamentally better mathematical and computational properties. Other possibilities of warpings

of g are discussed in Chapter 6.

We replace the term g(γi(t))
√
γ̇i(t) by (g, γi)(t) denoting the right group action of a group Γ

on g (see [Fra02]). Thus, Equation 2.1 is simplified to

fi(t) = h(t) + (g, γi)(t) + εi(t), i = 1, ..., n. (2.2)
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To ensure identifiability of trend and seasonality components using the model, Equation 2.2, addi-

tional assumptions must be made.

2.2.2 Direct Sum Assumption

Consider a simpler case where γi = γid = t, for all i and the model (Equation 2.2) reduces to

fi(t) = h(t) + g(t) + εi(t).

In order to identify h and g, we require two subspaces H,G ⊂ L2, such that H ⊥ G, and then we

restrict to h ∈ H and g ∈ G. Assuming, as earlier, that E[εi(t)] = 0, for all i and t, the estimates

of h and g are given by

ĥ = ΠH(
1

n

n∑
i=1

fi)

and

ĝ = ΠG(
1

n

n∑
i=1

fi),

where ΠH and ΠG are the projections onto H and G, respectively. This, of course, requires the

knowledge of H and G beforehand. We further assume that G = H⊥ which is the same as the

direct sum theory from Functional Analysis [Kre89], that is

L2 = G ⊕H = H⊥ ⊕H.

Now consider the case warpings {γi} other than identity. In this case, the functions (g, γi) are

no longer guaranteed to be in the subspace G, i.e. (g, γi) may have nonzero components in H. This

underlines the main challenge in the trend and variable-phase seasonality estimation. If (g, γi) had

remained orthogonal to H, then we could solve the problem using orthogonal projections (or some

related smoothing methods). Note that the warping by itself can be handled using the alignment

procedures developed in [SWK+11] and [SK16].

Figure 2.1 illustrates the difficulty when (g, γi)(t) is no longer orthogonal to h(t). Hence, a more

complicated approach is required to perform the separation and characterize its limitations.

To measure how γ acting on g destroys the direct sum assumption, we use the following distor-

tion percentage
‖ΠH(g, γ)‖L2

‖(g, γ)‖L2

× 100% (2.3)
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Figure 2.1: Illustration of the difficulty of trend and variable-phase seasonality estimation

as is illustrated by the following synthetic example.

Let t ∈ [0, 1], g = cos(11πt), H= span {1, cos(πt), cos(2πt), ..., cos(10πt)}, and γ = (0.5)t−1
−0.5 . The

corresponding simulated data is given in Figure 2.2. From Table 2.3, the distortion percentage

(Formula 2.3) increases as the dimension of H increases, as expected. And the corresponding trend

and seasonality separation becomes more difficult.

Figure 2.2: Simulated data for the illustration of the distortion percentage.

Table 2.3: Distortion percentage of different dimensions of space H.

h =
l2∑
k=0

ck cos(kπt) l2 = 0 l2 = 1 l2 = 2 l2 = 3 l2 = 4 l2 = 5 l2 = 6 l2 = 7 l2 = 8 l2 = 9

‖ΠH(g,γ)‖
‖(g,γ)‖ × 100% 1.8% 4.9% 12.1% 23.1% 31.5% 31.8% 38.2% 42.0% 45.3% 47.9%
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2.2.3 Karcher Mean Assumption

Another difficulty in identifying g arises from the lack of a normalizing assumption. Since

fi(t) = h(t) + (g, γi)(t) + εi(t)

= h(t) + (g, γid ◦ γi)(t) + εi(t)

= h(t) + (g, γ̃ ◦ γ̃−1 ◦ γi)(t) + εi(t)

= h(t) +
(
(g, γ̃), (γ̃−1 ◦ γi)

)
(t) + εi(t)

= h(t) + (g̃, γ̃i) + εi(t)

for any γ0 ∈ Γ, there is a problem in representing g uniquely. This problem can be avoided by

assuming an additional constraint on {γi}. Srivastava et al. [SWK+11] suggested forcing the

Karcher mean of the inverse warping functions to be the identity, or

KM
{
γ−1
i

}
= γid.

(The concept of Karcher mean on Γ is discussed later in Section 3.3.) The similar idea of constrain-

ing the mean of warping functions to be γid was used in [TM08].

2.2.4 The Constrained Functional Optimization

We will use the maximum-likelihood approach to recover the seasonality g, warping functions

{γi}, and the trend h in Equation 2.2 Since using Maximum Likelihood directly for the infinite

dimensional problem is unclear, we must discretize the problem. For notational simplicity, the

infinite dimensional model is

fi(t) = fΩ
i (t) + εi(t), i = 1, ..., n

where fΩ
i (t) = h(t) + (g, γi)(t) denotes parameter terms. The finite discretized model is

fi(tj) = fΩ
i (tj) + εi(tj), i = 1, ..., n, j = 1, ...,m

where m is the number of time samples in the interval [0, 1]. Assuming εi(tj) ∼ N (0, σ2) for each

i and j, the conditional distribution of fi(tj) given fΩ
i (tj) is

fi(tj) ∼ N(fΩ
ij , σ

2).
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For each observation i, we have random variables fi(t1), ..., fi(tm) and the likelihood function is

L(fΩ
i (t1), ..., fΩ

i (tm)|fi(t1), ..., fi(tm)) = pdf(fi(t1))× ...× pdf(fi(tm))

=

(
1√

2πσ2

)m
exp

− 1

2σ2

m∑
j=1

(
fi(tj)− fΩ

i (tj)
)2 .

Taking the average log likelihood gives

1

m
logL

(
fΩ
i (t1), ...fΩ

i (tm)| fi(t1), ..., fi(tm)
)

= log
1√

2πσ2
− 1

2mσ2

m∑
j=1

(
fi(tj)− fΩ

i (tj)
)2
.

Taking the average for observation i yields

1

n

n∑
i=1

1

m
logL

(
fΩ
i (t1), ...fΩ

i (tm)| fi(t1), ..., fi(tm)
)

=
1

n

n∑
i=1

log
1√

2πσ2
− 1

2mσ2

m∑
j=1

(
fi(tj)− fΩ

i (tj)
)2 .

(2.4)

Maximizing Equation 2.4 is the same as minimizing

1

n

n∑
i=1

 1

m

m∑
j=1

(
fi(tj)− fΩ

i (tj)
)2 .

In the limit, m→∞, we have

lim
m→∞

1

n

n∑
i=1

 1

m

m∑
j=1

(
fi(tj)− fΩ

i (tj)
)2 =

1

n

n∑
i=1

∫ 1

0

(
fi(t)− fΩ

i (t)
)2
dt

=
1

n

n∑
i=1

∥∥fi(t)− fΩ
i (t)

∥∥2

L2

=
1

n

n∑
i=1

‖fi(t)− h(t)− (g, γi)(t)‖2L2 .

Thus, finding the Maximum Likelihood Estimator (MLE) becomes a problem in constrained func-

tional minimization

(ĝ, {γ̂i}, ĥ) = arg min
g,{γi},h

C(g, {γi}, h) (2.5)

where C : G × Γn ×H → R is given by the cost function

C(g, {γi}, h) =
1

n

n∑
i=1

‖fi − h− (g, γi)‖2 (2.6)

with two constrains: direct sum L2 = G ⊕H and the Karcher mean KM{γ−1
i } = γid.

14



CHAPTER 3

OPTIMIZATION APPROACH

There are several ways to solve a functional optimization problem but each of them addresses a

problem with a specific form. For example, if the cost functional involves integrals, perhaps in an

integral equality constraint, one may resort to Variational Calculus [CH66, Lue69]. If the cost func-

tional is no longer an integral form, there are several gradient methods such as Generalized gradient

[CMP+06], Sobolev gradient [JCS+09], Fréchet derivative [AB06], and Gâteaux derivative[AB06].

If the argument of the cost functional has a certain shape and is not defined on a vector space,

then the problem leads to topology optimization [BS13] or shape optimization [SZ92].

The difficulties of our problem are the arguments γi(t), which have a particular structure, and

the Karcher mean constraint. A coordinate descent method is used because its convergence and

efficiency in the finite dimensional case are understood [LT92, TM01, Nes12]. However, little work

has been done in the infinite dimensional case.

The coordinate descent method optimizes the cost function along one direction/variable at a

time and iterates until a stationary point with a sufficiently small cost function value is reached. To

apply coordinate descent method to our problem, we must derive the minimizer in each direction.

i.e.,

1. Given current estimates of g(t) and {γi}, what is the minimizer ĥ(t) to the cost functional?

2. Given current estimates of {γi} and h(t), what is the minimizer ĝ(t) to the cost functional?

3. Given current estimates of g(t) and h(t), what is the minimizer {γ̂i} to the cost functional?

Recall from Equation 2.6, we have the cost functional

C(g(t), γi(t), h(t)) =
1

n

n∑
i=1

‖fi(t)− h(t)− (g, γi)(t)‖2L2 (3.1)

with direct sum assumption fi ∈ L2 = G ⊕H and the Karcher mean condition KM{γ−1
i } = γid.
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3.1 Updating the Estimate of h

Suppose ĝ ∈ G and γ̂i ∈ Γ are current estimates, the corresponding optimization to update

estimate for h(t) is from Equation 2.6

ĥ = arg min
h∈H

1

n

n∑
i=1

‖fi − h(t)− (ĝ, γ̂i)‖2 . (3.2)

From

1

n

n∑
i=1

‖fi − (ĝ, γ̂i)− h‖2 =
1

n

n∑
i=1

∥∥∥f̃i − h∥∥∥2
=

1

n

n∑
i=1

∥∥∥f̃Hi + f̃H
⊥

i − h
∥∥∥2

=
1

n

n∑
i=1

∥∥∥f̃Hi − h∥∥∥2
+

1

n

n∑
i=1

∥∥∥f̃H⊥i ∥∥∥ ,
and the cost functional for estimating h is

C(h) =
1

n

n∑
i=1

∥∥∥f̃Hi − h∥∥∥2
=

1

n

n∑
i=1

〈
f̃Hi , f̃

H
i

〉
L2
− 2

〈
1

n

n∑
i=1

f̃Hi , h

〉
L2

+ 〈h, h〉L2 (3.3)

where f̃i = fi − (ĝ, γ̂i) and f̃Hi (t) is the projection of f̃i onto the the space H. Let Φ = {φk, k =

1, . . . ,∞} denote a complete orthonormal basis of L2. We assume {φk} are ordered so that H =

span{φk|k = 1, . . . , l} for some integer 1 ≤ l <∞. In practice, this assumption is motivated by the

standard ordering of the basis elements from slowly to rapidly varying. Therefore the choice of H

can be made by considering an appropriate value of l. The minimizer occurs when the middle term

in Equation 3.3 is maximized at

ĥ =
1

n

n∑
i=1

f̃Hi =
1

n

n∑
i=1

ΠH [fi − (ĝ, γ̂i)] = ΠH

[
1

n

n∑
i=1

(fi − (ĝ, γ̂i))

]
=

l∑
k=1

〈
1

n

n∑
i=1

(fi − (ĝ, γ̂i)) , φk

〉
φk

where {φ1(t), ..., φl(t)} is an orthogonal basis of H and 〈·, ·〉 denotes the standard L2 inner product.

We consider the following bases: sine basis
{√

2 sin (nπt) , n = 1, 2, 3, ...
}

, cosine basis{
1,
√

2 cos (nπt) , n = 1, 2, 3, ...
}

, Fourier basis
{

1,
√

2 sin (2nπt) ,
√

2 cos (2nπt) , n = 1, 2, 3, ...
}

, and

shifted Legendre basis (see [Kre89])φk(t) =
1

2k − 1
(−1)k−1

k−1∑
j=0

(
k − 1
j

)(
k + j − 1

j

)
(−t)j , k = 1, 2, 3...

 .
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3.2 Updating the Estimate of g

Suppose γ̂i ∈ Γ and ĥ ∈ H are the current estimates, the functional optimization problem for

updating the estimator g is

ĝ = arg min
g∈H⊥

1

n

n∑
i=1

∥∥∥fi − ĥ− (g, γ̂i)
∥∥∥2
. (3.4)

Lemma 2 in [SWK+11] states that

‖f1 − f2‖L2 = ‖(f1, γ)− (f2, γ)‖L2 ,

from which we have

1

n

n∑
i=1

∥∥∥fi − (g, γ̂i)− ĥ
∥∥∥2

=
1

n

n∑
i=1

∥∥∥((fi − ĥ), γ̂−1
i

)
− g
∥∥∥2

=
1

n

n∑
i=1

∥∥∥f̃i − g∥∥∥2
=

1

n

n∑
i=1

∥∥∥∥f̃iH + f̃i
H⊥ − g

∥∥∥∥2

=
1

n

n∑
i=1

∥∥∥f̃iH − g∥∥∥2
+

1

n

n∑
i=1

∥∥∥∥f̃iH⊥∥∥∥∥ .
The cost function for g is then

C(g) =
1

n

n∑
i=1

∥∥∥∥f̃iH⊥ − g∥∥∥∥2

where f̃i =
(

(fi − ĥ), γ̂−1
i

)
and f̃i

H⊥
denotes the projection of f̃i onto the space H⊥. The cost

function can be written as

C (g) =
1

n

n∑
i=1

〈
f̃H
⊥

i − g, f̃H⊥i − g
〉
L2

=
1

n

n∑
i=1

(〈
f̃H
⊥

i , f̃H
⊥

i

〉
L2
− 2

〈
f̃H
⊥

i , g
〉
L2

+ 〈g, g〉L2

)
=

1

n

n∑
i=1

〈
f̃H
⊥

i , f̃H
⊥

i

〉
L2
− 2

〈
1

n

n∑
i=1

f̃H
⊥

i , g

〉
L2

+ 〈g, g〉L2 . (3.5)

The minimizer of C (g) occurs when the middle term in Equation 3.5 is maximized at

ĝ =
1

n

n∑
i=1

f̃H
⊥

i =
1

n

n∑
i=1

ΠH⊥ f̃i = ΠH⊥
1

n

n∑
i=1

f̃i.
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The projection ΠH⊥ can be expressed in terms of the projector ΠcalH using the orthonormal basis

{φ1, ..., φl} to yield the minimizer from Equation 3.2 in the computationally convenient form

ĝ =
1

n

n∑
i=1

f̃i −ΠH
1

n

n∑
i=1

f̃i

=
1

n

n∑
i=1

(
(fi − ĥ), γ̂−1

i

)
−ΠH

1

n

n∑
i=1

(
(fi − ĥ), γ̂−1

i

)
=

1

n

n∑
i=1

(
(fi − ĥ), γ̂−1

i

)
−

l∑
k=1

〈
1

n

n∑
i=1

(
(fi − ĥ), γ̂−1

i

)
, φk

〉
L2

.

