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Definitions
Gradients

Discrete Morse Theory

Let M be a simplicial complex. A discrete Morse function on M is a map
from the set of simplices of M to R. We abuse notation and write

f : M → R.

It must satisfy the following two conditions, for every p-simplex α(p) in M:

1 #{β(p+1) > α(p)|f (β) ≤ f (α)} ≤ 1;

2 #{τ (p−1) < α(p)|f (τ) ≥ f (α)} ≤ 1.
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Definitions
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Think: Function values increase with the dimension of the simplices.

Simple example: f : M → R, f (α) = dimα
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Critical Points

A simplex α(p) is critical if the following two conditions hold:

1 #{β(p+1) > α(p)|f (β) ≤ f (α)} = 0;

2 #{τ (p−1) < α(p)|f (τ) ≥ f (α)} = 0.

That is, α is critical provided f decreases when leaving α via a face, and f
increases when leaving α via a coface.

A simplex that is not critical is called regular.
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The index of the critical simplex α is dimα.

Think:
critical simplex σ

of dimension i
↔ critical point of index i

at barycenter of σ
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Examples

1 Critical vertex = Local minimum

2 Critical n-cell = Local maximum

3 For f (α) = dimα, every cell is critical.
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Here is a discrete Morse function on the circle:

There are two critical cells, f −1(0) and f −1(5).
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Here is a discrete Morse function on the torus:
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The critical cells are f −1(0), f −1(42), f −1(44), and f −1(86).
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Theorem: (Forman) Suppose f : M → R is a discrete Morse function.
Then M is homotopy equivalent to a CW-complex with exactly one cell of
dimension p for each critical simplex of dimension p.

So, the torus has the homotopy type of a complex with one vertex, two
1-cells, and one 2-cell.
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The Associated Gradient Field

Note: Regular simplices occur in pairs.

A simplex is regular if it has a face (coface) with higher (lower) value.
To visualize this: draw an arrow

α(p) → β(p+1)

for each such pair.
For any σ in M, exactly one of the following is true:

1 σ is the tail of exactly one arrow;

2 σ is the head of exactly one arrow;

3 σ is neither the head nor tail of an arrow.

In the last case, σ is critical.
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Here is the gradient field on the torus associated to the above discrete
Morse function:
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Gradients are easily characterized.

Definition. Let V be a discrete vector field on M. A V -path is a sequence
of simplices
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(p+1)
0 , α

(p)
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(p+1)
1 , . . . , β

(p+1)
r , α

(p)
r+1

with {αi < βi} ∈ V , i = 0, . . . , r , and βi > αi+1 6= αi . Such a path is
called closed if αr+1 = α0.

Theorem. (Forman) V is a gradient if and only if there are no closed
V -paths.

Another way to look at this, due to Chari, is to consider the Hasse
diagram of M, the directed graph whose vertices are the simplices of M
with arrows β(p+1) → α(p) for β > α. Modify it by reversing an arrow
whenever {α, β} ∈ V . Then V is a gradient if and only if this modified
diagram has no directed loops.
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Persistent Homology

Suppose we have a simplicial complex M and a filtration by subcomplexes

∅ = M−1 ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mr = M.

Fix i ≥ 0 and consider the sequence of homology groups

0→ Hi (M0)→ Hi (M1)→ · · · → Hi (Mr ).

If a class α is born in Hi (Mj) and dies in Hi (M`), we say the persistence of
α is `− j − 1.
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Filtrations and Persistence
The Persistence Pairing

How are classes born?

A simplex σ enters the complex at filtration level j and creates a cycle. We
call such a simplex positive.

How do classes die?

A simplex τ enters the complex at filtration level ` and fills in a cycle. We
call such a simplex negative.

This creates a pairing of the simplices of M.
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The Persistence Pairing

The pairing is defined as follows:

1 When a negative simplex τ enters the filtration, it has killed a
homology class. Find the youngest positive simplex σ representing
that class.

2 If σ is not yet paired with anything, then we pair σ and τ .

3 If σ is already paired, we then search for a homologous cycle
represented by a positive simplex which is unpaired (and we look for
the youngest such simplex); call this σ′. We then pair σ′ with τ .

Note that a simplex may get paired with something that is not adjacent to
it. Also, each simplex in M is in at most one pair (some simplices do not
get paired).
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Here’s one way to do this. Assume the filtration on M is such that each
level Mi is obtained from Mi−1 by attaching a single simplex σi .

Let D be the incidence matrix of the complex M:

Dij =

{
1 ifσi ∈ ∂σj
0 otherwise

If R is a 0− 1 matrix, let lowR(j) be the row index of the last 1 in column
j of R, and leave lowR(j) undefined if column j is 0.

