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Modeling fluids

There are two interconnected parts of fluid modeling: Lagrangian
which follows the fluid as its moves and Eulerian which sits at a
point and considers local quantities like the velocity.

Lagrangian:

The trajectory through space of a fluid particle beginning at
position x is given by a function φ(t) with φ(0) = x and φ(t)

the position of the particle after time t.

If M is the fluid domain, all these trajectories are collected
together in a single function, the fluid motion,

φ : M × R → M,

usually written φt(x) = φ(x, t).
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Modeling fluids

Eulerian:

The velocity field is

u(φt(x), t) :=
∂φt

∂t
(x). (1)

The equations of fluid mechanics are usually written using the
velocity field. One then solves the advection equation (1) for
the trajectories.

For example, the Navier-Stokes equation

ρ
DX

Dt
= −∇pt + ν∆X,

with appropriate boundary conditions, where ν is the viscosity
and pt is the pressure.
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Deformation and vorticity

When we watch a fluid evolve, there seem to be (at least) two
fundamental things going on, stretching and rotating.

These are expressed infinitesimally at each point (Eulerian) using
the space derivative of the velocity field ∇u.
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The deformation

The symmetric part of ∇u can be orthogonally diagonalized
yielding the instantaneous, infinitesimal deformation

(∇u)sym :=
∇u+ (∇u)T

2
∼









d1 0 0

0 d2 0

0 0 d3









So again locally and instantaneously, dx/dt = (∇u)sym · x
integrates to trajectories

Φt(x) =









ed1t 0 0

0 ed2t 0

0 0 ed3t









· x
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Vorticity

The anti-symmetric part of ∇u yields the instantaneous,
infinitesimal curl or vorticity, ~ω = (ω1, ω2, ω3),

(∇u)anti :=
∇u− (∇u)T

2
=









0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









,

and (∇u)anti · x = ~ω × x

So again locally and instantaneously, dx/dt = (∇u)sym · x
integrates to trajectories which rotate around the axis ~ω with
angular velocity |~ω|.
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Back to modeling

Solving the Navier-Stokes equation is very hard. One must then
solve the advection equation (1) for the physical fluid trajectories.

It is not clear at all how the Eulerian infinitesimal and
instantaneous quantities of deformation and vorticity contribute to
actual macroscopic Lagrangian deformations and rotations.

Thus there are a host of analytic and qualitative methods for
getting information about the fluid evolution without going through
all these levels of analysis.

One class of methods go under the name of Topological Fluid
Mechanics which combines ideas from Topology and Dynamical
Systems theory. Today’s talk is about some of these methods in
two-dimensions.
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Knotting

Knots are an essential ingredient of
three-dimensional topology and thus of 3D
fluid dynamics.

What about two dimensions?

Co-dimension two is necessary for knotting.

Points are codimension two in the
plane. Can they be knotted? Yes, if
we consider the motion of the points.

Question: what are the implications
of knotted point motions?

Answer: Exponential growth of mate-
rial lines.
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Experimental illustration

Show Movie

Very roughly, on the left (pA) there is pure deformation (the
rotations cancel out) and on the right ((fo) there is pure rotation.

On the left (pA) material lines are growing exponentially in length
and and on the right ((fo) there is linear growth.

The left clearly mixes better than the right.

For a very viscous fluid the two protocols require very close to the
same energy.

Note the emergent structure on the left.

Today’s talk will focus on the exponential growth of material lines
and its implications for deformation, vorticity, and mixing.
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Outline

Part 1: Kinematics and Topological Kinematics.

Part 2: Consequences for passively transported scalars (eg. the
cream in your coffee).

Part 3: Applications to Euler flows.

Part 4: Choosing protocols to maximize a topological measure of
mixing efficiency.
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Main ideas:

Topological one-dimensional growth of material lines is
computable from knotted point motions.

Topological growth is lower bound for metric growth.

Metric one-dimensional growth of material lines is applicable to
two-dimensional fluid mechanics.

Exponential growth of material lines implies exponential
growth of gradients of passively transported scalars.

Large gradients enhance diffusion and thus mixing.

Interfaces between materials are one-dimensional curves and
long interfaces also enhance mixing.