3.3 Updating the Estimates of {γi}

Given current estimates of ĝ and ĥ, the estimates of γi are updated to

{γ̂1, ..., γ̂n} = arg min
{γ1,...,γn}∈Γn

1

n

n∑
i=1

∥∥∥fi(t)− (ĝ, γi)(t)− ĥ(t)
∥∥∥2

(3.6)

with the constraint KM
{
γ−1
i

}
= γid. These minimizers are approximated by first solving the n

optimization problem 1 ≤ i ≤ n

{γ̃i} = arg min
γi∈Γ

∥∥∥fi − ĥ− (ĝ, γi)
∥∥∥2

(3.7)

and then imposing the Karcher mean constraint on the resulting warping functions. The optimal

{γi} can be found using the technique in [SWK+11].

The Karcher mean condition, KM
{
γ−1
i

}
= γid, is imposed on the solutions of the uncon-

strained problem, Equation 3.7, in two steps (details are in Appendix). First, the Karcher mean of

γ−1
1 , ..., γ−1

n is computed using Algorithm 1 from [SWK+11].

Second, given the Karcher mean of γ−1
1 , ..., γ−1

n , the condition KM
{
γ−1
i

}
= γid can be imposed

using the following Lemma (Lemma 4 in [SWK+11]).

Lemma. Let Γ be a diffeomorphism group on [0, 1]. Let η0 ∈ Γ and ηKM be the Karcher mean of

η1, ..., ηn ∈ Γ, then ηKM ◦ η0 is the Karcher mean of η1 ◦ η0, ..., ηn ◦ η0.

So, if γ−1
KM is the Karcher mean of γ−1

1 , ..., γ−1
n , then KM

{
γ−1
i

}
= γid is imposed by the

replacement

γ−1
i ← γ−1

i ◦
(
γ−1
KM

)−1
, 1 ≤ i ≤ n

18



Algorithm 1: Karcher mean of warping functions η1, ..., ηn.

Data: warping functions η1, ..., ηn

Result: Karcher mean of warping functions ηKM

1 Compute ψi =
√
η̇i for i = 1, ..., n;

2 Initialize ψ(0) = 1
n

n∑
i=1
ψi;

3 for k = 1 until convergence do
4 for i = 1, ..., n do

5 Compute vi = exp−1
ψ(k)(ψi) = θ

sin θ

(
ψi − cos(θ)ψ(k)

)
where θ = cos−1 (〈ψ,ψi〉L2);

6 end

7 Compute the average direction, v̄ = 1
n

n∑
i=1
vi ;

8 Pick up a small ε and times to the average direction v̄ ;

9 Back to the unit sphere by doing retraction

ψ(k+1) = expψ(k) (εv̄) = cos (‖εv̄‖)ψ(k) + sin (‖εv̄‖) εv̄

‖εv̄‖

10 If
∥∥ψ(k+1) − ψ(k)

∥∥ is very small, then end the for loop ;

11 end

12 Let ψKM = ψ(final k);

13 Output ηKM by computing ηKM =
∫ 1

0 ψ
2
KMdt;

which is equivalent to

γi ←
[
γ−1
i ◦

(
γ−1
KM

)−1
]−1

=
(
γ−1
KM

)
◦ γi, 1 ≤ i ≤ n.

The algorithm for approximating the solution of the constrained functional optimization is

described in Algorithm 2 and the algorithm to solve the trend and variable-phase seasonality is

given in Algorithm 3.
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Algorithm 2: Optimization over γ1, ..., γn.

Data: observations {fi}, seasonality g(j−1) and trend h(j−1). Requires Algorithm 1.

Result: warping functions γ
(j)
1 , ..., γ

(j)
n whose KM{γ−1

i } = γid.

1 for i = 1, ..., n do
2 Solve

γ̃
(j)
i = arg min

γi∈Γ

∥∥∥[fi − h(j−1)
]
− (g(j−1), γi)

∥∥∥2

3 Compute
(
γ̃

(j)
i

)−1
;

4 end

5 Use Algorithm 1 to compute Karcher mean of
(
γ̃

(j)
1

)−1
, ...,

(
γ̃

(j)
n

)−1
, denoted by

(
γ̃

(j)
KM

)−1
;

6 for i = 1, ..., n do

7 Update γ
(j)
i =

(
γ̃

(j)
KM

)−1
◦ γ̃(j)

i ;

8 end

Algorithm 3: A complete algorithm for solving trend and variable-phase seasonality estima-
tion.

Data: given observations {fi}. Requires Algorithm 2 (which requires Algorithm 1)

Result: warping functions {γ̂i}, seasonality ĝ, and trend ĥ

1 Initialization g(0) = fidx where idx = arg min
i

∥∥fi − f̄∥∥, h(0) = 0, γ
(0)
i = γid;

2 for j = 1, ..., until convergence do

3 Update γ
(j)
1 , ..., γ

(j)
n with Karcher mean condition using Algorithm 2 ;

4 Compute f̄ (j) = 1
n

n∑
i=1

((
fi − h(j−1)

)
,
(
γ

(j)
i

)−1
)

;

5 Update g(j) = f̄ (j) −ΠHf̄
(j) ;

6 Compute f̌ (j) = 1
n

n∑
i=1

[
fi − (g(j), γ

(j)
i )
]

;

7 Update h(j) = ΠHf̌
(j) ;

8 If the value |C({γ(j)
i }, h(j), g(j))− C({γ(j−1)

i }, h(j−1), g(j−1))| is very small, then end the

for loop;
9 end

10 Output {γ̂i} = {γ(max)
i }, ĝ = g(max), and ĥ = h(max)
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CHAPTER 4

BOOTSTRAP ANALYSIS

Given the complexity of the data model, and the subsequent estimators, it is difficult to derive

analytical expressions for asymptotic distributions of the estimated quantities. In this chapter we

use a bootstrap approach to compute estimator statistics using random replication, and use these

statistics to test hypotheses about trend and seasonality. We present details of computing bootstrap

estimates of standard deviations of certain test statistics. These statistics, in turn, can be used to

test important hypotheses, such as the presence or absence of a trend or a seasonality component

in the observed data.

4.1 Review of Bootstrap Method

In statistics, the most common task is to estimate the mean of a population X. Taking the

average of samples {x1, ..., xn} drawn from the population is the best estimator for this problem.

However, one can question the accuracy of the sample mean x̄. The idea of a confidence interval

which was first introduced by Jerzy Neyman [Ney37]. Assuming the standard deviation of the

population is unknown, the confidence interval becomes[
x̄− t∗ s√

n
, x̄+ t∗

s√
n

]
where s is the sample deviation, n is the number of samples, and t∗ is the t-score. The quantity

s/
√
n is also called the standard error. Since the mean of x1, ..., xn is normally distributed, the

standard error is given by an expression directly from the given samples x1, ..., xn, and the accuracy

of the sample mean can be estimated. The jackknife technique was invented by Quenouille [Que49]

in 1949 and further developed by Tukey [Tuk58] in 1958 to handle this situation when the standard

error is also not known. Given an estimator θ̂, let θ̂(i) be the estimate obtained from the samples

{x1, ..., xn} with xi removed. The jackknife estimator θ̄ is

θ̄ =
1

n

n∑
i=1

θ̂(i)
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and the variance of the θ̄ is

V ar(θ̄) =
n− 1

n

n∑
i=1

(
θ̂(i) − θ̂

)
.

We can find the standard error of θ̂ using the variance of the jackknife estimate. The limitation

of jackknife is that it only works well for linear statistics such as the mean. Other non-smooth

estimators, e.g. median, and nonlinear estimators, e.g. correlation coefficient, are not accurately

approximated. To address this limitation, the bootstrap method was invented by Efron [E+79,

ET94] in 1979. He observed that the jackknife method is a linear approximation of the bootstrap

method.

Suppose the estimator θ is approximated by the estimator θ̂ = s(x) where s is a function of given

set of samples from the population. The bootstrap sample x∗ = (x∗1, ..., x
∗
n) is a random vector

of real numbers drawn from the observed samples x uniformly with replacement. The bootstrap

replicate of θ̂ is the estimator from a bootstrap sample, denoted as θ̂∗ = s(x∗). Let x∗1, ...,x∗B be

B independent bootstrap samples of x and let θ̂∗b = s(x∗b), b = 1, ..., B be the resulting bootstrap

replicates of θ̂. The bootstrap estimate of standard error of θ̂ is defined as the standard

deviation of the bootstrap replicates of θ̂, that is

ŝeB =

[
1

B − 1

B∑
b=1

(
θ̂∗b − ¯̂

θ∗
)2
] 1

2

where

¯̂
θ∗ =

1

B

B∑
b=1

θ̂∗b.

This expression provides a numerical technique for estimating standard error of θ. Algorithm 4

gives the bootstrap procedure for computing standard error of an arbitrary estimator θ.

Once the standard error of an estimator is known, sample hypothesis testing may be done.

Suppose the null hypothesis is H0 : θ = µ0, then the test statistic

θ − µ0

ŝeB

follows Student’s t distribution, or standard normal distribution when B ≥ 200. Given an assumed

distribution of the test statistic, associated p-values can be obtained.

Another application of bootstrap analysis is the cross-sectional confidence band. Suppose the

goal is to estimate a function f(t), t ∈ T with coverage probability 1 − α. The cross-sectional
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Algorithm 4: Bootstrap method for estimating standard error of estimator θ.

Data: observed samples: x = {x1, ..., xn}

Result: standard error of an estimator θ

1 Construct B bootstrap samples x∗1, ...,x∗B. Each of them is of size n, generated by

resampling samples x = {x1, ..., xn} uniformly with replacement;

2 For each bootstrap samples x∗1, ...,x∗B, compute the bootstrap replicates θ̂1∗, ..., θ̂∗B;

3 Compute the standard error of θ̂ by

ŝeB =

[
1

B − 1

B∑
b=1

(
θ̂∗b − ¯̂

θ∗
)2
] 1

2

where
¯̂
θ∗ = 1

B

B∑
b=1

θ̂∗b.

confidence band is defined as

Prob
{
f̂(t)− w(t) ≤ f(t) ≤ f̂(t) + w(t)

}
= 1− α

for all t ∈ T . Note that w(t) is regarded as the width function which makes f̂(t) + w(t) an upper

bound and f̂(t) − w(t) a lower bound. In contrast to the cross-sectional confidence band, the

simultaneous confidence band is defined as

Prob
{
f̂(t)− w(t) ≤ f(t) ≤ f̂(t) + w(t), for all t ∈ T

}
= 1− α. (4.1)

Although the bootstrap simultaneous confidence band applied to functional data analysis has been

introduced in recent literature [CFF06, Deg11, CVK03, FZ00, GGC13, MYC12], it is only used

for the confidence band of the mean function. Computing the simultaneous confidence band a

non-mean function is not yet developed, and hence, we use the cross-sectional confidence band.

When considering the pointwise confidence band, we compute the confidence interval for each

time point. Let i = 1, ..., n be the index of observed functions and j = 1, ..., T be the index of time

grids. For each time tj , we have observed samples xij with estimator θ̂j . We construct bootstrap

resamples {x∗1ij , ..., x∗Bij } from observed samples xij . For each bootstrap resamples, calculate boot-

strap replicates to have θ∗1, ..., θ∗B. Algorithm 4 is used to obtain standard error ŝeB. By selecting

significance level α (or confidence level 1− α), the confidence interval for for θj at each time tj is
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given by

Prob

{
z(α/2) ≤ θ̂j − θj

ŝeB
≤ z(1−α/2)

}
= 1− α, (4.2)

where zα/2 and z1−α/2 indicate, respectively, the 100 · (α/2)th and 100 · (1−α/2)th percentile point

of a standard normal distribution. Equation 4.2 can be written in the more compact form

θj ∈ [θ̂j ± z1−α/2 · ŝeB].

4.2 Bootstrap Analysis of Trend and Seasonality Estimation
Results

4.2.1 Bootstrap Hypothesis Testing

Given a set of functions {fi, i = 1, ..., n}, we can pose the question: Is h = 0, or not? This leads

to a formal binary hypothesis test, with null hypothesis H0: h = 0 and the alternative hypothesis

H1: h 6= 0. In view of the implicit assumptions of continuity of h (due to the condition that h ∈ H,

a subspace of smooth functions), we have that h = 0 is equivalent to ‖h‖ = 0. Therefore, we define

a test statistic ρh0 = ‖ĥ‖ and rewrite the hypothesis test as: null hypothesis H0: ρh0 = 0 and the

alternative hypothesis H1: ρh0 > 0. Let ĥb denote the bootstrap replicate of the estimator ĥ, and

let ρh0,b denote its L2 norm. Furthermore, let ŝeB be the standard error of ρh0,b using B replicates.

Then, we can compute the p value of the test statistic assuming a normal distribution N (0, ŝeB)

under the null hypothesis. (Note: this ŝeB can be estimated from the data using Algorithm 4.)

In fact, one can use the bootstrap procedure to test any specific shape pattern of the trend

and seasonality functions. For instance, one can test the trend function being constant, linear, or

monomial of certain order. As an example, we can test if the trend h is a constant function by

modifying the test statistic to be ρhc =
∥∥∥ĥ− ∫ 1

0 ĥ dt
∥∥∥.

Property 4.2.1. ĥ(t) = c if and only if ρh,c = 0

Proof. (⇒) if ĥ = c, then

ρh,c =

∥∥∥∥ĥ− ∫ 1

0
ĥ dt

∥∥∥∥ =

∥∥∥∥c− ∫ 1

0
c dt

∥∥∥∥ = ‖c− c‖ = 0.
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(⇐) if we have ρhc = 0, then∥∥∥∥ĥ− ∫ 1

0
ĥ dt

∥∥∥∥ = 0⇒

[∫ 1

0

(
ĥ−

∫ 1

0
ĥ dt

)2

dt

] 1
2

= 0

⇒
∫ 1

0

(
ĥ−

∫ 1

0
ĥ dt

)2

dt = 0

⇒ ĥ =

∫ 1

0
ĥ dt = constant

A test statistic for testing the linearity of the trend h is ρhl =
∥∥∥ ˙̂
h−

∫ 1
0

˙̂
h dt

∥∥∥.

