Abstract:
Let K be a closed connected k-manifold, $0 \leq k \leq n - 1$. A subset B in the n-manifold M^n is K-contractible (in M) if there are maps $\varphi : B \to K$ and $\alpha : K \to M^n$ such that the inclusion map $i : B \to M^n$ is homotopic to $\alpha \cdot \varphi$. The K-category $\text{cat}_K M$ of M is the smallest number of sets, open and K-contractible needed to cover M. For K a point P we obtain the classical Lusternik-Schnirelman category $\text{cat} M = \text{cat} P M$. We are interested here in the case $K = S^1$. We give some examples and discuss recent results.