Complexity of Knots and Integers FAU Math Day

Eriko Hironaka - Florida State University

April 5, 2014

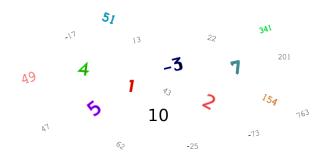
Eriko Hironaka – Florida State University Complexity of Knots and Integers FAU Math Day

<ロ> (日) (日) (日) (日) (日)

Part I: Lehmer's question

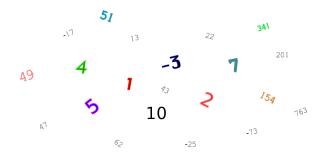
<ロ> (四) (四) (三) (三) (三)

Integers



<ロ> (四) (四) (三) (三) (三)

Integers



Properties:

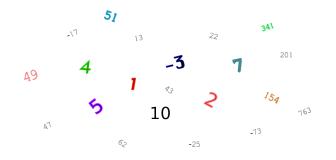
• Ordering (total ordering)

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots, 10, \dots$$

イロン イヨン イヨン イヨン

Э

Integers



Properties:

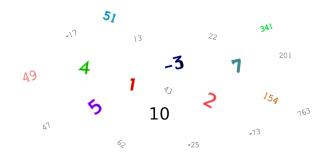
• Size (absolute value)

$$|\mathbf{a}| = \begin{cases} \mathbf{a} & \text{if } \mathbf{a} \ge 0\\ -\mathbf{a} & \text{if } \mathbf{a} < 0 \end{cases}$$

イロン イヨン イヨン イヨン

æ

Integers



Properties:

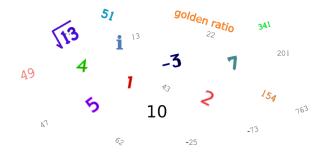
• Addition, subtraction, multiplication, division, powers

e.g.

$$(17)^3 - 21(17)^2 + 70(17) - 34 = 0$$

or 17 is a root of the polynomial $p(x) = x^3 - 21x^2 + 70x - 34$.

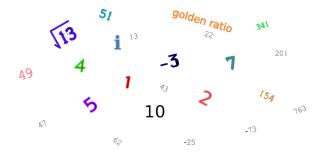
Algebraic integers



イロン イヨン イヨン イヨン

æ

Algebraic integers



Definition: An *algebraic integer of degree* d is a root of a monic integer polynomial of degree d:

$$p(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0, \qquad a_i \in \mathbb{Z}.$$

▲ □ ► ▲ □ ►

< ≣ >

æ

Algebraic integers

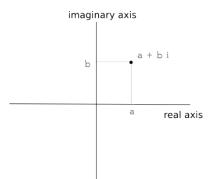
Includes:

- integers: e.g., p(x) = x 5 has root 5.
- roots of integers: e.g., $p(x) = x^3 2$ has root equal to the cube root of 2.
- complex numbers: e.g., $p(x) = x^2 + 1$ has root equal to i.

Doesn't include *rational numbers* such as $\frac{1}{2}$ or **transcendental numbers** such as *e* and π .

Theorem (Fundamental Theorem of Algebra.)

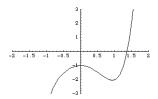
Every polynomial of degree d has d roots (counted with multiplicity) of the form a + b i where a, b are real numbers, and $i = \sqrt{-1}$.



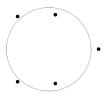
・ 同 ト ・ ヨ ト ・ ヨ ト …

Degree 5 example

Graph of $p(x) = x^5 - x^2 - 1$ as a real function.



Roots of $p(x) = x^5 - x^2 - 1$ and unit circle in the complex plane.

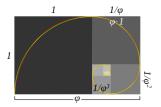


(ロ) (同) (E) (E) (E)

Golden ratio

Golden ratio:
$$\phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}} = 1.618034...$$

 ϕ is a root of $x^2 - x - 1$.



• 3 >

æ

Figure: Acropolis in Athens, Greece, and spiraling squares

Golden mean and its conjugate

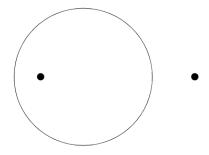


Figure: Roots of $p(x) = x^2 - x - 1$ and unit circle.