Property 4.2.2. ĥ = at+ b if and only if ρhl = 0

Proof. (⇒) If ĥ = at+ b, then

ρhl =

∥∥∥∥ ˙̂
h−

∫ 1

0

˙̂
h dt

∥∥∥∥ =

∥∥∥∥a− ∫ 1

0
a dt

∥∥∥∥ = ‖a− a‖ = 0.

(⇐) If we have .ρhl = 0, then∥∥∥∥ ˙̂
h−

∫ 1

0

˙̂
h dt

∥∥∥∥ = 0⇒ ˙̂
h =

∫ 1

0

˙̂
h dt = a⇒ ĥ = at+ b

Similarly, the test statistics for testing the presence, constant function, and linear function for

the seasonality g are ρg0 = ‖ĝ‖, ρgc =
∥∥∥ĝ − ∫ 1

0 ĝ dt
∥∥∥, and ρgl =

∥∥∥ ˙̂g −
∫ 1

0
˙̂g dt
∥∥∥ respectively.

4.2.2 Bootstrap Cross-Sectional Confidence Band

In addition to providing point estimates of h and g in their respective subspaces, one can use

bootstrap to provide a confidence region associated with these estimates. The basic idea is to take

bootstrap replicates of the estimator and use the L2 norm to build confidence regions around the

estimate, for either h and g. Since under the L2 metric, the mean of functions corresponds to

a cross-sectional mean, this task simplifies to building a confidence interval at each time t from

bootstrap replicates. Let h̄ and ḡ be the bootstrap averages, and ŝeh and ŝeg be respectively the

bootstrap estimates of the standard errors of ĥ and ĝ (obtained from Algorithm 4) as functions of

t. For a significance level α, the confidence interval for ĥ(t) is simply [h̄(t)± z1−α/2 · ŝeh(t)], where

z1−α/2 is the 100 · (1 − α/2)th percentile point of a standard normal distribution. Similarly, the

confidence interval for the estimated seasonal effect ĝ(t) is simply [ḡ(t)± z1−α/2 · ŝeg(t)].
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CHAPTER 5

TREND SUBSPACE SELECTION

The current framework provides a criterion for choosing between potential candidates for H =

span{φk|k = 1, . . . , l} which also defines G = H⊥, by simply maximizing the likelihood under

each candidate subspace and selecting the one that results in the highest maximized-likelihood.

In other words, given several candidate subspaces, we compare their minimized values of the cost

functional, Equation 2.6. Empirical evidence shows the best estimates results from the subspace

with the smallest minimized values.

5.1 Basis Range Selection

We assumed that the subspace H is of the form H = span{φk|k = 1, . . . , l} for some positive

integer 1 ≤ l < ∞. Thus, choosing H becomes choosing an appropriate l. With this setting, we

can try each potential value of l, up to a certain large value, maximize the likelihood under each

choice of l, and select the one with the highest value of the likelihood.

We demonstrate this idea using a synthetic data example, as demonstrated earlier in Figure

1.6. In this experiment, we generate data using

g = 5
(
0.25− (t− 0.5)2

)
sin(5πt), h = 0.05e3t − 0.5, and γi =

∫ t
0 γ̌idt/

∫ 1
0 γ̌idt where

γ̌i =

(
3 cos(πt− 0.5 +

i

n
)

)2

+ 0.1

for i = 1, ..., n, with the additional constraint KM{γ−1
i } = γid imposed on {γi}. We add noise

according to εi(t) ∼ N (0, σ2), σ = 0.1. The resulting data are shown in Figure 5.1(d).
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(a) true trend (b) true seasonality (c) warping functions (d) observed functions

Figure 5.1: Synthetic ground truth data for range number selection experiment.

The results of applying Algorithm 3 to this data for l = 1, 2, 3, 4, 5, 8, and 10, and presented

in the Figure 5.3. The φs used in this experiment are the shifted Legendre polynomial, and the

trend ĥ is thus a polynomial of degree l. From a visual perspective, setting l = 4 yields the best

estimates of g and h. Figure 5.2 displays the minimized negative log-likelihood for l = 1 to l = 10

and the optimal is obtained when l = 3, supporting our approach for selecting l. H with l = 3 and

l = 4 are predicted to be similar in performance which is reflected in the results of Figure 5.3. This

selection rule can be generalized to situations when several potential basis types (polynomial, sine,

cosine, Fourier) are given (see Section 5.2).

Table 5.1 summarizes the numerical behavior of the L2 cost, relative error of g, h, and absolute

error of γi. From Table 5.1, the lowest L2 cost not only gives the best recovered g, h, {γi} visually,

but also has the smallest L2 error of g, h, and {γi}.

Figure 5.2: Minimized negative log-likelihood for l = 1, 2, ..., 10, plotted on a log scale.
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Basis range
selection

Trend Seasonality
Warping
functions

Negative
log-likelihood

h =
∑1
k=1dkφk

nonparametric g

h =
∑2
k=1dkφk

nonparametric g

h =
∑3
k=1dkφk

nonparametric g

h =
∑4
k=1dkφk

nonparametric g

h =
∑5
k=1dkφk

nonparametric g

h =
∑8
k=1dkφk

nonparametric g

h =
∑10
k=1dkφk

nonparametric g

Figure 5.3: Numerical results for basis range selection experiment. Figures in the column of negative
negative log-likelihood are plotted on a log scale and the number inside the figures are the minimized
negative log-likelihood at the 20th iteration .
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Table 5.1: L2 Cost comparison of basis range selection experiment. Columns from left to right are
basis range selection, L2 cost, relative error of the trend, relative error of the seasonality, average
absolute error of warping functions, and orthogonality of seasonality and trend.

Basis range
selection

L2 cost
1
n

∑n
i=1 ‖lfs− rhs‖

2

h relative
error∥∥∥ĥ− h∥∥∥ / ‖h‖

g relative
error

‖ĝ − g‖ / ‖g‖

γi abs. error
1
n

∑n
i=1 ‖γi − γ̂i‖

Orthogonality

〈g(t), h(t)〉L2 =

4.29336e− 03

h =
∑1
k=1dkφk

nonparametric g
3.92545e-02 6.29738e-01 1.20758e+00 5.97033e-02 7.06842e-17

h =
∑2
k=1dkφk

nonparametric g
7.79053e-03 2.21529e-01 1.33989e-01 1.84620e-03

-2.9023e-17
(lowest)

h =
∑3
k=1dkφk

nonparametric g
1.27729e-03 6.35327e-02 4.66616e-02 8.35612e-04 -4.9416e-14

h =
∑4
k=1dkφk

nonparametric g

7.08971e-04
(lowest)

3.63075e-02
(lowest)

3.95206e-02
(lowest)

6.09604e-04
(lowest)

-6.8298e-14

h =
∑5
k=1dkφk

nonparametric g
1.03965e-01 3.17688e-01 4.86339e-01 5.39322e-03 -9.5457e-08

h =
∑6
k=1dkφk

nonparametric g
1.77772e-02 5.16760e-01 3.01323e-01 9.72263e-03 -1.6256e-10

h =
∑7
k=1dkφk

nonparametric g
2.59025e-01 3.54250e-01 7.88289e-01 2.38560e-02 -2.3940e-09

h =
∑8
k=1dkφk

nonparametric g
2.69130e-01 4.17224e-01 7.87592e-01 1.40076e-02 -4.9792e-09

h =
∑9
k=1dkφk

nonparametric g
2.29605e-01 1.04054e+00 1.19400e+00 9.53862e-02 3.02811e-08

h =
∑10
k=1dkφk

nonparametric g
3.20779e-01 8.43377e-01 1.07823e+00 1.25064e-01 -1.2564e-08

5.2 Selection of Basis Family

The second part of subspace H selection is the choice of the family of functions. We consider

Legendre, cosine, sine, and Fourier bases. In Section 5, for a given basis family, the best value of l

is the lowest L2 cost (or highest likelihood). We apply the same idea when determining the basis

family. For each family, we find the best l and choose the best family by comparing the L2 costs

for their l values.

We illustrate this idea with a noise-free synthetic data example. More systematic empirical

evaluations of the robustness of the estimation in the presence of noise are given in Chapter 7.

Let g = cos(10πt), h = 1.5e−3t, and warping functions be γi(t) = eait−1
eai−1 where ai = −3 + i 6

n for

1 ≤ i ≤ n with KM{γ−1
i } = γid imposed. Observations {fi(t)} are generated from

fi(t) = h(t) + (g, γi) (t) + εi(t) = h(t) + (g ◦ γi) (t)
√
γ̇i(t) + εi(t).
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Synthetic data are summarized in Figure 5.4.

Figure 5.4: Synthetic data of basis family selection experiment

Our trend and seasonality estimation algorithm yields the best l for each basis family: shifted

Legendre basis l = 4, Fourier basis picks l = 5, sine basis l = 8, and cosine basis l = 8. Figure 5.5

contains estimation results of lowest L2 cost of each basis family. We see that the the Legendre

and cosine bases have similarly good estimates of g, h, γi but not Fourier and Sine basis. It is hard

to visually determine whether the Legendre or cosine basis is better, so more careful comparison of

their numerical behavior is needed.

Table 5.2 quantifies the difference between these basis families. The cosine basis has the smallest

L2 cost with desired side effects - smallest relative error of g and h and we will take cosine basis as

the best basis choice for this experiment.

Table 5.2: Numerical comparison of estimation results from different basis families.

Basis family
selection

L2 cost
1
n

n∑
i=1
‖lfh− rhs‖2

g relative
error

‖g − ĝ‖ / ‖g‖

h relative
error∥∥∥h− ĥ∥∥∥ / ‖h‖

γi absolute
error

1
n

n∑
i=1
‖γi − γ̂i‖

Orthogonality
〈g(t), h(t)〉 =

4.293368e− 03

nonpara. g

sLegendre h
1.49524e-03 5.13135e-02 3.20385e-02

8.45832e-04
(lowest)

-4.95299e-14

(lowest)

nonpara. g

MFS h
3.52676e-01 1.20394e+00 3.09338e-01 2.13350e-01 -5.95870e-03

nonpara. g

sine h
2.56641e-01 1.03715e+00 4.02526e-01 6.70850e-02 -9.37360e-05

nonpara. g

cosine h

1.12074e-03
(lowest)

3.39472e-02
(lowest)

3.19216e-02
(lowest)

1.02762e-03 7.35131e-05
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Basis family
selection

Seasonality Trend
Warping
functions

L2 cost

nonpara. g
sLegendre h

nonpara. g
MFS h

nonpara. g
sine h

nonpara. g
cosine h

Figure 5.5: Estimation results of different basis families.
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CHAPTER 6

RELATED MODELS

In this chapter, we compare our model with several related models. For each model, the motivation,

assumptions and method of solution are discussed.

6.1 Models with Trend and Seasonality

6.1.1 Simple Separation Model (Simple Sep.)

The simplest possible model is additive without warping defined as

fi(t) = h(t) + g(t) + εi(t) (6.1)

where εi(t) is Gaussian noise with mean zero for all i and t. A a unique decomposition of fi(t) into

g(t) and h(t) results simply if the direct sum assumption L2 = G ⊕ H is imposed. By the same

maximum likelihood reasoning as used in Section 2.2.4, the cost functional of this model is

C (g, h) =
1

n

n∑
i=1

‖fi − h− g‖2 . (6.2)

with direct sum condition {fi} ∈ L2 = G ⊕ H. Due to the direct sum assumption, estimates of h

and g are recovered using one step of coordinate descent described in Chapter 3. Specifically, given

estimate the ĥ, the estimate for g is updated to

ĝ =
1

n

n∑
i=1

(
fi − ĥ

)
−ΠH

1

n

n∑
i=1

(
fi − ĥ

)
, (6.3)

and given the estimate ĝ, the estimate for h is updated to

ĥ = ΠH

(
1

n

n∑
i=1

fi

)
. (6.4)

There are two main disadvantages for this model. The first is its simplicity. Without warping it

is unable to model the assumed variable-phase seasonality. The second disadvantage follows from

its simplicity and the direct sum assumption. Since optimizing the cost function is done by two

independent projections once H is chosen, the value of the minimized cost functional is the same

for all choices of space H. As a result, our method to choose the best subspace H is not applicable.
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6.1.2 Trend and Seasonality Estimation with Alignment Warping Model
(Trend-Warp)

The physical and mathematical invariants of the trend and seasonality problems of interest are

important considerations when choosing the model of warping and trend interaction. For some

problems the constraint that the warping does not change the height of g(t) is reasonable. Along

with an additive trend this leads to proposing the model

fi(t) = h(t) + (g ◦ γi) (t) + εi(t)

= h(t) + g(γi(t)) + εi(t)

where εi(t) is Gaussian noise with mean zero for all i and t. The direct sum fi ∈ L2 = G ⊕H and

the Karcher mean of
{
γ−1
i

}
= γid are also imposed. Similar to Section 2.2.4, maximum likelihood

reasoning can be used to derive the cost functional

C (g, h, {γi}) =
1

n

n∑
i=1

‖fi − h− (g ◦ γi)‖2 . (6.5)

This proposed model has some difficulties. The first concerns the use of the coordinate descent

method to optimize the cost functional, Equation 6.5. The L2-norm is not invariant under warping

with composition. As a result, γi or its current estimate cannot be moved from g(γi(t)) term

to fi − h term to allow the use of projection to update the estimate of g. Indeed, when the cost

function is based on the L2-norm any optimization algorithm will have difficulties since the γi and g

cannot be treated as independent variables for the cost function. The second and more important

difficulty is that determining the optimal γi under L2-norm may cause the well-known pinching

problem [RL98].

The pinching problem is addressed in the literature for the signal model fi(t) = (g ◦ γi)(t) + εi

(see [SWK+11]) by transforming the problem to the SRVF space. To exploit the SRVF technique,

we update the proposed model to the Trend-Warp model defined as

fi(t) = h(t) + (g ◦ γi) (t) + εi. (6.6)

where the noise is a constant random variable εi follows N (0, σ).

