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1 Introduction

A general method for computing the Alexander invariants for a finite CW-complex is to start with
a finite presentation of the fundamental group of X and to construct a presentation matrix of the
Alexander module AX using Fox Calculus. Although the matrix depends on the presentation of
π1(X), the module and its fitting ideals are independent of these choices. In this note, we show
how to construct a presentation matrix for the Alexander module of M in the case when M is a
3-manifold fibered over a circle.

2 Background and Definitions

Let X be a finite connected CW-complex. Let F = H1(X; Z)/torsion. Let p ∈ X be a basepoint,

ρ̃ : X̃ → X

the universal abelian covering of X, i.e., the covering of X defined by the natural epimorphism
ρ : π1(X)→ F . The Alexander module AX of X is

AX = H1(X̃, ρ̃
−1(p); Z)

considered as a ZF module.
A presentation matrix for AX is a matrix

M : (ZF )s → (ZF )r

so that AX is the quotient of (ZF )r by the image of M . The Alexander ideals Ik ⊂ ZF of AX are
generated by the (r − k)× (r − k) minors of M .

Theorem 1 The Alexander ideals Ik do not depend on the presentation matrix M .

Assume F has rank n. The group ring ZF is naturally isomorphic to a Laurent polynomial ring
Z[t±11 , . . . , t±1n ] and the Alexander ideals define algebraic subsets, Vk ⊂ (C∗)n. As we see below,
the Vk are useful for computing the first Betti numbers of coverings (or of group cohomology with
twisted coefficients). Thus, the Vk have been called jumping loci.

When F = Z, then the Alexander polynomial ∆X is the principle generator of the smallest
non-trivial fitting ideal. In general, ∆X is the generator of the largest principle ideal contained in
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all the nontrivial fitting ideals. J. Alexander first used Alexander polynomials to distinguish knot
complements in 1923. He also showed that they can be computed using Skein relations. Alexander
polynomials for knot complements can be computed using Seifert surfaces (1934). The techniques of
Skein relations, and Seifert surfaces can be interpreted to include the case when F has higher rank,
and there is a distinguished homomorphism φ : F → Z. The resulting Alexander polynomial can
be thought of as a specialization of the multivariable Alexander polynomial. R. Fox developed his
calculus for computing Alexander polynomials from group presentations in 1953. His techniques
apply to the case when F has higher rank to compute presentation matrices for the Alexander
module with entries in a Laurent polynomial ring isomorphic to ZF .

Since the Alexander module presents the abelianization of the commutator subgroup of the
fundamental group of X, we have the following.

Theorem 2 The Alexander module only depends on the fundamental group π1(X) modulo its sec-
ond commutator subgroup.

2.1 Geometric version of Fox Calculus

Start with a finite CW complex X. Construct a cellular chain decomposition

· · · ∂3−→ C2
∂2−→ C1

∂1−→ C0,

so that C0 = {p} consists of a single point, C1 is a bouquet of r oriented circles y1, . . . , yr attached
at p, and C2 is a union of s disks whose boundaries map to C1. From this information, one has a
finite presentation of G = π1(X)

Fs → Fr
α→ G,

where Fs and Fr are free groups on s and r generators. Here we interpret the generators of Fs
as the generating 2-cells in C2, and their images in R1, . . . , Rs ∈ Fr are representation of their
boundaries as elements of π1(C1) = Fr. Thus, the fundamental group of X can be written as

G = 〈y1, . . . , yr : R1, . . . , Rs〉.

Let ρ : G → F be any epimorphism of groups. Consider the regular covering X̃ρ defined by ρ.

Then X̃ρ has a cell decomposition

· · ·
∂̃ρ,3−→ C̃ρ,2

∂̃ρ,2−→ Cρ,1
∂̃ρ,1−→ C̃ρ,0

defined using lifting maps. Choose a lift p̃ ∈ X̃ρ of p. Then p determines an identification C̃ρ,0 = ZF .