Progression of ideas: Topology → Geometry → Analysis → Fluid
Mechanics.
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Part 1
Kinematics and topological kinematics
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Basic definitions: The fluid region

The fluid region is a smooth,
one-parameter family of
smooth, multi-connected,
compact, planar domains
Mt.

The outer boundary is held fixed while the inner disks move.

Always assume time-periodicity, Mt+1 = Mt, and thus model
stirring by moving rods and use the terminology stirring protocol to
describe the moving regions Mt.

The moving regions are called the stirrers, and they are perhaps
permuted each cycle.
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Basic definitions: the fluid motion

The fluid motion is a smooth one-parameter family of
diffeomorphisms, φt : M0 → Mt, with φ0 = id, just kinematics.

View φt as Lagrangian fluid displacement map: particle at x ∈ M0

at time 0 is at φt(x) ∈ Mt at time t.

I am avoiding the terminology “flow” because in dynamical
systems theory this means an R-action, ie. a steady flow in fluid
mechanics, which usually won’t be the case here.

The fluid motion is incompressible if it preserves Lebesgue
measure or equivalently, det(Dφt) ≡ 1.
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Basic definitions: the velocity field

The velocity field is

u(φt(x), t) :=
∂φt

∂t
(x).

Since φt : M0 → Mt the velocity field satisfies the boundary
conditions u · ni = Ḃi · ni, with Bi the motion of the ith boundary.

Initially strictly kinematics or dynamical systems and so the
velocity field is not yet assumed to satisfy any particular equation.

The stirring protocol is time-periodic but the velocity field is
perhaps not and so there is no Poincaré map in general.

The fluid motion is incompressible iff divu ≡ 0.
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One-dimensional metric growth rate

A material line in the fluid is described by a smooth arc or simple
closed curve (scc) γ. Let ℓt(γ) be its length with respect to some
smooth, periodic family of Riemannian metrics on the Mt.

The metric growth rate of γ is the growth of

Lmet
t (γ) :=

ℓt(φt ◦ γ)
ℓ0(γ)

.

On surfaces, the maximal exponential metric growth rate gives the
topological entropy, connected to Lyapunov exponents, etc.
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One-dimensional topological growth rate

For the topological growth rate, we compute least length in a
homotopy class, or equivalently, the length of an appropriate
geodesic.

To make the result strictly topological restrict consideration to just
topologically essential curves.

An essential arc is one
that connects two different
boundary components. An
essential simple close curve
(scc) is one that is neither
null-homotopic nor bound-
ary parallel
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One-dimensional topological growth rate

The homotopy class of an essential arc allows the endpoints to
slide along the boundary and for scc use free homotopy classes.
In both cases the class is denoted [γ].

The least length among curves in γ′s homotopy class is

Ltop(γ) := min{ℓ(σ) : σ ∈ [γ]}

The topological growth rate of the class [γ] is the growth of

Ltop
t (γ) =

Ltop(φt ◦ γ)
Ltop(γ)

,

So we evolve curve forward for time t and then shrink to the least
length in homotopy class.

N.B. For an essential curve γ, Lmet
t (γ) ≥ Ltop

t (γ).

FSU, 2013 – p.18



The least length in a homotopy class
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One-dimensional topological growth rate

The topological growth rate only depends on the rough topology
of the stirrer motion.

More precisely, recall two homeomorphisms f0, f1 : M0 → M0 are
isotopic if there is a continuous family of homeomorphisms ft

deforming one to the other.

The topological growth rate of an essential curve γ depends only
on the isotopy class of φ1 (since the protocol is periodic, this is the
same isotopy class as φn for all n ∈ N).

The topological growth is the same as the growth rate of word
length for the induced map on the fundamental group (Cayley
graph of fundamental group is quasi-isometric to the universal
cover).
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Thurston-Nielsen theory

In the language of this talk, the Thurston-Nielsen theory classifies
surface maps and their isotopy classes in terms of the rate of
topological one-dimensional growth, linear or exponential, and
give methods for computing the growth associated with specific
protocols.