We cannot simply apply SRVF transformation to Equation 6.6 since the addition in h+ (g ◦ γi)

is not preserved under SRVF transformation, i.e., we do not have qh + (qg, γi) in the SRVF space.
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The trend must be removed from in order to apply the SRVF-based approach. So the first step in

the estimation algorithm for the Trend-Warp model is to estimate h(t) by

ĥ(t) = ΠH
1

n

n∑
i=1

fi(t). (6.7)

This is equivalent to assuming that G ◦ Γ = H⊥. Of course, as discussed earlier, this is not exactly

true so one would expect this model to suffer degradation in estimation accuracy when there are

several (g ◦ γi) with significant components not in H⊥.

Once an estimate ĥ for the trend h is known, the model (Equation 6.6) simplifies to the alignment

estimation problem in [SWK+11]. That is, given observations {f̃i} of the form

f̃i(t) = fi(t)− ĥ(t) = (g ◦ γi) (t) + εi,

we attempt to recover g and {γi}. Rather than apply the algorithm of [SWK+11], we optimize the

cost functional

C (g, γi) =
1

n

n∑
i=1

d2
FR

(
f̃i, (g ◦ γi)

)
(6.8)

=
1

n

n∑
i=1

∥∥∥qf̃i − qg (γi)
√
γ̇i

∥∥∥2
(6.9)

where dFR

(
f̃i, g ◦ γi

)
is the geodesic distance between f̃i and (g ◦ γi) under the Fisher-Rao Rie-

mannian metric and Equation 6.9 is derived from Equation 6.8 using the SRVF transformation

[JKSJ07, SWK+11] which simplifies dFR into the L2-norm.

As before, the coordinate descent method is used to estimate g and {γi}. Given the SRVF qĝ

of the estimate ĝ, the estimates of the {γi} are updated by minimizing

γ̃i = arg min
γi∈Γ

∥∥∥qfi−h − qĝ (γi)
√
γ̇i

∥∥∥2
, i = 1, ..., n.

The constraint KM{γ−1
i } = γid is then imposed on the {γ̃i} to finalize the update to {γ̂i}. Given

the estimates {γ̂i}, the estimate of the SRVF qg is given by

q̃g =
1

n

n∑
i=1

(
qfi−ĥ, γ̂

−1
i

)
.
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After the iterations of updates to the γi and qg satisfy a convergence criterion, we apply the

inverse SRVF transformation to q̃g,

g̃(t) = Q−1(q̃g)(t) =

∫ t

0
q̃g(s)|q̃g(s)| ds+ ĝ(0)

≈
∫ t

0
q̃g(s)|q̃g(s)| ds+

1

n

n∑
i=1

[
fi(0)− ĥ(0)

]
.

to recover an estimate of the seasonality g. Finally, the direct sum condition fi ∈ L2 = G ⊕ H is

imposed by the projection

ĝ = g̃ −ΠHg̃.

This model is perhaps the most intuitive for the problem of estimating trend and variable-phase

seasonality since the warping function γi does not change the height of the seasonality g and is

simple reparamterization, i.e. g(γi) instead of (g, γi) in our model. However, the extra assumption

G ◦ Γ = H⊥ we imposed is, in general, not satisfied and this will affect the expected accuracy of

the estimation.

6.1.3 Trend and Seasonality Estimation with Area-Preserving Warping Model
(Area-Warp)

Motivated from the Trend-Warp model in which the warping γi does not change the height of

g, we can develop a model with a trend and warping where the warping preserves other aspects

of g. For example, to preserve the area we can exploit the identity
∫
g(t)dt =

∫
g(γi(t))γ̇i(t) dt to

define the the Area-Warp model as

fi(t) = g(γi(t))γ̇i(t) + h(t) + εi (6.10)

where εi is Gaussian noise with mean zero. The two conditions, direct sum and KM
{
γ−1
i

}
= γid,

are also maintained.

If the cost functional is taken as

C(g, {γi}, h) =
1

n

n∑
i=1

‖fi − g(γi)γ̇i − h‖2 ,

there will be, as before, difficulty using the coordinate descent method or any other optimization

approach based on the L2-norm due to lack of invariance under warping acting on g.

We make an extra condition (G ◦ Γ) Γ = H⊥ to the Area-Wapr model.
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Because of this extra assumption, h can be immediately estimated by

ĥ(t) = ΠH
1

n

n∑
i=1

fi(t). (6.11)

Once we have the estimate ĥ, the Area-Warp model, Equation 6.10, is reduced to estimating g and

{γi} in

f̃i(t) = fi(t)− ĥ(t) = g(γi(t))γ̇i(t) + εi. (6.12)

To utilize the warping (g ◦ γ)(t)
√
γ̇(t) which has L2-norm invariance, we take the square root to

Equation 6.12 √
fi(t)− ĥ(t) =

√
g(γi(t))γ̇i(t) + εi

= ((
√
g ◦ γi)(t))

√
γ̇i(t) + ε̃i,

to get the cost functional

C(g, {γi}) =
1

n

n∑
i=1

∥∥∥∥√fi − ĥ− (
√
g ◦ γi)

√
γ̇i

∥∥∥∥2

(6.13)

with the direct sum assumption and Karcher mean condition KM{γ−1
i } = γid constraints.

This cost functional, Equation 6.13, is solved by the coordinate descent method. Given the

estimate ĝ, updating estimates {γi} first solves the unconstrained optimization

γ̃i = arg min
γi∈Γ

∥∥∥∥√fi − ĥ− ((
√
ĝ ◦ γi)

)√
γ̇i

∥∥∥∥2

, i = 1, ..., n

then imposes KM{γ−1
i } = γid on unconstrained solutions {γ̃i} to have {γ̂i}. The estimate for g is

then updating by the projection

ĝ(t) = f̃(t)−ΠHf̃(t)

where

f̃ =

[
1

n

n∑
i=1

(√
fi − ĥ, γ̂−1

i

)]2

.

We implicitly assume both

√
fi − ĥ and

√
ĝ are always positive when applying the square root

on Equation 6.12. The positive assumption becomes a limitation because the parameter g and
√
fi − h may not be positive. Secondly, the extra assumption (G ◦ Γ) Γ = H⊥ does not hold, in

general, and imposing it affects the accuracy of the estimates. because the probability of (G ◦ Γ) Γ
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stays in G = H⊥ is extremely small. Because of all theoretical and algorithmic limitations, but

mainly due to the difficulty in practice of maintaining positive arguments for the square root, we

do not implement Area-Warp model and compare with other models.

6.1.4 Separation with same Warping Model (Sep. Warp)

This model is defined as

fi(t) = ((g + h) ◦ γi) (t) + εi (6.14)

where both the trend h and the seasonality g are affected by composition with the warping function

γi. The cost functional is

C (g, {γi}, h) =
1

n

n∑
i=1

d2
FR (fi, ((g + h) ◦ γi)) (6.15)

=
1

n

n∑
i=1

‖qfi − (qg+h, γi)‖2 (6.16)

with two constraints KM{γ−1
i } = γid and direct sum fi ∈ L2 = G ⊕H. We again apply coordinate

descent method to solve the optimization, Equation 6.16. Suppose ĝ and ĥ are the current estimates,

updating estimates of {γi} of the unconstrained optimization first solves

γ̃i = arg min
γi∈Γ

∥∥∥qfi − qĝ+ĥ (γi)
√
γ̇i

∥∥∥2
. (6.17)

and then we imposes KM{γ−1
i } = γid on the unconstrained solutions {γ̃i} to get estimates {γ̂i}.

Given γ̂i, the updated qg+h is given by

qg̃+h̃ =
1

n

n∑
i=1

(
qfi , γ̂

−1
i

)
.

We convert qg̃+h̃ back to the time domain using the inverse SRVF transformation,

(g̃ + h̃)(t) = Q−1
(
qg̃+h̃

)
(t) =

∫ t

0
qg̃+h̃(s)|qg̃+h̃(s)| ds+ (g(0) + h(0))

≈
∫ t

0
qg̃+h̃(s)|qg̃+h̃(s)| ds+

1

n

n∑
i=1

fi(0).

Finally, to compute a coordinate iteration, projection imposes the direct sum assumption to get

estimates

ĝ =
(
g̃ + h̃

)
−ΠH

(
g̃ + h̃

)
, (6.18)
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and

ĥ = ΠH

(
g̃ + h̃

)
. (6.19)

Similar to the Simple Sep. model, the Sep. Warp model has difficult selecting the best subspace

calH.

6.2 Models with Seasonality Only

There are two related models that do not have the trend h and focus on estimating the season-

ality g. They are the Simple Estimation Model and the Alignment Estimation Model.

6.2.1 Simple Estimation Model (Simple Est.)

The model is

fi(t) = g(t) + εi(t) (6.20)

where εi(t) is Gaussian noise with mean zero for all i and t. We take the cost functional to be

C (g) =
1

n

n∑
i=1

‖fi − g‖2 (6.21)

and the estimate for g is ĝ = 1
n

n∑
i=1
fi.

A drawback of the simple estimation model is the absence of the time warping γi. In real data,

the assumption of all curves are aligned is not true, as pointed out by [Ram06]. Instead, a better

estimated seasonality can be obtained by incorporating time warpings {γi} in the model.

6.2.2 Alignment Estimation Model (Align Est.)

In [SWK+11] and [KSW11], the model is defined as

fi(t) = (g ◦ γi) (t) + εi (6.22)

where εi is Gaussian noice with mean zero for all i. For identifiability, the Karcher mean condition

KM
{
γ−1
i

}
= γid is imposed. In the papers, the authors estimated seasonality g by computing

the Karcher mean of orbits of g. However, we take an optimization approach and define the cost

functional to be

C (g, {γi}) =
1

n

n∑
i=1

d2
FR (fi, (g ◦ γi)) =

1

n

n∑
i=1

∥∥∥qfi − qg (γi)
√
γ̇i

∥∥∥2
(6.23)
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where dFR (fi, (g ◦ γi)) is the geodesic distance between fi and (g◦γi) under the Fisher-Rao Rieman-

nian metric. The optimization problem is simplified from dFR to an L2 cost functional (Equation

6.23) by taking the SRVF transformation [JKSJ07, SWK+11].

We optimize Equation 6.23 by coordinate descent method. Given the estimate ĝ, we find the

unconstrained solution γ̃i by finding

γ̃i = arg min
γi∈Γ

∥∥∥qfi − qĝ (γi)
√
γ̇i

∥∥∥2
.

The condition KM{γ−1
i } = γid is then enforced to γ̃i to have γ̂i. When {γ̂i} are given estimates,

we estimate qg by

qĝ =
1

n

n∑
i=1

qfi
(
γ̂−1
i

)√
˙̂γ−1
i .

We take the inverse SRVF transformation of qg in order to go back to time domain, that is

ĝ(t) = Q−1(qĝ) =

∫ t

0
qĝ(s)|qĝ(s)| ds+ g(0)

≈
∫ t

0
qĝ(s)|qĝ(s)| ds+

1

n

n∑
i=1

fi(0).

Table 6.1 summarizes assumptions and disadvantages of our and related models.

Table 6.1: Summary of all models.

Number Estimation Name Model
Cost

functional
Assumption Disadvantage

1 g and h Simple Sep. Eqn. 6.1 Eqn. 6.2 {fi} ∈ L2 = G ⊕H
no warping

no criterion for
choosing H

2 g, h, {γi} Trend-L2 Eqn. 2.2 Eqn. 2.6
{fi} ∈ L2 = G ⊕H
KM{γ−1

i } = γid
none

3 g, h, {γi} Trend-Warp Eqn. 6.6 Eqn. 6.9

{fi} ∈ L2 = G ⊕H
G ◦ H = H⊥

KM{γ−1
i } = γid

G ◦ H = H⊥
is inappropriate

4 g, h, {γi} Sep. Warp Eqn. 6.14 Eqn. 6.16
{fi} ∈ L2 = G ⊕H
KM{γ−1

i } = γid

no criterion for
choosing H

5 g Simple Est. Eqn. 6.20 Eqn. 6.21 none no warping

6 g, {γi} Align. Est. Eqn. 6.22 Eqn. 6.23 KM{γ−1
i } = γid none
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CHAPTER 7

EXPERIMENTAL RESULTS OF SYNTHETIC DATA

In this chapter, we present experimental results for estimating the trend and seasonality using

the MLE algorithm (Algorithm 3) including the selection of the basis family and the subspace

dimension l (Chapter 5).

This chapter is organized as follows: Section 7.1 demonstrates estimation results of three com-

ponents are robust under noise perturbation. In Section 7.2, we illustrate the use of bootstrap

for testing hypothesis for different shapes of estimated trend and seasonality. The cross-sectional

confidence bands for the estimated trend and seasonality are also given in this section. In Section

7.3, our model is compared with other models discussed in Chapter 6. We show that our model

is the best model when estimating three components in the sense of best virtual fit and smallest

error to the true data.

7.1 Performance under Different Noise Levels

In this experiment, we select a specific form of the trend and seasonal components, and increase

the variance, σ2, of the additive noise εi(t) to study the effect of noise on estimation performance.

For synthetic data generation, we used g = 2 exp
(
−0.8(10t− 7.5)2

)
+2 exp

(
−0.8(10t− 2.5)2

)
, h =

cos(πt + π
2 ), and warping functions γi =

∫ t
0 γ̌idt/

∫ 1
0 γ̌idt, where γ̌i = 3 sin(2πait) + 2 cos(ait), ai =

−2 + i 4
n . For each t, we consider Gaussian noise εi(t) ∼ N (0, σ2) where σ is 0, 0.2, 0.4, 0.6, 0.8,

and 1.6 for the noise level experiments. Each observation fi is generated from Eqn. 2.2 and the

number of time samples is taken to be T = 200. Figure 7.1 shows the true trend and the seasonal

components, when no noise is added.

Recall a distortion percentage is provided in Section 2.2.2 that measures how γ acting on g

destroys the direct sum assumption. We slightly relax the direct sum condition, G ⊥ H, by using

〈g, h〉L2 = −0.0024. Table 7.1 summarizes the distortion percentage under different basis range

and basis families. Without knowing the right basis to be {cos(πt + π
2 )}, we see there is always a
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portion of (g, γ) inside the space H. This portion increases as the dimension of H increases. The

mixing of g and h by γ is nonlinear and significant and there is no simple way of separating them.