(ロ) (同) (E) (E) (E)

Algebraic integers

Size: (complex norm)

$$||\mathbf{a} + \mathbf{b} \mathbf{i}|| = \sqrt{\mathbf{a}^2 + \mathbf{b}^2}.$$

House of an algebraic integer: ($\alpha \sim \beta$ if they are *conjugate*, i.e., satisfy the same irreducible monic integer polynomial.)

$$H(\alpha) = \max\{||\beta|| : \alpha \sim \beta\}.$$

・ 回 と ・ ヨ と ・ ヨ と

Algebraic integers

Ordering: What is the smallest integer greater than one?

- \leq does not define a total ordering on \mathbb{C} .
- Houses are totally ordered, and they are dense in $[1,\infty)$.

マロト イヨト イヨト

Roots of unity.

Figure: Roots of $p(x) = x^{20} - 1$.

A root of unity is a root of an equation

$$x^n = 1,$$

for some integer $n \ge 1$. For algebraic integers: $H(\alpha) = 1 \Leftrightarrow \alpha$ is a root of unity.

글 에 너 글 어

Complexity of an algebraic integer

We measure the *compexity* of an algebraic integer in terms of the roots outside the unit circle.

- The number of roots outside the unit circle N(p).
- The largest absolute value of a root of p(x), called the *house* of p.
- The *Mahler measure* of a monic integer polynomial is the absolute value of the product of roots outside the unit circle:

 $Mah(p(x)) = \prod_{p(\mu)=0} max\{|\mu|, 1\}.$

Simplest case: the roots of p(x) are roots of unity, i.e., p(x) is cyclotomic.

- N(p) = 0
- House of p(x) is 1
- The Mahler measure of *p* is 1.

Other extreme:

- N(p) can be as large as the degree of p(x):
- House of p(x) can be arbitrarily close to 1.

Example: $p(x) = x^n - 2$.

(4月) (4日) (4日) 日

Lehmer's Question¹

The Mahler measure is more mysterious.

Question (Lehmer's question)

Is there a gap between 1 and the next largest Mahler measure?

Relating the invariants...

$$H(\alpha) \leq M(\alpha) \leq H(\alpha)^{N(\alpha)}$$

As $H(\alpha) \rightarrow 1$ does $N(\alpha) \rightarrow \infty$ correspondingly?

¹Factorization of Certain Cyclotomic Functions by D.H. Lehmer, Annals of Math Studies, 2nd series, 1933 (pp. 461-479)

Eriko Hironaka – Florida State University

Complexity of Knots and Integers FAU Math Day

In addition to being a Berkeley Mathematics Professor, Lehmer was an inventor of computers...

< 🗇 🕨 <

From the golden mean to Lehmer's number

Heuristic for why there may be a gap.

Lehmer's list:

Palindromic polynomials with smallest Mahler measure of degrees \leq 10.

$x^2 - 3x + 1$	$\lambda = ({ t golden mean})^2 pprox 2.618033$
$x^4 - x^3 - x^2 - x + 1$	\mupprox 1.7220838
$x^6 - x^4 - x^3 - x^2 + 1$	\mupprox 1.4012683
$x^8 - x^5 - x^4 - x^3 + 1$	$\mu pprox 1.2806381$
Lehmer's polynomial	$\mu = {\sf Lehmer's} \; {\sf number} pprox 1.17628082$

After this, smallest Mahler measures start to go up again (though not monotonically).

Roots of Lehmer's polynomial $p_{I}(x) = x^{10} + x^{9} - x^{7} - x^{6} - x^{5} - x^{4} - x^{3} + x + 1.$

Lehmer's polynomial is also a *Salem* polynomial.

・ 同下 ・ ヨト ・ ヨト

Polynomials with small Mahler measure

• Non-reciprocal case:

(Smyth '70) The smallest Mahler measure for non-reciprocal polynomials is given by

$$\mu_S = {\sf Mah}(x^3 - x - 1) pprox 1.32472,$$

 $x^3 - x - 1$ is a Pisot Polynomial (only one root outside the unit circle).