The full theory deals with isotopy (mapping classes) on any
surface.
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The Thurston-Nielsen trichotomy

Let Mt be periodic stirring protocol with fluid motion φt. Then either

1. PseudoAnosov (pA): there exist constants λ > 1 (the dilation) and
0 < C1 < C2 such that for every essential curve γ,

C1λ
t ≤ Ltop

t (γ) ≤ C2λ
t.

2. Finite order (fo): there exists a constant K > 0 such that for every
essential curve γ,

Ltop
t (γ) < K n.

3. Reducible case: (roughly stated) M0 splits into φ1-invariant
subsurfaces on which (1) or (2) holds.
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Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

Initial state 



Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

1 iterate 



Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

2 iterates 



Experiment by Mark Stremler, see Boyland, P., Aref, H. and Stremler, M., Topological 

fluid mechanics of stirring, J. Fluid Mech., 403, 277--304, 2000. 

PseudoAnosov Finite Order 

9 iterates 





Remarks on TN trichomtomy

We call the stirring protocol finite order, pseudoAnosov, or
reducible according to the TN-type.

We focus here just on the pseudoAnosov case, where every
essential curve has the same topological exponential growth rate,
namely, λ.

This is independent of the details of the fluid motion, but just
depends on the topology of the stirrer motion as described shortly.

The topological growth is just a lower bound, the metric growth
could be much larger.

In the pseudoAnosov case the theory gives much more
information about the dynamics: ways to compute the dilatation λ,
periodic orbits and invariant measures that must be present, a
lower bound of log(λ) for the topological entropy, etc.
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Braids, stirring protocols and isotopy classes

TN type and the topological one-dimensional growth depend just
on the istotopy class of φ1.

The isotopy class just depends on the topology of the motion of
the stirrers and this in turn can be visualized and characterized by
their space-time trace or braid.

The algebra of the braid can be used to compute the TN-type.

The two protocols of the ex-
periment have inequivalent
braids; one is finite order
(linear growth) and the other
pA (exponential growth).

PseudoAnosov Finite Order
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Braids and stirring protocols

Taken from Finn and Thiffeault. FSU, 2013 – p.25



Part 2
Passively advected scalars
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Basic definitions

Given a fluid motion φt, a function α : Mt × R → R is called a
passively advected scalar if it is constant on trajectories,

αt(φt(x)) = α0(x),

or equivalently,

i
∂αt(φt(x))

∂t
= 0,

where we have written αt(x) for α(x, t).

Examples, dye in fluid, sugar in chocolate, or cream in coffee
ignoring diffusion.

In the language of global analysis one says that αt is the push
forward of α0 and writes (φt)∗(α0) = αt, with
(φt)∗(α0) = α0 ◦ (φt)

−1.
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Two fundamental types of advected scalars

For any function f : M0 → R we obtain a passively advected
scalar just by defining αt := (φt)∗(f), and so only the initial
configuration and the fluid motion matter.

For example, if the density of a dye tracer is initially given by α0

after time t the density is given by αt := (φt)∗(α0)

However, sometimes in a physical fluid αt may represent a scalar
of interest that is computed at each time from the velocity field.
Thus is represents a conserved quantity.

For example, in two dimensions the curl, ωt = ∇× u, is a
passively advected scalar for an Euler flow.

The first case is relevant to mixing while the second to
understanding dynamics of Euler fluids.
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Heuristic consequences of a pseudoAnosov protocol

For pseudoAnosov stirring protocol the metric length of essential
curves is growing exponentially fast.

Thus tangent vectors to these curves (material line elements)
must be growing in length exponentially under the action of the
space derivative of the fluid motion, Dφt.

For a passively advected scalar αt, since αt = α0 ◦ (φt)
−1,

∇αt = ∇α0(Dφt)
−1.

If fluid motion is incompressible, det(Dφt) = 1, and so (Dφt)
−1

also has an eigenvalue growing exponentially.

Thus |∇αt| is growing exponentially.
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Issues with the argument

There are (at least) three problems with making this rigourous.

The position along the material line at which we have growth
of tangent vectors is moving in time

There could be an unfortunate coincidence where ∇α0 stays
aligned with the stable eigen-direction of (Dφt)

−1.

The scalar could have patches where ∇α0 ≡ 0 and these
could be just where the material lines are stretching.

