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Minimum dilatation problem

Let S be a compact surface with χ(S) < 0, and let φ : S → S a
homeomorphism.

Loosely speaking, φ is pseudo-Anosov if φ is “well-mixing” .

The dilatation λ(φ) is the “average distortion” of the map.

These notions only depend on the isotopy class of the map.

Problem 1: For fixed S what is the least dilatation of a
pseudo-Anosov map?

Problem 2: How does least dilatation depend on the complexity
of the surface S (e.g. genus, topological Euler characteristic)?

Problem 3: What do the minimizing pseudo-Anosov maps look
like?



Outline

In this talk, we consider two examples:

the simplest pseudo-Anosov braid monodromy and its
“deformations”

an example of Penner

Using these examples, we formulate some conjectural answers to
Problems 2 and 3.



Example 1: Simplest pseudo-Anosov braid monodromy
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Action of the mapping class

Action of the mapping class on a simple closed curve.
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Action on a simple closed curve (one application of map):
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Action on a simple closed curve (2 applications of map):
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Action on a simple closed curve (3 applications of map):

back to start



Definitions

A homeomorphism φ : S → S is pseudo-Anosov if there is a pair of
φ-invariant transverse measured singular foliations (F±, ν±) on S
and a λ > 1 so that the action of φ on S acts on the measures by
φν± = λ±1ν±.

Equivalently:

φ is pseudo-Anosov if for any Riemannian metric ω on S and any
essential simple closed curve γ ⊂ S , the growth rate of `ω(φn(γ))
is λ > 1, where λ does not depend on γ or ω.

λ(φ) = λ is called the dilatation of φ.



An associated train track map

A train track τ is an embedded graph on S , with ”smoothings” of
the edges along vertices.
It fills S if the complement components are either disks or
boundary parallel annuli.
An essential simple closed curve is carried on a train track if it can
be moved isotopically so that it lies smoothly on τ .
If φ is pseudo-Anosov, then there is a train track τ on S such that
for any essential simple closed curve γ on S , φn(γ) is carried on τ
for large enough n.



Computing the dilatation of the simplest hyperbolic braid
monodromy

A train track τ defines a vector space W of “virtual curves”
carried by the train track.
Any pseudo-Anosov map φ that is compatible with τ induces a
linear map on T : W →W .

T =

[
1 1
1 2

]
The dilatation λ equals the spectral radius of T :

|x2 − 3x + 1| =
3 +
√

5

2
= (golden mean)2



Minimization problem I

If (S , φ) is pseudo-Anosov, then

λ(φ) is an algebraic integer, in fact, a Perron number,

the degree of λ(φ) is bounded in terms of the topology of S ,

It follows that for a fixed surface S the set of λ(φ) forms a discrete
set of algebraic integers.

Problem 1: For fixed S what is the smallest dilatation?

For example, for S = S0,4, the simplest pseudo-Anosov braid
monodromy has smallest dilatation.

The minimum is also known for S0,n for n = 5, 6, 7, 8, and S1,1, S2,0

[Ko-Los-Song’02, Ham-Song’05, Cho-Ham’08, H -Kin’06,
Aaber’06, Lanneau-Thiffeault’11]



Minimization Problems II, III

Let P be the set of all pseudo-Anosov mapping classes (S is
allowed to vary).

The normalized dilatation of (S , φ) is defined to be

L(S , φ) = λ(S)|χ(φ)|.

Problem 2: What is the smallest accumulation point of L?

Problem 3: What do mapping classes with bounded L look like?



Deformations of pseudo-Anosov mapping classes

By Thurston’s theory of fibered faces, P partitions into families
associated to fibered faces parametrized by rational points FQ on a
convex Euclidean polyhedron F . The mapping classes belonging to
a single FQ correspond to transversal (recurrent) surfaces to a
single pseudo-Anosov flow on a hyperbolic 3-manifold, and thus
have related dynamics.

This gives a decomposition of P:

P =
⋃

FQ

as opposed to the more usual

P =
⋃
S

PS .

In the former, one has a notion of deformation of a mapping class
on a stratum, while in the latter each stratum is discrete.