Let ỹ1, . . . , ỹr be the lifts of y1, . . . , yr to X̃ρ at the basepoint p̃. Then C̃ρ,1 is freely generated over

ZF with basis ỹ1, . . . , ỹr. The map ∂̃ρ,1 : C̃ρ,1 → C̃ρ,0 is defined by

ỹi 7→ (ρ(yi)− 1).

Before describing the map ∂̃ρ,2 : C̃ρ,2 → C̃ρ,1, we first consider the case where G = Fr is the free

group generated by y1, . . . , yr, and ρ is the identity map. Identify C̃ρ,1 with (ZFr)r as above with
basis ỹ1, . . . , ỹr as a ZFr module. Define

D : Fr → (ZFr)r

so that D(γ) is the lift of γ.
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Theorem 3 The map D is determined by the following properties

D(yi) = ỹi

D(fg) = D(f) + ρ(f)D(g).

The map D is called the Fox Derivative.
Let α : (ZFr)r → (ZG)r be the map defined by α, and let ρ : (ZG)r → (ZF )r be the map defined

by ρ. Let
∂̃ρ,2 : C̃ρ → C̃ρ,1

be the lift of ∂2, identifying C̃ρ,1 with the free module on ZF with basis ỹ1, . . . , ỹr. The lifting map

from π1(X, p) to C̃1 at p̃ extends by α to a map on Fr to give

Dρ : Fr → (ZF )r.

Theorem 4 The lifting map Dρ can be decomposed as

Dρ = ρ ◦ αr ◦D,

where D is the Fox derivative.

If ρ : G → F be the natural map to the abelianization F of G modulo torsion, then Dρ is the
classical Fox derivative. Since F is a finitely generated, torsion free, abelian group, ZF can be
considered as a ring of Laurent polynomials. The ideal Iρ ⊂ ZF of r − 1 × r − 1 minors of ∂̃ρ,2 is
called the Alexander ideal, and the generator of the largest principle ideal contained in I1 is the
classical multivariable Alexander polynomial. Twisted Alexander invariants are defined by letting
ρ map G to a subgroup of GLn(R).

2.2 Alexander invariants and group cohomology with twisted coefficients.

Alexander invariants can also be defined starting from an abstract finitely presented group. Given
a finitely presented group G with r generators y1, . . . , yr and s relations R1, . . . , Rs, let X be the
2-dimensional CW complex with one 0-cell p, r 1-cells attached to p at their end points, and s
2-cells attached along their boundaries to the 1-cells by a map determined by Ri. The Alexander
invariants for G are then defined as above using X.

Alternately, we can make a dual but very similar description for the group cohomology of a
finitely presented group. For ρ ∈ F̂ , let Cρ be the ZG-module where each g inG acts on C by
multiplication by ρ(g). (See [1] Section 2.2 for details.)

One can interpret the Vk in this context as follows.

Theorem 5 For φ ∈ F̂ and φ not equal to the identity character, φ ∈ Vk if and only if the rank of
H1(X,Cρ) is greater than or equal to k.

2.3 Alexander invariants and the first Betti number of finite abelian coverings

Let G be any finitely presented group with presentation

Fs → Fr
q→ G.
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Let Ĝ = Hom(G,C∗), identify (C∗)r with Hom(Fr,C∗), and let

Ĝ→ (C∗)r

be the natural map defined by composition with q.
For any finite quotient α : G→ T there is a natural inclusion

α̂ : T̂ ↪→ Ĝ = (C∗)r.

The Alexander ideals Iρ,k define subvarieties Vk ⊂ (C∗)r, called the Alexander strata.

Theorem 6 Let T be a finite abelian group, φ : π1(X) → T and epimorphism, and ρφ : Xφ → X
the corresponding finite abelian covering. Then H1(Xφ, ρ

−1
φ (p); Z) has rank given by

b1(Xφ, ρ
−1
φ (p)) = b1(X) +

r∑
k=1

|Vk ∩ α̂(T̂ ) \ 1̂|

where 1̂ ∈ (C∗)r is the identity element.

See [1], Proposition 2.5.6.