These issues are dealt with by using a more global argument and
assuming the initial configuration of the scalar is generic in a
precise sense.
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Theorem on passively advected scalars

Theorem: Mt is a time-periodic stirring protocol of pA type with
incompressible fluid motion φt. If αt is a passively advected scalar
such that its initial state α0 is a generic C2-function, then there are
positive constants c, c′ so that

sup
x∈M0

|∇αt(x)| ≥ cλt and
∫

Mt

|∇αt(x)| ≥ c′λt

for all t ∈ R, where λ > 1 is the dilation of the pseudoAnosov protocol.

Thus ‖αt‖C1 and ‖αt‖1,1 both go to infinity exponentially fast.
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Idea of proof

Find a C2-open, dense set G inside the Morse functions on M0 so
that α0 ∈ G implies that α0 has a band of regular inverse images
of essential arcs or circles.

The pA protocol forces stretch in length by λt. This coupled with
area preservation and the passive transport force level sets of
αt = (ϕt)∗(α0) to bunch up in transverse direction, which causes
‖∇αt‖∞ → ∞ like λt.
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Note on time-periodic fluid motions

If the velocity field is time-periodic with period one, then there is a
Poincaré map φ1 which satisfies φn = (φn

) where a superscript is

repeated composition.

If there is a passively advected scalar αt that depends on the
velocity field, then αt+1 = αt.

This means that the scalar is an integral of motion

α0(x) = α1(φ1(x)) = α0(φ1(x)).

If α0 is non-degenerate enough (eg. C2-generic again), this
implies that the dynamics of φt are very simple, in particular, it has
zero topological entropy and at most linear one-dimensional
metric growth of arcs.
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Part 3
Applications to Euler Fluid Motions

FSU, 2013 – p.34



Euler fluid motions

Now assume the velocity field u(x, t) of the fluid motion φt

satisfies the incompressible, constant density (ρ ≡ 1), Euler
equation

Du

Dt
= −∇pt, div(u) = 0,

with slip boundary conditions on the moving boundary.

Then φt is called an Euler fluid motion.

Recall that for two-dimensional, divergence-free velocity fields a
classical result says that the curl coupled with the circulations
around the boundary components and the boundary conditions
u · ni = Ḃi · ni determine the field completely.
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Existence of solutions: 2D Euler

One has global classical solutions of the incompressible Euler
equations in this case:

Theorem (Kozonoi 1985) Given a smooth family of smooth
compact planar regions Mt and any smooth divergence-free
vector field u0 with slip boundary conditions u0 · ni = Ḃi · ni (or
equivalently initial curl and circulations) on M0, there is a unique,
smooth Euler fluid motion with that initial data.

In general, we assume a global solution with the regularity of the
initial data and analyze its dynamics.
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Helmholtz-Kelvin theorem: Euler fluid motions

The Helmholtz-Kelvin Theorem (1890’s) allows one to use the
methods of dynamics/global analysis on Euler fluid motions.

Helmholtz-Kelvin Theorem: A two-dimensional area-preserving
fluid motion (Mt, ϕt) is Euler if and only if its vorticity is passively
transported,

∂ωt(φt(x))

∂t
= 0

and circulations around all smooth simple closed curves C are
preserved,

d

dt

∮

φt(C)

u · dr = 0.

The preservation of boundary circulation is a feature of
multi-connected domains.
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Transport of vorticity
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Transport of vorticity
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An exponential growth theorem

Helmholtz-Kelvin says vorticity is a passively advected scalar for
an Euler fluid motion and so we may use the theorem above:

Theorem: Let Mt be a time-periodic stirring protocol of pA type
with Euler fluid motion φt. If the initial vorticity ω0 is a generic
C2-function, there are positive constants c, c′ so that

sup
x∈M0

‖∇ωt(x)‖ ≥ cλt and
∫

Mt

‖∇ωt(x)‖ ≥ c′λt

for all t ∈ R where λ > 1 is the dilation of the pA protocol.

Thus ‖∆u(x, t)‖∞ = ‖∇ωt‖∞ → ∞, ‖ut‖C2 → ∞, and
‖ut‖2,1 → ∞ all like λt so u is not time-periodic.
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Remarks on exponential growth theorem

Yudovich (1974, 2000) and others showed linear growth of ‖∇ωt‖
for perturbations of many two-dimensional steady Euler fluid
motions. These results are central to stability analysis.