(a) true trend (b) true seasonality (c) warping functions (d) observed functions

Figure 7.1: Synthetic truth data of noise perturbation experiment.

Table 7.1: Distortion percentage, Equation 2.3, of different dimensions of space H in the noise
perturbation experiment.

{φk}lk=1 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9 l = 10
cosine basis 14.59% 20.89% 29.12% 42.32% 57.66% 66.68% 72.82% 74.56% 79.81% 81.59%
sine basis 16.45% 34.28% 52.47% 52.62% 52.62% 68.91% 69.20% 71.59% 72.62% 74.23%

Fourier basis 14.59% 39.10% 55.49% 76.91% 84.03% 92.26% 92.96% 96.43% 97.76% 98.67%
Legendre 14.59% 18.25% 18.74% 38.27% 71.28% 72.30% 73.26% 84.80% 85.26% 86.57%

Table 7.2: Estimation error of noise perturbation experiment.

σ
L2 cost

1
n

n∑
i=1
‖lfh− rhs‖2

g relative
error

‖g − ĝ‖ / ‖g‖

h relative
error∥∥∥h− ĥ∥∥∥ / ‖h‖

γi absolute
error

1
n

n∑
i=1
‖γi − γ̂i‖

0 4.741542e-04 1.151167e-02 4.092103e-03 1.037551e-03

0.2 3.736493e-02 1.037331e-01 1.581187e-02 1.189589e-02

0.4 1.495452e-01 1.939097e-01 3.094852e-02 1.916047e-02

0.6 3.780457e-01 3.093084e-01 4.359065e-02 3.863639e-02

0.8 6.509582e-01 3.646527e-01 6.746058e-02 3.478918e-02

1.6 2.834968e+00 1.301447e+00 4.079581e-01 1.284459e-01

As shown in Figure 7.2, the estimation results are very good when the noise level is relatively

low (σ ≤ 0.4), with the relative L2 error 1.04× 10−1, 1.58× 10−2 and 1.19× 10−2 for h, g, and {γi}

respectively. When the noise increases to σ = 0.6 and σ = 0.8, the reconstructed trends still have

the desired pattern over [0, 1] but the recovered seasonality results are not good. With large noise,
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σ Observed functions Trend Seasonality
Warping
functions

Negative
log-likelihood

0.0

0.2

0.4

0.6

0.8

1.6

Figure 7.2: Numerical results of noise perturbation experiment. Note that figures in the column
of negative log-likelihood are plotted in a log scale. The number inside their panels are minimized
negative log-likelihood at the 20th iteration.

σ = 1.6, all the estimated results are far from their true values. Table 7.2 contains the estimation

error of three components: trend, seasonality, and warping functions.

Table 7.2 and Figure 7.2 show that the estimation error is largest in ĝ and smallest in ĥ. One
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possible reason is the dimensionality and the property of the spaces themselves. Since the space H

has the most restricted parametrized structure with fewest degree of freedom, it should have the

smallest error. Secondly, space Γ is infinite dimensional with smoothness structure (diffeomorphism)

and therefore the estimation error is larger then H but smaller than G. Finally, the space G is left

largely unconstrained and infinite dimensional so it has the largest estimation error.

These experiments provide evidence that the MLE algorithm with subspace selection can recover

good estimates of the trend, seasonality and warping functions in the presence of some levels of

noise.

7.2 Bootstrap Analysis

In this experiment, we illustrate the use of a bootstrap technique for testing different hypotheses

associated with the shapes of estimated trend and seasonal effect with cross-sectional bands. The

general idea was described in Chapter 4. In this data, we use g(t) = cos(10πt), h(t) = 1.5e−3t,

and γi(t) = eait−1
eai−1 , ai = −3 + i 6

n for i = 1, ..., n. Additionally, we set σ = 0. Figure 7.3 shows the

synthetic data and the estimated trend and seasonality components are in Figure 7.4.

(a) true trend (b) true seasonality (c) warping functions (d) observed functions

Figure 7.3: Synthetic ground truth of bootstrap experiment
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(a) true trend (b) true seasonality (c) warping functions (d) observed functions

Figure 7.4: Estimated results of three components in bootstrap experiment.

Figure 7.5, (a) and (b), shows the bootstrap replicates {ĥb} and {ĝb} of the trend and seasonality

estimates for B = 500. As these replicates indicate, there is a significant phase variation in the

replicates {ĝb} and relatively small variability in the replicates {ĥb}.

(a) bootstrap replicates of ĥ (b) bootstrap replicates of ĝ

Figure 7.5: Five hundred bootstrap replicate.

We presents histograms of test statistics ρh0 ,ρhc ,ρhl ,ρg0 ,ρgc and ρgl to study whether they follow

the normal distribution N (0, ŝeB) assumption, see Figure 7.6, (a)-(f). It can be seen that none of

these test statistics have a mean zero so it is likely that the null hypothesis will be rejected.

44



(a) histogram of ρh0 (b) histogram of ρhc (c) histogram of ρhl

(d) histogram of ρg0 (e) histogram of ρgc (f) histogram of ρgl

Figure 7.6: Histograms of test statistics in testing the shapes of reconstructed results.

Given the bootstrap distribution of test statistics, we calculate the p values of these test statistics

under different shape hypothesis:

• Testing presence of trend and seasonality: For testing h = 0, the test statistic using

bootstrap is ρh0 = 0.61 with ŝeB = 3.5× 10−3 and a p value of 0. The null hypothesis h = 0

is therefore rejected. For testing g = 0, the test statistic is ρg0 = 0.38 with ŝeB = 5.22× 10−3

and a p value of 0. The null hypothesis g = 0 is therefore rejected.

• Testing constant shape of trend and seasonality: For testing h = c, the test statistic

using bootstrap is ρhc = 0.38 with ŝeB = 5.2× 10−3 and a p value of 0. Therefore, we reject

the null hypothesis: h = c. For testing g = c, the test statistic using bootstrap is ρgc = 0.69

with ŝeB = 3× 10−3 and a p value of 0. Hence, we reject the null hypothesis: g = c.

• Testing linear shape of trend and seasonality: For the linearity of a trend, we obtain

ρhl = 1.05, ŝeB = 5.2× 10−3, and a p value of 0. Thus, we reject the null hypothesis: h is a

linear function. For the seasonality g being a linear function, we have ρgl = 21.8, ŝeB = 1.07,

and a p value of 0. The null hypothesis, g is a linear function, is rejected.
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Table 7.3 summarizes conclusions of the trend and the seasonality under different hypothesis

tests.

Table 7.3: Conclusions of bootstrap hypothesis testing of different shapes.

Trend h Seasonality g

H0 : zero function reject reject

H0 : constant function reject reject

H0 : linear function reject reject

Based on the conclusion that both estimated trend and seasonality are not a lower order poly-

nomial, we develop cross-sectional confidence bands with 95% confidence level in Figure 7.5, (a)

and (b), indicating that the bandwidth of estimator ĥ is much narrower than the ĝ.

(a) confidence band of ĥ (b) confidence band of ĝ

Figure 7.7: cross-sectional confidence bands.

7.3 Model Comparison

In this section, our trend and seasonality estimation model is compared with the related models

described in Chapter 6. Recall our MLE-based method is abbreviated as Trend-L2, and acronyms

of other related models are defined in Table 6.1 in Chapter 6. When comparing across different

models, we propose the following criteria for indicating a better model :

1. visual fitting to the true data,

2. lowest L2 cost (negative log-likelihood),

3. lowest absolute error of estimated trend (if a trend is needed),
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4. lowest absolute error of estimated seasonality, and

5. ability to choose the best space H given several candidates.

The decision of whether a trend is needed is left to users. As mentioned in Table 6.1, we empha-

size again that both the Simple Sep. model and Sep. Warp model have fundamental disadvantages

because their estimation results are very sensitive and highly depend on the pre-determined space

H. This is a theoretical limitation, not an empirical result. Therefore, for the following experiments,

these two models will use the best space H choice from the trend-L2.

Data generation is the same as the bootstrap analysis experiment in Section 7.2, shown in

Figure 7.8 and Figure 7.9. Estimation results from applying our and other related models are given

in Figure 7.10. Trend-L2 picks the cosine basis of the form
∑8

k=1 dkφh, and Trend-Warp takes the

first element of sine basis. Simple separation and Sep. Warp, by definition, use the same choice H

as Trend-L2.

Figure 7.8: Synthetic ground truth data for method comparison experiment.

From Figure 7.10, recovered g, h, and {γi} of Trend-L2 has the visual fitting to the true data

while all other models have some off-fitting. Both simple separation and simple estimation models

have poor performance because the lack of time warping parameters {γi} when the observed data

have time phase shifting. Alignment estimation model yields a decaying sinusoid seasonality g,

but, by definition, does not return a trend estimate. The performance of alignment estimation is

descent and compatible to our trend and seasonality model. Sep. Warp has a good approximation

of seasonality g but the resulting trend h is not a good match to the true trend. Finally, Trend-Warp

gives a sinusoid estimated seasonality g but with a concave down approximation of the trend h that

is completely different from the true trend h. The performance of Sep. Warp and Trend-Warp are

not as good as our Trend-L2 model.
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Table 7.4 summarizes the performance of all models. Notice that Trend-L2 has the lowest L2

cost among all models, together with the lowest error of g, h, and {γi}. By the model comparison

criteria discussed earlier, we conclude that our MLE-based algorithm (Trend-L2) is the best model

since it satisfies the most criteria.

Figure 7.9: Trend (right) and seasonality (left) estimation results among all models.

Table 7.4: L2 cost comparison of all models of synthetic data.

Models
L2 cost

1
n

n∑
i=1
‖lfs− rhs‖2

g relative
error

‖ĝ − g‖ / ‖g‖

h relative
error∥∥∥ĥ− h∥∥∥ / ‖h‖

γi absolute
error

1
n

n∑
i=1
‖γi − γ̂i‖

Orthogonality

〈g(t), h(t)〉2L =

4.293368e− 03

Simple Separation

fi(t) =

g(t) + h(t) + εi(t)

4.5233e-01 1.0013e+00 1.3145e-01 none -4.751e-05

Trend-L2

fi(t) =

g(γi(t))
√
γ̇i(t) +

h(t) + εi(t)

1.1207e-03
(lowest)

3.3947e-02
(lowest)

3.1921e-02
(lowest)

1.0276e-03
(lowest)

7.3513e-05

Trend Warp

fi(t) =

(g ◦ γi)(t) + h(t) + εi

5.7701e-01 7.0043e-01 7.9570e-01 1.7300e-03
-9.293e-07
(lowest)

Separation Warp

fi(t) =

((g + h) ◦ γi) (t) + εi

9.7076e-02 5.5508e-02 1.6282e-01 1.8129e-03 1.1305e-06

Simple Estimation

fi(t) = g(t) + εi(t)
4.5233e-01 1.3342e+00 none none none

Alignment

Estimation

fi(t) = (g ◦γi)(t)+εi

9.7076e-02 9.6778e-01 none 1.8129e-03 none
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Models Seasonality Trend
Warping
functions

Cost function

Simple Sep.

fi(t) =

g(t) + h(t) + εi(t)

none

Trend-L2 fi(t) =

g(γi(t))
√
γ̇i(t) +

h(t) + εi(t)

Trend-Warp

fi(t) =

(g◦γi)(t)+h(t)+εi

Sep.-Warp fi(t) =

((g + h) ◦ γi) (t) +

εi

Simple estimation

fi(t) = g(t) + εi(t)
none none

Alignment

estimation fi(t) =

(g ◦ γi)(t) + εi

none

Figure 7.10: Estimation results of three components under different models.
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CHAPTER 8

EXPERIMENTAL RESULTS OF REAL DATA

Chapter 8 presents estimation results of Trend-L2 and related models for three real datasets :

Berkeley growth velocity (Section 8.1), electricity price (Section 8.2) and currency exchange rates

(Section 8.3). Since truth is not available for these real data sets, as with the synthetic data

experiments, we propose the following criteria for model comparison in the real data experiments:

1. resulting ĝ and ĥ fit the physical interpretations,

2. lowest L2 cost, and

3. when given candidates, the ability to choose the appropriate space H.

8.1 Berkeley Male Growth Velocity

The Berkeley growth study of 54 female and 39 male was performed by Tuddenham and Snyder

[TS54] and further discussed by Ramsay et al. [RS02]. As an example, we take 10 out of 39 male

growth curve for analyzing. The raw data, height, was measured four times a year from new-born

baby to 1 year old. After 1 year old, the height was measured annually from age 1 to age 8. Beyond

8 years old, the height was measured twice a year until 18 years old, shown in the left graph of

Figure 8.1. Due to the monotonic nature of the curve, researchers often analyze the time derivative,

termed the growth velocity, shown in the right graph of Figure 8.1.

Figure 8.1: Male height (left) and growth velocity (right) data.
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Looking at these growth curves, we see children grow the fastest with a speed of more than 10

centimeters per year before two years old. Another observation is the presence of a growth spurt

between 10 to 15 years that is different for each child. By visually analyzing the growth velocity

data, we expect that

1. the estimated seasonality g contains the fast growth under two years old and the another

growth spurt around twelve years old,

2. the estimated trend h is monotone decreasing, and

3. the warping function γi reflects the different growth spurt timing of each child.

After applying our algorithm and the other related models, Trend-L2 choosesH = span{1, cos(πt)}

and Trend-Warp takes H = span{sin(πt), sin(2πt)}. Simple separation and Sep.-Warp do not per-

form well unless a suitable space H is given. As explained earlier, for these two models we take H

to be the same as that chosen by Trend-L2. Estimation results are shown in Figure 8.2 and Figure

8.3.

Figure 8.2: Estimation results of seasonality g and trend h among different models from male
growth velocity data.

From these graphs, if no trend is sought, alignment estimation has a more accurate growth

spurt ĝ than simple estimation because alignment estimation includes the warping functions γi in

the model. On the other hand, if a trend is sought, Trend-Warp model does not yield any useful ĝ

or ĥ approximations, while Trend-L2 not only detects the growth spurt at around age 13, but also

has the desired decaying trend. Simple separation and Sep.-Warp are able to produce estimates of
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ĝ and ĥ with accuracy similar to Trend-L2 only when the subspace H used by Trend-L2 id used

for them also.