Definition. R is called reduced and lowR is a pairing function if
lowR(j) 6= lowR(j ′) for nonzero columns j 6= j ′.
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Algorithm

Reduce D by adding columns mod 2 to other columns located to the right:

R = D

for j = 1 to n
while ∃j ′ < j with lowR(j ′) = lowR(j)

add column j ′ to column j

endwhile
endfor

Then if i = lowR(j), we pair σi with σj .
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The resulting pairing arising from this filtration is then

(t, st) (tu, tuw)
(w , sw) (uw , suw)
(v , uv) (tw , stu)
(u, sv) (su, suv)

The following simplices remain unpaired: s and stw . Note that this makes
sense: the Betti numbers of this complex are 1, 0, 1.

Note that we wound up with (u, sv) and (tw , stu). In both cases, the
lower dimensional simplex is not a face of the larger one. What that
means is that it took a while for the homology classes represented by u
and tw to die. This is information you might want to know.
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BUT

This looks like a vector field on M if we ignore these anomalies.
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Persistence to Discrete Vector Fields

Given a filtered simplicial complex M and its associated persistence pairing
P, we define a discrete vector field VP on M as follows:

1 If {α, β} ∈ P, and if α is a codimension-one face of β, then
{α, β} ∈ VP .

2 If {α, β} ∈ P, and if α is not a face of β, then leave α and β
unpaired.

Note that each pair {α, β} ∈ VP has α positive and β negative.
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Theorem. VP is a gradient.

Here’s the idea. Suppose we had a loop in VP :

Each of the edges on the interior is
positive by assumption. But that
can’t be—one of those edges had to
join the outer loop with the inner
triangle and therefore be negative.
(N.B. This is a gross
oversimplification, but it illustrates
the point.)

Kevin P. Knudson DMT vs. Persistence



Discrete Morse Theory
Persistent Homology
Persistence vs. DMT

Persistence to Discrete Vector Fields
Discrete Vector Fields to Persistence

Theorem. VP is a gradient.
Here’s the idea. Suppose we had a loop in VP :

Each of the edges on the interior is
positive by assumption. But that
can’t be—one of those edges had to
join the outer loop with the inner
triangle and therefore be negative.
(N.B. This is a gross
oversimplification, but it illustrates
the point.)

Kevin P. Knudson DMT vs. Persistence



Discrete Morse Theory
Persistent Homology
Persistence vs. DMT

Persistence to Discrete Vector Fields
Discrete Vector Fields to Persistence

Theorem. VP is a gradient.
Here’s the idea. Suppose we had a loop in VP :

Each of the edges on the interior is
positive by assumption. But that
can’t be—one of those edges had to
join the outer loop with the inner
triangle and therefore be negative.
(N.B. This is a gross
oversimplification, but it illustrates
the point.)

Kevin P. Knudson DMT vs. Persistence



Discrete Morse Theory
Persistent Homology
Persistence vs. DMT

Persistence to Discrete Vector Fields
Discrete Vector Fields to Persistence

An Example

Note: stu, sv , tw , u are all critical
and “shouldn’t” be.
But we have unique gradient paths

sv > v < uv > u

and

stu > tu < tuw > tw
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We can cancel these by reversing the arrows to yield a gradient with only s
and stw critical.

Conjecture. Those simplices that are paired by P but not in VP have a
unique gradient path joining them.
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Discrete Vector Fields to Persistence

Conversely, given a discrete gradient V , we’d like to associate to it a
filtration M• of M and then compute the persistence pairing PV .

The natural thing to try is to filter M by sublevel sets of a discrete Morse
function associated to V (there’s a fairly canonical choice of such a map).
This will lead to a filtration where more than one simplex enters at a time,
but that can be dealt with. I’m still working on this.
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What You Want:

PVP
= P

What You Can’t Have: VPV
= V

Example: Take V = ∅. Then PV 6= ∅; in fact some vertex will get paired
with one of its edges, and this pair will belong to VPV

.
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Future Work

1 Nail down the proper definition of PV .

2 Given any discrete vector field on M, we get a “persistence diagram”
as in Edelsbrunner, Letscher, Zomorodian. Is there a characterization
of those diagrams that correspond to gradients?

3 Kozlov has characterized discrete Morse functions as poset maps with
“small fibers” (fibers of cardinality ≤ 2). Since persistent homology
roughly corresponds to discrete Morse theory, what is the theory
associated with other poset maps? Is there a connection to
multidimensional persistence?
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