Corollary 7 The first Betti numbers of finite abelian coverings of a finite CW complex X are
determined by the Alexander module AX and the corresponding stratification of Ĝ.

2.4 The first Alexander ideal, and the Alexander polynomial

The first Alexander ideal I1 has a particularly simple form. The following useful lemma is contained
in the proof of Theorem 5.1 in [2].

Lemma 8 Let F = Zn, and let

(ZF )s
M−→ (ZF )r

α̃−→ (ZF )

be a sequence of ZF module homomorphisms such that α ◦M is the zero map. Recall that ZF
is a unique factorization domain. Let g1, . . . , gr be basis elements of (ZF )r. Assume that α̃(gi)
is irreducible for each i = 1, . . . , r. Let m be the ideal in ZF generated by the image of the free
generators of (ZF )r under the map α̃. The ideal of (r − 1) × (r − 1) minors of M is of the form
∆ ·m, for some polynomial ∆ ∈ ZF .

Proof. We will show that each (r− 1)× (r− 1) minor is of the form ∆ ·α(g) for some basis element
g of (ZF )r. For the purposes of computing the minor determinants, we may assume that M is an
r × (r − 1) matrix by removing some columns, so that

M : (ZF )r−1 → (ZF )r.

Since α ◦M = 0, we know that

r∑
i=1

α(gi)ai,j = 0 (1)
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where M = [ai,j ].
For each i = 1, . . . , r, let ∆i be the determinant of the matrix M with the ith row removed. Let

i and i′ be the indices of two rows of M . We will show that

α(gi)∆i′ = ±α(gi′)∆i. (2)

Assume that i 6= i′. By (1) we have

α(gi)ai,j = −
∑
k 6=i

α(gk)ai,j .

This means that if we multiply the ith row of Mi′ by α(gi)ai,j , then the ith row is a linear combi-
nation of the other rows of Mi′ and α(gi′) times the i′the row of Mi. The equation (2) follows.

Since α(gi) and α(gi′) are irreducible, (2) implies that up to units in ZF

∆i′ = α(gi)∆

and
∆i = α(gi′)∆

for some ∆ ∈ ZF that is independent of i and i′.

3 Fibered complexes

Let φ : X → S1 be a fibration with fiber S, and monodromy ψ : S → S. For simplicity we will
assume that π1(S) is free. (The same results hold if π1(S) is the quotient of a free group by the
conjugates of an element in its commutator subgroup.) Then the exact sequence

π1(S)→ π1(X)→ π1(S
1) = Z

splits, giving the following presentation for π1(X)

〈x1, . . . , xn, w : wxiw
−1 = ψ∗(xi), i = 1, . . . , n〉

Then X is isomorphic to a chain complex of the form

· · · ∂3−→ Cn2
∂2−→ Cn+1

1
∂1−→ C0.

where the subscripts indicate the dimension of the chains, and the superscripts indicate the rank
of Ck as a free module over Z.

Let Fφ = Zr, where r is the rank of H1(S; Z)ψ−inv, the elements of H1(S; Z) that are invariant

under the action of ψ. Then generators for H1(S; Z)ψ−inv define a surjection

ρ : π1(S)→ Fφ.

Let Sφ → S be the corresponding unbranched covering.
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1. F = H1(X; Z) decomposes into a direct sum:

F = Fφ ⊕ 〈u〉

where u is the image of w in H1(X; Z) under abelianization.

2. The maximal abelian covering X̃ of X is homeomorphic to Sφ × R.

Choose a basepoint p ∈ S, and p̃ a basepoint in Sφ that maps to p under the covering map. Let

x̃1, . . . , x̃n be lifts of x1, . . . , xn to p̃. Then we can write X̃ as a chain complex of the form

· · · ∂̃3−→ C̃2
∂̃2−→ C̃1

∂̃1−→ C̃0

where

C̃2 = (ZF )n

C̃1 = (ZF )n+1

and the maps ∂̃i are ZF -module homomorphisms.
The map ∂̃1 : C̃1 → C̃0 is given by

x̃i 7→ (ρ(xi)− 1)p̃

w̃ 7→ (ρ(w)− 1)p̃

So in matrix form ∂̃1 is given by

∂̃1 = [ρ(w)− 1, ρ(x1)− 1 · · · ρ(xn)− 1].