Models Seasonality Trend
Warping
functions

Cost function

Simple-Sep.

fi(t) =

g(t) + h(t) + εi(t)

none

Trend-L2 fi(t) =

g(γi(t))
√
γ̇i(t) +

h(t) + εi(t)

Trend-Warp

fi(t) =

(g◦γi)(t)+h(t)+εi

Sep.-Warp fi(t) =

((g + h) ◦ γi) (t) +

εi

Simple estimation

fi(t) = g(t) + εi(t)
none none

Alignment

estimation fi(t) =

(g ◦ γi)(t) + εi

none

Figure 8.3: Estimation results of three componenst under different models for male growth velocity
data.
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Table 8.1 summarizes L2 costs of these models. Trend-L2 has the lowest L2 cost among all

models. Based on the comparison criteria, Trend-L2 is the best model for the male growth velocity

data.

Table 8.1: L2 cost comparison of all models of male growth velocity data.

Models
L2 cost

1
n

n∑
i=1
‖l.f.s.− r.h.s.‖2

Orthogonality

〈g(t), h(t)〉L2

Simple separation

fi(t) = g(t) + h(t) + εi(t)
1.600453e+00 -1.252192e-06

Trend-L2 fi(t) =

g(γi(t))
√
γ̇i(t) + h(t) + εi(t)

1.146533e-01
(lowest)

2.199665e-04

Trend-Warp

fi(t) = (g ◦ γi)(t) + h(t) + εi
1.780442e+01

-6.663887e-05
(lowest)

Sep.-Warp

fi(t) = ((g + h) ◦ γi) (t) + εi
3.470216e+00 8.908946e-05

Simple Estimation

fi(t) = g(t) + εi(t)
1.806460e+00 none

Alignment Estimation

fi(t) = (g ◦ γi)(t) + εi
3.470216e+00 none

In the previous model comparison, our Trend-L2 was demonstrated to be the best model. We

follow up with bootstrap analysis to verify the extracted trend and the seasonality are significant.

The 500 bootstrap replicates for the estimated seasonality and trend are given in Figure 8.4. We

see bootstrap replicates {ĝb} have very much the same shape pattern. Each of them has a very

high growth velocity under 2-years old followed by steady growth and a growth spurt at age 12 to

13-years old. On the other hand, although bootstrap replicates {ĥb} have a decaying pattern, their

shape variation is much larger than {ĝb}.

We present histograms of test statistics ρh0 ,ρhc ,ρhl ,ρg0 ,ρgc and ρgl to study whether they follow

the normal distribution N (0, ŝeB) assumption, see Figure 8.5, (a)-(f). It can be seen that all test

statistics except ρhl have means well away from zero and they do not follow a mean zero normal

distribution.
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Figure 8.4: Five hundred bootstrap replicates of ĝ (left) and ĥ (right) for male growth velocity
data.

(a) histogram of ρh0 (b) histogram of ρhc (c) histogram of ρhl

(d) histogram of ρg0 (e) histogram of ρgc (f) histogram of ρgl

Figure 8.5: Histograms of test statistics of Berkeley growth velocity data.

Given the bootstrap distribution of test statistics, we calculate the p values of these test statistics

under different shape hypothesis:
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• Testing presence of trend and seasonality: For testing h = 0, the test statistic using

bootstrap is ρh0 = 1.83 with ŝeB = 0.44 and a p value of 1.53 × 10−5. The null hypothesis

h = 0 is therefore rejected. For testing g = 0, the test statistic is ρg0 = 6.38 with ŝeB = 0.12

and a p value of 0. The null hypothesis g = 0 is therefore rejected.

• Testing constant shape of trend and seasonality: For testing h = c, the test statistic

using bootstrap is ρhc = 1.83 with ŝeB = 0.44 and a p value of 1.53 × 10−5. Therefore, we

reject the null hypothesis: h = c. For testing g = c, the test statistic using bootstrap is

ρgc = 1.92 with ŝeB = 0.47 and a p value of 2.11×10−4. Hence, we reject the null hypothesis:

g = c.

• Testing linear shape of trend and seasonality: For the linearity of a trend, we obtain

ρhl = 2.52, ŝeB = 8.08, and a p value of 0.37. Thus, we the null hypothesis: h is a linear

function can not be rejected. For the seasonality g being a linear function, we have ρgl = 30.41,

ŝeB = 8.34, and a p value of 1.34×10−4. The null hypothesis, g is a linear function, is rejected.

Table 8.2 summarizes conclusions of the estimated trend and the seasonality under different

hypothesis testings.

Table 8.2: Conclusions of bootstrap hypothesis testing of different shapes.

Trend h Seasonality g

H0 : zero function reject reject

H0 : constant function reject reject

H0 : linear function cannot reject reject

Since bootstrap hypothesis testing concludes that both the seasonality ĝ and the trend ĥ are

not constant functions, we presents their corresponding cross-sectional confidence bands with 95%

confidence level in Figure 8.6.

Figure 8.6: Cross-sectional confidence bands for estimated ĝ (left) and ĥ (right) in male growth
velocity data.
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8.2 U.S. Electricity Price

This example studies the monthly U.S. electricity price from year 2005 to 2010, with data

shown in the Figure 8.7. The x-axis represents months from 2005.1 to 2010.12. The y-axis is

unit price of electricity in cents per kilowatt-hour. According to the data source, U.S. Energy

Information Administration (http://www.eig.gov/electricity/data/), divides U.S. into several

regions: Alaska, Hawaii, New England, Middle Atlantic, East North Central, West North Central,

South Atlantic, East South Central, West South Central, Mountain, Pacific Contiguous and Pacific

Non-contiguous. We restrict to six regions in the analysis since these regions use the same electricity

generation method. The raw data is shown in Figure 8.7.

Figure 8.7: US monthly electricity price from 2005 to 2010.

In this data, we clearly see a seasonal effect on a yearly basis. Generally speaking, the electricity

prices increase each summer and fall back each winter. This seasonal effect is expected to be our

seasonality g. Since there are six annual cycles in the data, we expect six peaks in the estimated

seasonality ĝ. Also, as the cycles are not quite synchronized, there is a potential for phase variability

in the seasonal effect that will be characterized by the time warpings {γi}. Notice that there is a

slowly increasing pattern from 2005 to 2010, pointing to the presence of a trend in the data.

We apply our algorithm to this data, and found the optimal choice of trend subspace is H =

span{1, cos(πt), ..., cos(5πt)}. Also Trend-Warp found the subspaceH = span{sin(πt), ..., sin(10πt)}.

Estimation results under different models are given in Figure 8.8 and Figure 8.9.
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In the scenario that a trend is not needed, it is surprising that the simple estimation behaviors

better than alignment estimation. The reason is the warping definition in the alignment estimation

model only allow changes in the phase while in data the seasonality g varies mostly in the height.

On the other hand, if a trend is needed, Trend-Warp has the poorest estimated ĝ and ĥ. Also, both

simple separation and Sep.-Warp are able to produce reasonable estimation results only when the

appropriate space H is given by our Trend-L2 model. Finally, Trend-L2 captures the six peaks in

the estimated seasonality ĝ, and a slow increasing estimated trend ĥ very well.

Table 8.3 summarizes L2 cost of all related models. Simple separation and Trend-L2 have the

first and second lowest L2 cost among all models. Based on the criteria for the real data comparison,

Trend-L2 is the best model since chooses the subspace H, yields reasonable ĝ and ĥ that fit physical

interpretation, and produces the second lowest L2 cost.

Table 8.3: L2 cost comparison under different models of US electricity price data.

Models
L2 cost

1
n

n∑
i=1
‖l.f.s.− r.h.s.‖2

Orthogonality

〈g(t), h(t)〉L2

Simple Separation

fi(t) = g(t) + h(t) + εi(t)

5.573749e-01
(lowest)

2.212442e-04

Trend-L2 fi(t) =

g(γi(t))
√
γ̇i(t) + h(t) + εi(t)

7.098805e-01 7.449066e-02

Trend-Warp

fi(t) = (g ◦ γi)(t) + h(t) + εi
4.833387e+02 1.187636e-04

Sep.-Warp

fi(t) = ((g + h) ◦ γi) (t) + εi
1.186032e+00

9.149722e-05
(lowest)

Simple estimation

fi(t) = g(t) + εi(t)
1.089495e+00 none

Alignment estimation

fi(t) = (g ◦ γi)(t) + εi
1.186032e+00 none

We use bootstrap analysis to show the estimated trend ĥ and seasonality ĝ are both significant.

Also, their cross-sectional confidence bands are provided in the following. The 500 bootstrap

replicates of estimated trend h and seasonality g are shown in Figure 8.10. We see the shape

pattern of the trend replicates {ĥb} is mostly slowly increasing.

We present histograms of test statistics ρh0 ,ρhc ,ρhl ,ρg0 ,ρgc and ρgl to study whether they follow

the normal distribution N (0, ŝeB) assumption, see Figure 8.11, (a)-(f). Clearly ρh0 and ρgl have

means well away from zero and both do not follow a normal distribution N (0, ŝeB).
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Models Seasonality Trend
Warping
functions

Cost function

Simple Separation

fi(t) =

g(t) + h(t) + εi(t)

none

Trend-L2 fi(t) =

g(γi(t))
√
γ̇i(t) +

h(t) + εi(t)

Trend-Warp

fi(t) =

(g◦γi)(t)+h(t)+εi

Sep.-Warp fi(t) =

((g + h) ◦ γi) (t) +

εi

Simple estimation

fi(t) = g(t) + εi(t)
none none

Alignment

estimation fi(t) =

(g ◦ γi)(t) + εi

none

Figure 8.8: Estimation results of three components under different models of US electricity price
data.

Given the bootstrap distribution of test statistics, we calculate the p values of these test statistics

under different shape hypothesis:

58



Figure 8.9: Estimation results for trend h (right) and seasonality g (left) under different models in
US electricity price data.

Figure 8.10: Five hundred bootstrap Replicates of ĝ (left) and ĥ (right) of US electricity price data.

• Testing presence of trend and seasonality: For testing h = 0, the test statistic using

bootstrap is ρh0 = 11.21 with ŝeB = 0.398 and a p value of 0. The null hypothesis h = 0 is

therefore rejected. For testing g = 0, the test statistic is ρg0 = 0.628 with ŝeB = 0.419 and a

p value of 6.73× 10−2. The null hypothesis g = 0 is at the boundary of rejection.

• Testing constant shape of trend and seasonality: For testing h = c, the test statistic

using bootstrap is ρhc = 0.431 with ŝeB = 0.437 and a p value of 0.162. Therefore, we cannot

reject the null hypothesis: h = c. For testing g = c, the test statistic using bootstrap is

ρgc = 0.628 with ŝeB = 0.419 and a p value of 6.73× 10−2. Hence, the null hypothesis, g = c,

is at the boundary of rejection.

• Testing linear shape of trend and seasonality: For the linearity of a trend, we obtain

ρhl = 0.173, ŝeB = 2.864, and a p value of 0.475. Thus, the null hypothesis: h is a linear
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(a) histogram ρh0 (b) histogram ρhc (c) histogram ρhl

(d) histogram ρg0 (e) histogram ρgc (f) histogram ρgl

Figure 8.11: Histograms of test statistics of US electricity price data.

function can not be rejected. For the seasonality g being a linear function, we have ρgl = 7.64,

ŝeB = 5.093, and a p value of 6.68 × 10−2. The null hypothesis, g is a linear function, is at

the boundary of rejection.

Table 8.4 summarizes the results for of the estimated trend and the seasonality under different

hypothesis testings. Since bootstrap hypothesis testing suggests that both ĝ and ĥ are non-zero

functions, their cross-sectional confidence bands with 95% confidence level are given in Figure 8.12.

Table 8.4: Conclusions of bootstrap hypothesis testing of different shapes of US electricity price
data.

Trend h Seasonality g

H0 : zero function reject reject

H0 : constant function cannot reject reject

H0 : linear function cannot reject reject

60



Figure 8.12: Cross-sectional confidence bands for estimates ĝ (left) and ĥ (right) in electricity price
data.

8.3 U.S. Currency Exchange

In this experiment, we consider an application to financial data. The daily US dollar foreign

exchange rates from October 2015 to December 2015 can be found from http://www.usforex.com/

and are shown in the left graph of Figure 8.13. The y value is the worth of one U.S. dollar in

other foreign currencies: Euro, British Pound, Swiss Franc, Canadian dollar, Australian dollar and

Japanese Yen. Take US dollar to Euro as an example: on October 1, 2015 , the exchange rate value

is 0.895, meaning 1 US dollar is worth 0.895 Euro.

Figure 8.13: USD exchange rates (left) and fluctuation (right) from October 2015 to December
2015.
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In finance, the exchange fluctuation is studied rather than using exchange rates. The exchange

fluctuation is defined as

τ =
R1 −R0

R0
× 100%

where R1 is the current exchange rate and R0 is the previous exchange rate. If the number τ is

positive, the US dollar is undergoing revaluation and a negative number means devaluation. The

right graph in Figure 8.13 displays the USD exchange fluctuation.

The analysis of exchange fluctuation is harder than growth velocity data and electricity price

data since there is no physical interpretation. Moreover, the observed currency behavior may be

related to less quantifiable considerations such as economic policies and governments. Therefore,

we can only look at the shapes of fluctuation data and speculate on the estimated ĝ and ĥ.

From the right graph of Figure 8.13, there are roughly four peaks in the middle which charac-

terize the seasonality g. We expect the trend h to follow the shape of average envelope of the data,

i.e., increasing from October to November, decreasing from November to December and increasing

until the end of December. The need of warping functions is suggested since the peaks and valleys

in the data are not perfectly synchronized. For example, in the beginning of October, U.S. dollar

reaches devaluation with the order Canadian dollar, Australian dollar, then British Pound and

Swiss Franc.

Our Trend-L2 selects H = span{1, cos(πt), cos(2πt), cos(3πt)} and Trend-Warp chooses H =

span{1, cos(πt)}. Simple separation and Sep. Warp again use the basis choice from Trend-L2.

Figure 8.15 and Figure 8.15 summarize the estimation of three components under different models.