- 4 周 ト 4 日 ト 4 日 ト - 日

Polynomials with small Mahler measure

• Conjectural smallest:

Lehmer's polyomial

$$p_L(x) = x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$$

has the smallest known Mahler measure greater than one^2 :

 $\mu_L \approx 1.17628082 < \mu_S.$

It follows that to answer Lehmer's question, it suffices to study palindromic polynomials.

²This has been verified by Boyd and Mossinghoff up to degree 44. See http://www.cecm.sfu.ca/ \sim mjm/Lehmer/ for latest news on Lehmer's question and related topics.

Two families of polyomials

- Salem-Boyd polynomials
- Lanneau-Thiffeault polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト

Salem-Boyd polynomials

R. Salem (1960s) and D. Boyd (1990s-2000s)

$$P_n(x) = x^n f(x) + f^*(x).$$

Properties:

- $House(P_n) \rightarrow House(f)$
- $N(P_n) \rightarrow N(f)$ and
- Mahler measure(P_n) \rightarrow Mahler measure(f).

Salem-Boyd polyomials

In particular, if we set $f(x) = x^3 - x - 1$, then

$$P_n(x) = x^n(x^3 - x - 1) + x^3 + x^2 - 1.$$

and we have

- $P_n(x)$ is cyclotomic for n < 8,
- all the $P_n(x)$ are Salem polynomials for $n \ge 8$, and
- Lehmer's polynomial is a factor of $P_8(x)$:

 $P_8(x) = (x - 1)$ Lehmer's polynomial

Consequence: Every Pisot number is a limit of Salem numbers.

Lanneau-Thiffeault polynomials

E. Lanneau and J.L. Thiffeault (2009)

$$LT_n(x) = x^{2n} - x^{n+1} - x^n - x^{n-1} + 1$$

- Lehmer's polynomial is a factor of $x^{12} x^7 x^6 x^5 + 1$.
- The other three polynomials on Lehmer's list are also LT-polynomials.
 A n → ∞.

$$H(LT_n(x))^n \longrightarrow \phi^2 = H(x^2 - 3x + 1).$$

In particular, $H(LT_n(x)) \rightarrow 1$ and the behavior is asymptotic to $\phi^{\frac{2}{n}}$.

イロト イポト イヨト イヨト 二日

General families of polynomials

Useful features:

- The coefficients stay the same, only the exponents change.
- The normalized house of the polynomials behave nicely as *n* varies.
- These kinds of families occur naturally in the setting of low-dimensional geometry and topology.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Part II: Knots and Links

(日) (回) (E) (E) (E)

Part II: Knots and Links



From http://knotplot.com.

<ロ> (四) (四) (三) (三) (三)

Eriko Hironaka – Florida State University Complexity of Knots and Integers FAU Math Day

Formal Definitions

A knot is a closed loop in the 3-dimensional sphere:

 $S^3 = \mathbb{R}^3 \cup \{\infty\}.$

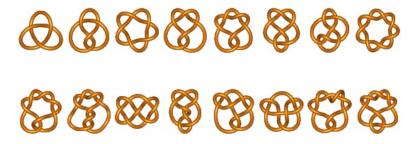
A *link* is a disjoint union of knots in the 3-dimensional sphere.

Two knots or links are considered to be the *same* if you can move one to the other without breaking the string.

(ロ) (同) (E) (E) (E)

Tables of knots³

Sixteen knots with fewest crossing numbers.



³http://www.knotplot.com/knot-theory/ by Robert G. Scharein (UBC PhD 1998) "There are 12,965 knots with 13 or fewer crossings in a minimal projection and 1,701,935 with 16 or fewer crossings."

Eriko Hironaka – Florida State University Complexity of Knots and Integers FAU Math Day

Three dimensional manifolds

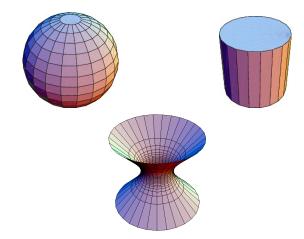
We can sometimes distinguish knots by their *exteriors* $S^3 \setminus K$.

This is a 3-dimensional manifold (locally looks like 3-dimensional space). We can study the topology and geometry.