The image of ∂̃1 is the augmentation of ideal of ZF .
We now turn to ∂̃2. Consider any lift of ψ : π1(X, p) → π1(X, p) to an automorphism of free

groups
Ψ : 〈w, x1, . . . , xn〉 → 〈w, x1, . . . , xn〉.

Then

∂̃2 =
[
Dρ(wxiw

−1(Ψ(xi)
−1)
]

=


ρ(x1)− 1 ρ(x2)− 1 · · · ρ(xn)− 1

u−Dρ,1(Ψ(x1)) −Dρ,1(Ψ(x2)) · · · −Dρ,1(Ψ(xn))
−Dρ,2(Ψ(x1) u−Dρ,2(Ψ(x2) · · · −Dρ,2(Ψ(xn)

· · · · · · · · · · · ·
−Dρ,n(Ψ(x1) −Dρ,n(Ψ(x2) · · · u−Dρ,n(Ψ(xn)

 .

Lemma 9 The n× n minors of ∂̃2 are of the form

(u− 1)∆(u, t1, . . . , tn)

and
(ti − 1)∆(u, t1, . . . , tn), for i = 1, . . . , n,

where ∆(u, t1, . . . , tn) is some fixed polynomial in Z[u±1, t±11 , . . . , t±1n ] that only depends up to units
on X.

Corollary 10 The polynomial ∆ is the multivariable Alexander polyomial of X.
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4 Example

Let L be the closure of the σ1σ
−1
2 braid together with an encircling link. Figure 1 shows two

diagrams for the link L, showing that the link is symmetric in its components. Let M = S3 \N(L),
where N(L) is a union of tubular neighborhoods of the components of L. (The link L is given in
Rolfsen’s knot tables as the 622 link.)

K

2KK1

K1

2

Figure 1: The 622 link.

By construction ML is fibered over the circle with fiber a disk S with three punctures, and the
monodromy is the braid monodromy defined by φ = σ1σ

−1
2 . Choose a basepoint p on S and let

x, y, z be paths on S with initial and endpoints at p passing along a path from p to a point near a
puncture, encircling the puncture counterclockwise, and returning along the same path back to p.
The result of the action of the monodromy of φ on x, y, z is shown in Figure 2.

p

y zx

p

y z x

Figure 2: The braid monodromy action on π1(S).

Let t, u ∈ H1(ML; Z) be oriented meridian loops around the components of L, with t a meridian
for the braid closure K1, and u a meridian for the encircling link K2. Then H1(M ; Z) is the free
abelian group generated by t and u. Under the abelianization map,

π1(ML)→ H1(ML; Z)

the loops x, y, z each map to t. Let w ∈ π1(ML) be a lift of u under the abelianization map. Then
π1(ML) is generated by x, y, z, w and has relations

R1 : wxw−1 = y−1zy

R2 : wyw−1 = y−1zyx−1y−1z−1y

R3 : wzw−1 = y.
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The Fox derivatives for the Alexander module AL of ML is given by

DR1 = (1− t)du+ udx+ (t−1 − 1)dy − t−1dz
DR2 = (1− t)du− tdx+ (u+ t+ t−1 − 2)dy + (1− t−1)dz
DR3 = (1− t)du− dy + udz.

The Alexander polynomial of the Alexander module AL is the greatest common divisor of the 3×3
minors of the Fox matrix 

1− t 1− t 1− t
u −t 0

t−1 − 1 u+ t+ t−1 − 2 −1
−t−1 1− t−1 u

 .
A calculation shows that the minors obtained by deleting the first row gives

(u− 1)(1− u(1− t− t−1) + u2)

while the others are given by

±(t− 1)(1− u(1− t− t−1) + u2).
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