Figure 8.14: Estimation results of the seasonality g (left) and the trend h (right) under different
models in USD fluctuation data.
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Models Seasonality Trend
Warping
functions

Cost function

Simple separation

fi(t) =

g(t) + h(t) + εi(t)

none

Trend-L2 fi(t) =

g(γi(t))
√
γ̇i(t) +

h(t) + εi(t)

Trend-Warp

fi(t) =

(g◦γi)(t)+h(t)+εi

Sep.-Warp fi(t) =

((g + h) ◦ γi) (t) +

εi

Simple estimation

fi(t) = g(t) + εi(t)
none none

Alignment

estimation fi(t) =

(g ◦ γi)(t) + εi

none

Figure 8.15: Estimation results of three components under different models in USD fluctuation
data.

When a trend is not needed, both simple estimation and alignment estimation give reasonable

approximations of ĝ including the four peaks in the fluctuation data. When a trend is sought, we see
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both simple separation and Sep. Warp have the desired peaks structure ĝ, and an expected trend

ĥ when using the subspace H selected by Trend-L2. Notice that Trend-Warp gives an undesirable

constant trend which does fit expectations. Trend-L2 has similar estimated ĝ and ĥ to model simple

separation and Sep. Warp.

Table 8.5 summarizes the L2 costs for all models and the Trend-L2 has the lowest L2 cost.

By the comparison criteria for real data experiment, Trend-L2 satisfies the most criteria and is

concluded to be the best model.

Table 8.5: L2 cost comparison of all models of USD fluctuation data.

Models
L2 cost

1
n

n∑
i=1
‖l.f.s.− r.h.s.‖2 Orthogonality

Simple Separation

fi(t) = g(t) + h(t) + εi(t)
1.993696e-02 -2.174559e-07

Trend-L2

fi(t) =

g(γi(t))
√
γ̇i(t) + h(t) + εi(t)

1.214340e-02
(lowest)

-3.750052e-06

Trend-Warp

fi(t) = (g ◦ γi)(t) + h(t) + εi
2.313540e-02

2.495800e-08
(lowest)

Sep.-Warp

fi(t) = ((g + h) ◦ γi) (t) + εi
2.553436e-02 9.263048e-07

Simple estimation

fi(t) = g(t) + εi(t)
1.993941e-02 none

Alignment estimation

fi(t) = (g ◦ γi)(t) + εi
2.553436e-02 none

We apply bootstrap analysis to confirm the estimation results are significant by using hypothesis

testing. Figure 8.16 contains five hundred bootstrap replicates {ĥb} and {ĝb} applying Trend-L2

to US dollar fluctuation data. We see the sinusoid structure in {ĝb} and the constant or two-peaks

shape in {ĥb}.

Figure 8.17 presents the histograms of test statistics ρh0 ,ρhc ,ρhl ,ρg0 ,ρgc and ρgl It can be seen

that all test statistics except ρhl have means well away from the mean zero so the null hypotheses

are likely to be rejected.

Given the bootstrap distribution of test statistics, we calculate the p values of these test statistics

under different shape hypothesis:

• Testing presence of trend and seasonality: For testing h = 0, the test statistic using

bootstrap is ρh0 = 0.0925 with ŝeB = 0.03 and a p value of 1.079× 10−3. The null hypothesis
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Figure 8.16: Five hundred bootstrap Replicates of ĝ (left) and ĥ (right) of US dollar fluctuation
data.

(a) histogram ρh0 (b) histogram ρhc (c) histogram ρhl

(d) histogram ρg0 (e) histogram ρgc (f) histogram ρgl

Figure 8.17: Histograms of test statistics of US electricity price data.

h = 0 is therefore rejected. For testing g = 0, the test statistic is ρg0 = 0.149 with ŝeB = 0.016

and a p value of 0. The null hypothesis g = 0 is therefore rejected.
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• Testing constant shape of trend and seasonality: For testing h = c, the test statistic

using bootstrap is ρhc = 0.0914 with ŝeB = 0.0344 and a p value of 3.97 × 10−3. Therefore,

we reject the null hypothesis: h = c. For testing g = c, the test statistic using bootstrap is

ρgc = 0.149 with ŝeB = 0.016 and a p value of 0. Hence, we reject the null hypothesis: g = c.

• Testing linear shape of trend and seasonality: For the linearity of a trend, we obtain

ρhl = 0.764, ŝeB = 0.807, and a p value of 0.171. Thus, the null hypothesis: h is a linear

function can not be rejected. For the seasonality g being a linear function, we have ρgl = 7.634,

ŝeB = 2.141, and a p value of 1.81 × 10−4. The null hypothesis, g is a linear function, is

rejected.

Table 8.2 summarizes the conclusions of the estimated trend and the seasonality under differ-

ent hypothesis testings. Because the estimated ĝ and ĥ are both non-zero, their cross-sectional

confidence bands with 95% confidence level are presented in Figure 8.18.

Table 8.6: Conclusions of bootstrap hypothesis testing of different shapes in UDS fluctuation data.

Trend h Seasonality g

H0 : zero function reject reject

H0 : constant function reject reject

H0 : linear function cannot reject reject

Figure 8.18: Cross-sectional confidence bands for estimates ĝ (left) and ĥ (right) in US dollar
fluctuation.
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CHAPTER 9

SIGNIFICANCE ANALYSIS OF TIME-COURSE

GENE EXPRESSION DATA

9.1 Introduction

In the field of time-course genomewide studies, a key question is to detect a significant change

between an experiment group and a control group under biological processes [BJGS12]. A microar-

ray approach allows researchers to measure thousands of gene expression levels simultaneously, see

[Dră03] for a review for this approach. Once the gene expression levels are obtained, statistical

analysis for measuring the significance changes are applied [ST03].

Several considerations are important when e performing the significance analysis of the time-

course gene expressions. Four of them are:

1. Gene set analysis. Although a considerable research has been done on gene-by-gene signif-

icance analysis ([SXL+05, CNFT06]), it has significant limitations due to the lack of global

interpretation and difficulty with compatibility between studies across phyla. On the other

hand, gene set analysis divides the original genes (typically thousand or tens of thousands)

into several subsets, studies changes in the gene expression for each subset, and mitigates

these two limitations. More advantages of using gene set analysis can be found in [STM+05],

[ET07], and [Mac13]. We apply the MLE algorithm (Trend-L2) to the gene set analysis.

2. Functional data analysis. Statistical significance analysis on the time-course data treats

each time point as contributing equally to the test statistics [CNFT06]. This may be an inap-

propriate assumption since it is very rare that gene experiments are measured with uniform

timesteps. Recently, statisticians regarded these time-course data as longitudinal data by al-

lowing uniform timesteps see [SXL+05]. Figure 9.1 gives examples of longitudinal time-course

gene data.

Under the formulation of longitudinal data analysis, the number of time samples is as-

sumed to be finite. An extension from finite to infinite time points with a smoothness assump-

tion is called functional data analysis, first introduced in [RD91]. Applications of functional

data analysis to the gene expression data were studied in [YMW05] and [HST15]. Examples

of converting longitudinal data (Figure 9.1) into functional data are shown in Figure 9.2. In

this chapter, we consider the functional data analysis approach.
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(a) (b) (c)

(d) (e) (f)

Figure 9.1: Examples of longitudinal time-course gene expression data.

3. Time warpings. Introducing warping functions into the statistical model improves classifi-

cation and the clustering as discussed in [LM06] and [TM09]. Moreover, time warpings reflect

the phenomenon that different genes have different responses to the biological processes. This

dissertation is the first attempt to introduce time warping for significance analysis on time-

course gene expression data

4. Non-constant fixed effect of the gene expression. In [SXL+05], [CNFT06] and [HST15],

a constant fixed effect of the gene is assumed in the statistical model. We extend the constant

effect idea to the non-constant case, i.e. a time dependent function.

9.2 Methodology

9.2.1 Application of Our MLE Algorithm

We use the trend and seasonality estimation model, from Section 2.2,

fi(t) = (g, γi)(t) + h(t) + εi(t), i = 1, ..., n (9.1)
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(a) (b) (c)

(d) (e) (f)

Figure 9.2: Examples of functional time-course gene expression data.

to analyze the significance of a gene set. The notation fi(t) denotes each gene’s expression level at

time t. The gene expression level is defined as the log2 of the fold change

gene expression level = log2(fold change) = log2

(
experiment group

control group

)
.

Depending on the value and the sign of the gene expression, it has different biological interpreta-

tions:

gene expression level


zero ⇒ no changes, ex: Figure 9.1 (a),(c),(d)

positive ⇒ upregulation, ex: Figure 9.1 (b)

negative ⇒ downregulation, ex: Figure 9.1 (e),(f).

In practice, biologists consider a gene expression to be significant if,

1. the average fold change across time is greater than 2.2 or less than 1
2.2 , i.e., the average gene

expression level is greater than 1.137 or less than -1.137.

2. and a gene at a single time point has a fold change greater than 3 or less than 1
3 , i.e., a gene

expression level is greater than 1.585 or less than -1.585.

Rather than using the heuristic approach, we develop a statistical model with bootstrap hypothesis

testing to determine the significance of a gene.
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In Equation 9.1, γi denotes a warping function that represents each gene having a different

response to the biological process. The symbol g denotes the seasonality that is interpreted as the

main gene expression level. The symbol h denotes the trend that is interpreted as the non-constant

fixed effect for a gene set. To determine whether a gene set is significant, we use the hypothesis{
H0 : gene set is not significant

H1 : gene set is significant
⇐⇒

{
H0 : g = 0 and h = 0

H1 : g 6= 0 or h 6= 0
⇐⇒

{
H0 : ρg0 = 0 and ρh0 = 0

H1 : ρg0 6= 0 or ρh0 6= 0

The bootstrap analysis discussed in Chapter 4 is used to test the statistics ρg0 and ρh0 .

9.2.2 Method of Time-Course Gene Set Analysis (TcGSA)

We summarize the state-of-the-art method, time-course gene set analysis (TcGSA) [HST15].

Comparisons of TcGSA and our model are given later in Section 9.3. TcGSA uses a gene set

approach, longitudinal data assumption, and a constant fix effect without time warpings. For each

gene set, the statistical model of TcGSA is defined as

fi(t) = h+ gi(t) + εi + εi(t), i = 1, ...n (9.2)

where

• time t is in the longitudinal sense that normally less than 9 points,

• h is a constant fixed effect for each gene set,

• gi is the main structure of gene expression level, assumed to linear or cubic polynomial,

• εi is Gaussian noise with mean zero,

• εi(t) is also Gaussian noise with mean zero for each time t.

TcGSA uses restricted maximum likelihood to estimate gi(t). The hypothesis tests in their

model is {
H0 : gene set is not significant

H1 : gene set is significant
⇐⇒

{
H0 : gi = 0 for all i

H1 : gi 6= 0 at least one i

Hejblum et al. suggests taking the test statistic as a likelihood ratio that follows a mixture of

Chi-squares distribution, see [HST15] and [SL87]. Finally, Hejblum et al. selects a false discovery

rate α and apply the Benjamini-Yekutieli procedure [BY01] to the multiple hypothesis test. If the

null hypothesis is rejected the gene set is called significant.
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9.3 Experimental Results

In this section we evaluate our approach to the gene significance analysis by comparing its

statistical power to TcGSA and apply both methods to a real data set. In order to compare

across different models, we analyze hypothesis testing results on the synthetic data. With sim-

ilar significance level (FDR for multiple testings), the model with the greater statistical power

is considered to be better, as suggested by [HST15]. We use time-course gene expression data

post-ATI DALIA-1 that can be downloaded using the gene identifier GSE46734 or the link http:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46734.

9.3.1 Synthetic Data

Given the null hypothesis H0 : gene set is not significant and its alternative H1 : gene set is

significant, the statistical power is defined as percentage of rejecting the null hypothesis when the

alternative is true. The larger the statistical power, the better the model is considered.

We generate 100 significant gene sets and each gene set has 20 genes with 7 time points uni-

formly from 0 to 1. This time-course gene expression data will be re-sampled to 51 time points

when fitting to our model. The gene expression level is generated by Equation 9.2, setting h ∼

N (0.35, 0.087), g = c1t + c2 exp(t2) + c3 sin(πt3) where c1 ∼ N (−0.2,−0.537), c2 ∼ N (0.3, 0.222),

c3 ∼ N (−0.1,−0.0943), and ε(t) ∼ N (0, 1) for each t. Because we simulate the gene data with 100

significant gene sets, the number of rejection H0 becomes the statistical power. i.e., the number of

significant gene sets from the conclusion of hypothesis testing becomes the statical number.

Synthetic gene data are shown in Figure 9.3 column 1, and their estimation results of three

components are in Figure 9.3, columns 2 to 4. In each row (gene set), we see the main expression

level ĝ captures the shape of observed gene levels {fi} and the estimated effect ĥ is not necessarily

to a constant (see row 2, 4, 5, and 6 in Figure 9.3).
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Observed gene
expression level {fi}

Main gene
expression level ĝ

Fix effects ĥ
Warping

functions {γ̂i}

Figure 9.3: 6 out of 100 estimation results of three components in synthetic gene data.
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replicates {ĝb} replicates {ĥb} histogram of {ρg0} histogram of {ρh0}

Figure 9.4: Bootstrap analysis to synthetic gene data: replicates (column 1 and 2) and histogram
of test statistics (column 3 and 4). Only plot 6 out of 100 gene sets.
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We set B = 100 for the bootstrap analysis. Bootstrap replicates {ĝb} and {ĝb} are shown in

Figure 9.4, columns 1 and 2. Figure 9.4, columns 3 and 4, depicts the histogram of test statistics

ρg0 and ρh0 . The decision to accept or reject the null hypothesis is based on the p values of these

test statistics with a significance level α = 0.05 . We set the false discovery rate to be α = 0.05

when applying TcGSA [HST15]. Table 9.1 lists the statistical power under different models when

using synthetic gene data. We get a statistical power 81% in our MLE algorithm compared to 74%

in the TcGSA model.

Table 9.1: Statistical power of different models in synthetic time-course gene data.

Method Significant gene sets/Total gene sets Statistical power

TcGSA linear [HST15] 73/100 73.00%

TcGSA cubic [HST15] 74/100 74.00%

MLE algorithm 81/100 81.00%

We continue the comparison by finding the Type I error rate for TcGSA and our MLE algorithm.

The Type I error rate is the percentage of rejecting H0 when H0 is true. The smaller the Type I

error rate, the better the method.