Arnol’d (1972), Friedlander and Vishik (1992) and others have
shown the importance of exponential growth of distortion for
stability analysis.

The basic mechanism in play here is the same: unbounded
distortion as t → ∞. Since ωt = ω0 ◦ φ−1

t ,

∇ωt = ∇ω0(Dxφt)
−1

Here the growth of ‖∇ωt‖ is exponential and forced by the
topology of the pA stirring protocol which forces the maximal
spectral radius of Dxφt to grow like λt.
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The energy of a stirred Euler fluid motion

Total energy is conserved for Euler fluid motions in stationary
bounded domains. What happens with moving boundary? Since
‖∇ω‖ → ∞, perhaps the energy is also unbounded?

Usual argument for a steady domain yields

dE

dt
= −

∑

∮

φt(Ci)

p Ḃi · dni.

since fluid can do work on the stirrers and vice versa (with the
sum over the boundary circles).

However, fairly standard arguments yield that for periodic
boundary motion the energy is uniformly bounded in time.

Question: Does the energy oscillate, go to an asymptote, stay
constant, etc. ?
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Speculations on applications to more general Euler flows

Main idea: Use points in the fluid as “virtual stirrers” or “ghost
rods” (Bowen 1978, Thiffeault and Finn 2006).

Extend TN-theory to get exponential topological growth from a set
of points for non-periodic fluid motions (probably doable).

Show that for typical initial vorticity, a two-dimensional Euler fluid
motion always has such orbits (??).

Provides a new perspective on a version of the Yudovich
Hypothesis/Conjecture: For generic initial vorticity a
two-dimensional Euler fluid motion satisfies

‖∆u(x, t)‖∞ = ‖∇ωt‖∞ → ∞
‖∇ωt‖L1 → ∞

exponentially fast.
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Part 4
Optimizing a topological measure of mixing efficiency

with Jason Harrington
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Mixing

Mixing refers to the process by which different materials are
intermingled by stirring a fluid. Examples include plastics,
cosmetics, rubber, candy, paint, cream in coffee, . . . .

In the most basic models one usually considers just the fluid
evolution with no diffusion or chemical reactions. This is
sometimes called stirring to distinguish it from more detailed
models.

Turbulent fluids mix well, but applications demand using minimal
energy and avoiding tearing, bubbles, etc.
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Mixing

It is clear that stretching (and thus folding) of material lines is
necessary for good mixing (but maybe not sufficient).

We have seen that exponential growth of material lines causes
exponential growth of gradients of transported scalars.

Also, in two dimensions interfaces between materials are
one-dimensional, this gives rise to the possibility of enhanced
diffusion across the interface.

Thus it is reasonable to use the global rates of stretching of
material lines as an approximate measure of good mixing.

As we have seen, a pA stirring protocol always causes
exponential stretching of material lines with a specified rate of λt

so we use λ as one measure of mixing.
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Entropy efficiency

Thus we seek protocols which maximize the λ while minimizing
the amount of stirrer motion.

We measure the amount of stirrer motion topologically, but other
measures might be more realistic.

The entropy efficiency is thus the stretch factor λ normalized by
taking the kth root where the protocol uses k separate stirrer
motions (the unit stirrer motion will be defined shortly).

Note on terminology: It is common take a logarithm and the
entropy of the protocol is defined to be log(λ) and then the
efficiency would be log(λ)/k.

We are thus faced with nonlinear, topological optimization
problem of maximizing the entropy efficiency among some class
of protocols.
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πi-stirring protocols

We restrict to a special class of stirring
protocols. in which a single stirrer S moves
around N fixed obstacles.

Each such protocol is uniquely described by a closed path starting
and ending at S.

Thus the collection of such protocols is naturally isomorphic to
π1(disk minus N points), the free group on N letters (more on the
fundamental group later).
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Entropy efficiency of a π1-protocol

The generator α4.

We may write each
π1-stirring protocol
uniquely as
η = α

ǫi1
i1

. . . α
ǫi1
ik

where
αj is going around the
jth hole once clockwise
and ǫij = ±1.