William Thurston's insight (Geometrization Conjecture): For 3-dimensional manifolds, once you know the topology, the geometry is determined. Any 3-dimensional manifold can be "cut into irreducible pieces" in a precise way so that each piece can be represented uniquely as one of 8 geometries. ⁴

⁴This conjecture was settled in the affirmative by Grigori Perelman in 2003 📃 🔊 🤉

Two dimensional geometries



イロン イヨン イヨン イヨン

Э

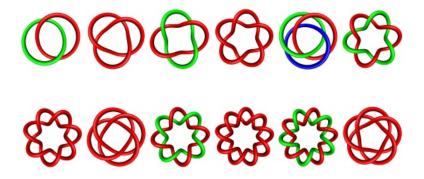
Knot and link complements

Geometry of a knot or link exterior. A knot or link is called *irreducible* if its complement is irreducible in the sense of Thurston. For irreducible knots and links K there are two possibilities: either K is a torus knot or link, or the complement is hyperbolic. (Thurston).

For a torus knot or link, the exterior is a product $\Sigma \times S^1$; the exterior can be foliated by parallel closed orbits.

In the hyperbolic case, the exterior is negatively curved. Straight lines can diverge.

Examples of torus knots



Eriko Hironaka – Florida State University Complexity of Knots and Integers FAU Math Day

イロト イヨト イヨト イヨト

Alexander polynomials.

How can we measure the complexity of a hyperbolic knot or link?

A knot or link K has an associated polynomial Δ_K called the *Alexander* polynomial. These are polynomials in k variables, where k is the number components of K.

- If Δ_K is not cyclotomic, then K is hyperbolic.
- If K is a torus knot, then Δ_K is cyclotomic.
- Every monic reciprocal integer polynomial is realized as Δ_K for some fibered knot or link K.

Figure 8 and -2,3,7-pretzel knot

- Both are hyperbolic and fibered.
- Figure 8 has smallest volume among all knot complements.
- Both have lots of non-hyperbolic Dehn fillings (in this sense they are close to being non-hyperbolic).

Observations:

Knot	$H(\Delta)$	Δ
<i>K</i> ₈	(golden mean) ²	$\Delta_{\mathcal{K}_8}(x) = x^2 - 3x + 1$
K _{2,3,7}	Lehmer's number	$\Delta_{\mathcal{K}_{2,3,7}}(-x) = Lehmer's$ polynomial

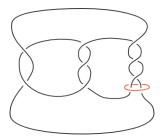
- Can we relate "hyperbolic complexity" to invariants of Alexander polynomial?
- What can be said about Alexander polynomials associated to families of knots?

(本間) (本語) (本語) (二語)

Families of knots determined by a link

Alexander polynomial

$$\Delta(u,t) = u(t^3 - t - 1) + t^3 + t^2 - 1.$$



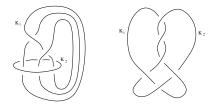
Salem-Boyd polynomials: $\Delta(x^n, x)$.

イロン イヨン イヨン イヨン

Families of knots determined by a link

Alexander polynomial

$$\Delta(u,t) = u^2 - u(1-t-t^{-1}) + 1.$$



LT -polynomials: $\Delta(x^{2n}, -x) = LT_n(x)$.

æ

- ∢ ⊒ ⊳

Summary

- Multivariable polynomials organize algebraic integers into natural families.
- For example, LT-polynomials provide a way to interpolate between the first 4 polynomials on Lehmer's list.
- Geometric relations between knots and links give rise to families of associated polynomials.
- For example the figure eight knot and the -2,3,7 knot have a deep geometric connection, which is reflected in a connection between the golden mean and Lehmer's number via LT polynomials.

References

Factorization of Certain Cyclotomic Functions by D.H. Lehmer, Annals of Math Studies, 2nd series, 1933 (pp. 461-479)

 $\label{eq:http://www.cecm.sfu.ca/~mjm/Lehmer/ website maintained by M. Mossinghoff$

 $\label{eq:http://www.knotplot.com/knot-theory/ website maintained by R. G. Scharein$

Thank you!

Eriko Hironaka – Florida State University Complexity of Knots and Integers FAU Math Day

・ロン ・四と ・ヨン ・ヨン