We generate 100 gene sets and each of them are purely noise with εi ∼ N (0, 0.03) and εi(t) ∼

N (0, 0.05) for each t. In our setting, the number of claimed significant gene sets becomes type

I error rate. We use the same bootstrap setting as the statistical power experiment. Table 9.2

summarizes the Type I error rate among different models. Although two models have similar Type

I error rates, our MLE algorithm has a slightly smaller value. Since our MLE algorithm has a larger

statistical power and a very slightly smaller Type I error rate than TcGSA, we conclude that our

MLE algorithm has more statistical power.

Table 9.2: Type I error rate of different models in synthetic time-course gene data.

Method Significant gene sets/Total gene sets Type I error rate

TcGSA linear [HST15] 10/100 10.00%

TcGSA cubic [HST15] 12/100 12.00%

MLE algorithm 9/100 9.00%
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9.3.2 Real Data

In the post-ATI DALIA-1 data set, there are 32,978 genes with their gene expression levels

at 9 time points (week 24, 25, 26, 27, 28, 32, 36, 40, 44). We re-sampled the gene-expression

data to 51 uniform time points using a cubic spline to give a functional data form. According to

[CQS+08] and http://www.biir.net/public_wikis/module_annotation/V2_Trial_8_Modules,

these genes are clustered into 260 gene sets. Figure 9.2, (a)-(f), are the first 6 gene sets of the data.

For each gene set, we apply the MLE algorithm (Algorithm 3) with subspace selection (Chapter

5). As an illustration, 6 out of 260 estimation results are plotted in Figure 9.5. We see all the

seasonality estimates capture the main structure from the gene expression levels {fi} and both

constant and non-constant estimates of fix effects are observed, see row 3 in Figure 9.5.

We analyze the bootstrap replicates (B = 50) of the main expression level ĝ and the fixed

effects ĥ for each gene set, see Figure 9.6, column 1 and 2. Within each gene set, the variation of

replicates {ĝb} is smaller than the variation of replicates {ĥb}. The histogram of test statistics ρg0

and ρh0 are given in Figure 9.6, column 3 and 4. Given the empirical bootstrap distribution of the

test statistics, we compute the p values of the null hypothesis: g = 0 and h = 0. For each gene

set, we set the significance level α = 0.05 and false discovery rate α = 0.05 for TcGSA. The same

significance analysis is repeated for all 260 gene sets. Table 9.3 summarizes the significance rate of

the Post-ATI DALIA-1 data.

Table 9.3: Significance analysis of different models in Post-ATI DALIA-1 data. Use false discovery
rate α = 0.05 in the multiple hypothesis testing.

Method Significant/Total Significant gene set rate

TcGSA linear [HST15] 203/260 78.07%

TcGSA cubic [HST15] 216/260 83.07%

MLE algorithm 185/260 71.15 %
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Observed gene
expression level {fi}

Main gene
expression level ĝ

Fix effects ĥ
Warping

functions {γ̂i}

Figure 9.5: 6 out of 260 estimation results of three components in Post-ATI DALIA-1 data.
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replicates {ĝb} replicates {ĥb} histogram of {ρg0} histogram of {ρh0}

Figure 9.6: Bootstrap analysis to Post-ATI DALIA-1 data: replicates (column 1 and 2) and his-
togram of test statistics (column 3 and 4). Only plot 6 out of 260 gene sets.
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From Table 9.3, although the significant gene set rates of TcGSA are higher than those from

our proposed model, it is incorrect to conclude TcGSA is better than our MLE algorithm for two

reasons:

1. The resulting significant gene set rate depends on the significance level and the false discovery

rate α. The more stringent (smaller) α, the lower significant gene set rate. The choice of α

is somewhat ad hoc and highly dependent on the experience of biologists [STM+05].

2. The biological ground truth about the gene data is unknown. The purpose of significance

analysis is to reduce the size of gene data from tens of thousands to thousands. This re-

duced gene data is further studied by designing sequence of experiments to understand their

biological functions.

Rather than concluding the Post-ATI DALIA-1 data has significance gene set rate 78%, we

would conclude 71% because our MLE algorithm is more accurate than TcGSA in the significance

analysis, as shown in Section 9.3.1.

78



CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Summary of Completed Work

We have developed a novel, model-based framework to solve the trend and variable phase sea-

sonality estimation problem by estimating the trend h and seasonality g components from time

series data in situations where the seasonal component exhibits random time warpings. The model

subsumes those used by related approaches in the literature. We assume that the subspaces as-

sociated with these two components – trend and seasonality – are orthogonal, and the Karcher

mean of warping functions is the identity, to ensure that the components are identifiable. Under

these conditions we seek the MLE of h and g, using a coordinate descent algorithm that iteratively

updates one component at a time, while fixing the others. We also use maximized likelihood to

select an appropriate subspace H for the trend component. The estimated quantities – trend and

seasonality – are tested, using bootstrap replication, for being null or having a specific simple shape,

such as constant and linear.

Both synthetic data and real data have been used to demonstrate the effectiveness of this

method. Using synthetic data, where the ground truth is known, we have demonstrated the ro-

bustness of our method in the presence of noise. We demonstrate this framework’s ability to extract

trend and seasonality using three real application datasets: the Berkeley growth data, U.S. electric-

ity price data, and USD exchange fluctuation. Bootstrap hypothesis testing supported the presence

of a trend in all of the datasets. For the USD exchange fluctuation data, a low frequency oscillation

between revaluation and devaluation was extracted, along with a higher frequency seasonal oscil-

lation. For the Berkeley growth data and electricity price data, we obtain estimates of the trends

and seasonal effects that are expected from the nature of the applications. Finally, when studying

the significance analysis of time-course gene expression data, our method is shown to have higher

statistical power than the state-of-the-art TcGSA method.
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10.2 Future Research

This dissertation motivates several directions for future work. These include:

1. Application

(a) More real dataset experiments can be investigated. For instance, ten years monthly

temperature data among several cities or ten years monthly revenue among several com-

panies in the same industry are publicly available.

(b) Alternate families of basis functions, e.g., Wavelets [D+92], that can capture specific

local characteristics of a function can be evaluated.

2. Algorithm

(a) Real datasets may have additional properties that we have not exploited. For example,

the growth velocity data has the property fi(t) ≥ 0. Therefore, it is reasonable to assume

that both the seasonality (main structure) g(t) and the underlying trend h(t) are greater

than or equal to zero because the growth rate should not be a negative number, i.e., we

have the additional constraints of g(t) ≥ 0 and h(t) ≥ 0. Modifications to the algorithm

or new algorithms that incorporate such additional constraints from the physical problem

can be investigated.

(b) Improvements to the algorithms can be investigated to increase robustness and efficiency.

Modifications can be made to the current version of coordinate descent to avoid stagna-

tion at a non-stationary point. Alternative optimization approaches can be considered

to improve the convergence behavior and efficiency.

3. Bootstrap Analysis and its Inference

(a) In the bootstrap analysis testing the presence of a trend or seasonality, we define the

test statistic to be ρh0 = ‖ĥ‖ which follows a normal distribution. However, there

are other alternatives such as ‖ĥp‖ where p is a positive integer. Additionally, the

normal distribution assumption can be replaced by a percentile distribution or other

distributions. To determine which is better, synthetic data experiments with statistical

power comparison are necessary for supporting the bootstrap analysis.

(b) Once the best test statistic is determined, the empirical size and the coverage rate of the

bootstrap confidence band can be studied. Specifically, as the bootstrap size increases,

we expect the bandwidth of the confidence band to reduce until an optimal bootstrap

size is reached.

(c) Explore the possibility of replacing the entire bootstrap inference process by a single

statistic. In other words, once the estimated trend ĥ and seasonality ĝ are obtained,

is it possible to have a conclusion about their presence rather than utilizing bootstrap

analysis? If so, the inference process will speed up significantly.
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4. Theory

(a) As mentioned above, the modifications to the methods, e.g., changing coordinate descent

to avoid remaining at a non-stationary point, can be considered. Further research can

be made on the theoretical convergence behavior of the optimization problem generated

from coordinate descent (or other methods) in a noise-free situation.

(b) Theory about asymptotic normality of trend and seasonality estimators toward their

approximated cumulative density function can be investigated, see [HK12] and [Bos12].

(c) A fundamental open question is to prove a uniqueness theorem in a noise-free case

assuming the existence of the three components g, h and {γi}. This may require nonlinear

operator theory [Con99, BP67].
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APPENDIX A

KARCHER MEAN OF WARPING FUNCTIONS

The Karcher mean was introduced by Karcher in 1977 [Kar77]. Let x1, ..., xn be elements of a

metric space M with metric d, then the Karcher mean xKM of x1, ..., xn is defined as

xKM = arg min
p∈M

1

n

n∑
i=1

wid
2(p, xi)

where wis are the weight for each d2(p, xi). The Karcher mean is an intrinsic. The existence and

uniqueness for some special cases of Karcher means were shown by Kendall [Ken90]. We adapt the

Karcher mean to γ1, ..., γn on the manifold Γ. Hence,

γKM = arg min
γ∈Γ

1

n

n∑
i=1

d2(γ, γi) (A.1)

where d(γ, γi) denotes the geodesic distance from γ to γi.

Invariance of geodesic distance under warping is required. In other words,

d(γ1, γ2) = d(γ1 ◦ γ, γ2 ◦ γ).

However, the above equality does not hold for an arbitrary metric. In 1982, Cencov [Cen00] showed

the Fisher-Rao Riemannian metric (FR-RM) is the only metric with this warping invariance. The

geodesic distance under the Fisher-Rao Riemannian metric is denoted by dFR(·, ·) and therefore

the desired Karcher mean becomes

γKM = arg min
γ∈Γ

1

n

n∑
i=1

d2
FR(γ, γi). (A.2)

To solve Equation A.2, the geodesic distance dFR(γ, γi) is defined by the infimum of length L of

all the possible paths, α, that connect γ to γi.

dFR(γ, γi) = inf
{α:[0,1]→M |α(0)=γ,α(1)=γi}

L[α].

Let M be a Riemannian manifold. Let dα
dt be the tangent vector in the tangent space Tα(t)M . The

length of the path α : R→M is defined by the integral of square root of the metric Φα of (dαdt ,
dα
dt ),
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that is

L[α] =

∫ 1

0

√
Φα

(
dα

dt
,
dα

dt

)
dt.

The choice of metric Φ is crucial. Here a non-parametric, extended Fisher-Rao Riemannian metric

Φα is used because we want the warping invariance

Φα (v1, v2) =
1

4

∫ 1

0
v̇1(t)v̇2(t)

1

|α̇(t)|
dt

where v denotes the tangent vector of path α at time t. The geodesic distance dFR using the

Fisher-Rao Riemannian metric is

dFR(γ, γi) = inf
{α:[0,1]→M |α(0)=γ,α(1)=γi}

∫ 1

0

√
Φα

(
dα

dt
,
dα

dt

)
dt. (A.3)

The difficulty of finding such dFR(γ, γi) in Equation A.3 is that the metric Φα changes at every

time point of path α due to computing new tangent vectors dα
dt . The numerical implementation

is very difficult. Fortunately, Bhattacharya [Bha43] provided a square-root representation that

can greatly simplify the Fisher-Rao Riemannian metric calculation. Joshi et al. [JKSJ07] and

Srivastava et al. [SWK+11] adapted the square-root representation and simplified the FR-RM into

an L2-metric.

Define a new square-root transformation Q, such that Q(γ(t)) =
√
γ̇(t) = ψ(t). Notice that

the following holds.

‖ψ‖2L2 =
∥∥∥√γ̇∥∥∥2

L2
=

∫ 1

0

(√
γ̇
)2

dt =

∫ 1

0
γ̇ dt = γ(1)− γ(0) = 1− 0 = 1.

This means all ψ are points on a Hilbert unit sphere S∞. The geodesic distance between ψ1 and

ψ2 under the L2-metric is the angle θ of the great circle connecting ψ1 and ψ2

d(ψ1, ψ2) = θ = cos−1 (〈ψ1, ψ2〉L2) = cos−1

(∫ 1

0
ψ1ψ2dt

)
where the property 〈ψ1, ψ2〉 = ‖ψ1‖ ‖ψ2‖ cos θ = cos θ is used.

Because of the simpler geometry, it is better to work with the Karcher mean of ψ1, ..., ψn on

the unit sphere S∞, rather than Karcher mean of γ1, ..., γn in the space of Γ. Hence,

Q (γKM ) = ψKM

⇒ Q

(
arg min
γ∈Γ

1

n

n∑
i=1

d2
FR(γ, γi)

)
= arg min

ψ∈S∞

1

n

n∑
i=1

d2(ψ,ψi)
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Once ψKM is founded, it is converted to γKM using the transformation

γKM (t) = Q−1(ψKM (t)) =

∫ t

0
ψ2
KM (s) ds.

The Karcher mean of ψ1, ..., ψn requires solving the following manifold minimization [SWK+11,

SWK+11, AMS08]

ψKM = arg min
ψ∈S∞

1

n

n∑
i=1

d2(ψ,ψi).

Because of the unit sphere geometry, the Riemannian gradient S∞ → T (S∞) of the cost functional

min
ψ∈S∞

1
n

n∑
i=1
d2(ψ,ψi) is given by [Kar77]

− 2

n

n∑
i=1

exp−1
ψ (ψi)

where exp−1
ψ ψi is the inverse exponential map S∞ → T (S∞). This inverse exponential map is

vi = exp−1
ψ (ψi) =

θ

sin θ
(ψi − cos(θ)ψ)

where θ = cos−1 (〈ψ,ψi〉L2). The retraction Rψ : T (S∞)→ S∞, is taken to be the exponential map

expψ : T (S∞)→ S∞ which is

Rψ(vi) = expψ(vi) = cos (‖vi‖)ψ + sin (‖vi‖)
vi
‖vi‖

.

Taking the stepsize to be ε
2 , one step of the Riemannian Steepest Descent for the Karcher mean

of ψ1, ..., ψn is

ψ(k+1) = Retraction ◦ (Stepsize×Direction)

= Retraction ◦ (Stepsize×−Riemannian Gradient)

= Retraction ◦

(
ε

2
(−1)

[
− 2

n

n∑
i=1

exp−1
ψ(k)(ψi)

])

= expψ(k)

(
ε

n

n∑
i=1

exp−1
ψ(k)(ψi)

)
.
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