Using λ(η) to denote the topological stretch rate associated with
the protocol η its entropy efficiency is

eff(η) = λ(η)
1

#(η) ,

where #(η) is the number of αj used in η.
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Maximum entropy efficiency

For each N , let PP (N) be the group of all π1-protocols with N

fixed obstacles.

In this context the maximal entropy efficiency for a given N is

Eff(N) := sup{eff(η) : η ∈ PP (N)}

Numerically, Eff(N) appears to be achieved by
HSPN := α1α2 . . . αN . What can you prove?
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Maximum efficiency; N = 2

The case of two obstacles uses special methods.

In this case a standard trick (hyperelliptic involution) lifts the
problem to linear automorphisms of the two torus.

Then solve the optimization problem there by hand: the maximal
entropy efficiency for N = 2 is realized by the protocol α1α

−1
2 and

has value Eff(2) = 1 +
√
2.

The path of the stirrer is a figure eight with
an obstacle inside each loop and this pro-
tocol is often called the “taffy puller”
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Theorem on maximum efficiency when N > 2

Roughly, Eff(N) is asymptotically 3.

Theorem: There are explicitly defined matrices H(N) and Ĥ(N)

with

(

3N − 3N − 1

N

)1/N

≤ ρ(H(N))1/N

≤ Eff(N)

≤ ρ(Ĥ(N))1/N ≤ (3N − 2)1/N ,

where ρ(M) is the spectral radius of a matrix M .

Thus Eff(N) → 3 as N → ∞.

Heuristically, the best you can do is to triple lengths with each
stirrer loop.
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Theorem on maximum efficiency

Intuition: Each looping around a hole adds previous times three,
yielding 1 + 3 + · · ·+ 3N−1 = (3N − 1)/2 for N loops.
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Remarks on theorem

Numerical observation: ρ(H(N)) = 3N − L(N) and
ρ(Ĥ(N)) = 3N − L̂(N) to high accuracy for linear functions L and
L̂.

ρ(HN ) are all Salem numbers and ρ(ĤN ) are all Pisot numbers

Plot of N vs log(Eff(N)).
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Pisot and Salem numbers

A Pisot number is a real algebraic integer α > 1 such that all its
Galois conjugates are less than 1 in modulus.

A Salem number is a real algebraic integer α > 1 such that all its
Galois conjugates are less than or equal to 1 in modulus and at
least one conjugate is on the unit circle. This implies that 1/a is a
Galois conjugate and all other conjugates are on the unit circle.
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Steps in proof of theorem

The lower bound

Since the entropy efficiency is a max over protocols, any protocol
can be used as a lower bound.

Compute the entropy efficiency of the numerical “winner” HSPN .

This computation also involves a linearization, but this time using
homology in a special covering space.

Finally, estimate the spectral radius of a matrix Ĥ(N).
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Steps in proof of theorem

The upper bound

Transform the topological optimization problem to a nonlinear
algebraic one using algebraic topology, specifically, the
fundamental group.

Show that the solution to this problem is bounded above by the
solution to its linear analog (the joint spectral radius)

Prove the needed joint spectral radius is achieved by the matrix
H(N).
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Entropy efficiency using neighbor swaps

The natural first question is to consider the maximal stretch rate
per unit swap of adjacent stirrers (these are the usual generators
of the braid group).

Finn and Thiffeault (2010) using the argument developed here
show that the maximal entropy efficiency with these generators is
bounded above by (1 +

√
5)/2.

The bound is achieved for 3 rods and for n > 3 rods the maximal
entropy efficiency decreases for increasing n.

They also consider a class of protocols where a whole collection
of rods move at once.

We consider here protocols where a single rod moves in which
case the maximal entropy efficiency increases for increasing n.
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Conclusions

In two dimensions the proper braiding or knotting of fluid
trajectories gives rise to the exponential stretching of topologically
essential material lines.

This, in turn, implies the exponential growth of the maximum
deformation and thus of the gradients of any transported scalar.

Applications to Euler fluid motions then follow from the
Helmholtz-Kelvin Theorem.

One may formulate and in some cases solve the topological
optimization problem of maximizing the stretch while minimizing
the stirrer motion.
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