Deformations of pseudo-Anosov mapping classes

Theorem (Fried ’82, Matsumoto ’87, McMullen ’00)

The normalized dilatation function

L(S , φ) = λ(S)|χ(S)|

defined on FQ extends to a continuous convex function on F .

Corollary

For each F , L has a unique minimum on F .

Remark: (Hongbin Sun), the minimum is not necessarily attained
by an element of FQ.



Describing pseudo-Anosov maps with bounded L

Let P0 ⊂ P be the set of pA maps with no interior singularities.

Theorem (Farb-Leininger-Margalit’08)

For any P > 1, there is a finite collection of fibered faces
F1, . . . ,Fk such that for any (S , φ) ∈ P0 such that L(S , φ) < P,
we have (S , φ) ∈ Fi for some i.

Consequences and remarks:

To describe the small dilatation maps it suffices to describe
what the monodromy on single fibered faces look like.

For the moment, there is no good bound on the number k . It
would be nice to be able to relate geometric information
about the a fibered 3-manifold to the size of minimum
normalized dilatation.

Opposite approach: look at natural families of small dilatation
maps, and the fibered faces they determine.



Penner’s Example

(Penner ’91) First explicit example of a small dilatation family:

φg = rgδcg δ
−1
bg
δag

Penner: λ(Sg )g is bounded.

More generally, for each k
m , with m ≥ 2 and k ≥ 1, we can consider

φk,m = rkmδcδ
−1
b δa.

This gives a family of pA maps parameterized by rational points on
an open interval.



Convergence of Penner’s sequence

Theorem (H ’12)

Each Penner-type family is a one-dimensional linear section of a
fibered face.

Application: Penner’s sequence is a convergent sequence on a
fibered face F

φg = rgδcg δ
−1
bg
δag −→ φ = δcδ

−1
b δa.

and L(Sg , φg )→ L(S , φ) = |u2 − 7u + 1|2 = 46.9787 . . .



Deformations of the simplest pseudo-Anosov braid
monodromy

(Thurston’80s, McMullen’00, H ’09)

The fibered face associated to the simplest pA braid is
1-dimensional.

One can parameterize the fibered face by an open interval
(−1, 1) so that k

m ∈ (−1, 1) corresponds to a pseudo-Anosov
map (S , φ), where

χ(S) = −m

and
λ(φ) = |x2m − xm+k − xm − xm−k + 1|.

The minimum normalized dilatation occurs at 0, and

L(S0, φ0) =

(
3 +
√

5

2

)2

≈ 6.8541 . . .



Train track automata (Ko-Los-Song ’04)

Train track maps can be decomposed into a composition of folding
maps, where two edges meeting at a cusp get identified.

This changes the train track to a new one that is still compatible
with the same pseudo-Anosov map.

One can define an automaton, where the train tracks are the
vertices, and there is a directed edge from a train track to the
result of one folding.

(also studied by Ham-Song, Cho-Ham, Lanneau-Thiffeault)



Train track map for the deformation of the simplest pA
braid at k/m = 1/2
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Train track map for 1/m (where 3 6 |m)
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Murasugi-sum of mapping classes

Observation: the maps (S 1
m
, φ 1

m
) can be obtained from (S 1

2
, φ 1

2
) by

a sequence of Murasugi-sum with mapping classes that are
periodic relative to their boundary.

(H ) For deformations of the simplest pA braid monodromy, they
can be described using mixed-sign Coxeter graphs, and as twisted
maps.



Twisted maps

Let (S , φ) be a pA map, where S is a surface with boundary, Let
Pk ⊂ S be a 2k-gon, such that every other boundary edge lies in
∂S , and the rest of Pk lies in the interior of S . Then we can define
a family of twisted maps (Sn, φn) by

For k = 2:

For k = 3:



Conjectural answers to Minimizations Problems II and III

Conjecture

The smallest accumulation point for L on P equals(
3 +
√

5

2

)2

.

Conjecture

For P > 1 there is a constant C (depending on P), such that for
every (S , φ) with L(S , φ) < P, we have

a subsurface Y ⊂ S with |χ(Y )| < C , and a mapping class φ̂
supported on Y ,

a subsurface Σ ⊂ S, and a mapping class R supported on Σ
that is periodic relative to the boundary of Σ,

such that φ = R ◦ φ̂.



Thank you.
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