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Abstract. Let f : (S2, A) → (S2, B) be an orientation-preserving branched covering of
pairs where A and B are finite sets containing at least 3 points, B contains the critical values
of f , and A ⊆ B. We study the deformation space Df consisting of classes of marked rational
maps F : (P1, A′) → (P1, B′) that are combinatorially equivalent to f . In the case A = B,
Thurston gave a topological criterion for which Df 6= ∅, and he proved that Df is always
connected. We show that if A ( B, then Df need not be connected. We exhibit a family of
quadratic rational maps for which the associated deformation spaces are disconnected; in fact
they have infinitely many components. In particular, we construct explicit automorphisms
of Df that cyclically permute an infinite set of connected components.

1. Introduction

Let f : (S2, A) → (S2, B) be an orientation-preserving branched covering of pairs where A
and B are finite sets containing at least 3 points, and B contains the critical values of f . In
this paper, we study spaces of rational maps equivalent to f from two different perspectives.
The first perspective is ‘nondynamical’: we let Uf be the space of marked rational maps
that are Hurwitz equivalent to f , where A and B are not related. The second perspective
is ‘dynamical’, where we identify domain and range and assume A ⊆ B. This determines a
subspace Df ⊆ Uf of rational maps combinatorially equivalent to f called the deformation
space of f . In the purely dynamical setting where A = B, W. Thurston gave a criterion for
Df to be nonempty and established the following result.

Theorem 1.1 (W. Thurston [DH], [BCT]). If A = B, then Df is connected, and if Df is
nonempty and does not contain an element of Lattès type1, then Df is a single point.

More generally, when A ⊆ B, Epstein proved the following theorem.

Theorem 1.2 (A. Epstein [E]). If Df is nonempty, and does not contain an element of
Lattès type, then Df is a smooth complex submanifold of Uf of dimension |B − A|.

The main result in this paper is that Df need not be connected in general. Assume Df is
nonempty, and let u0 ∈ Df . The covering map ω : (Uf , u0)→ (Wf , v0) defined by forgetting
the markings restricts to a covering map ν : (Df , u0)→ (Vf , v0), and we have a commutative

The first author was partially supported by a collaboration grant from the Simons Foundation #209171.
The second author was partially supported by the NSF and the Sloan Foundation.
1See [M1] for the definition of a Lattès map.
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diagram:

(Df , u0)
ν

��

� � // (Uf , u0)
ω

��
(Vf , v0) �

� // (Wf , v0)

We study the connected components of Df using the covering map ν. Let Sf be the group of
covering automorphisms of ν and let Eu0 be the setwise stabilizer of the connected component
of Df containing u0. We characterize Sf as a particular subgroup of the pure mapping class
group of (S2, B), and we show that Sf acts transitively on fibers of ν. It follows that there
is a bijection between the connected components of Df and the set of cosets Sf/Eu0 .

We prove that Df is disconnected when f belongs to a particular subspace of the space of
quadratic rational maps. Let Mcm

2 be the moduli space of critically-marked quadratic rational
maps. Let Per4(0) ⊆ Mcm

2 be the subspace of maps with a marked superattracting 4-cycle
(see [M2]), and define Per4(0)∗ ⊆ Per4(0) to be the subspace for which the superattracting
4-cycle contains only one critical point. Let f represent an element of Per4(0)∗, let A be the
set of points in the marked superattracting 4-cycle, and let B := A∪ {b} where b /∈ A is the
other critical value of f . Then f : (P1, A) → (P1, B) defines a branched covering of pairs
and Df has a canonical basepoint.

Theorem 1.3. If 〈f〉 ∈ Per4(0)∗, then Df has infinitely many connected components.

Remark 1.4. Firsova, Kahn, and Selinger have given a different and independent proof that
Df is disconnected for 〈f〉 ∈ Per4(0)∗. Rees also has a substantial body of work related to
the topology of deformation spaces [R].

Acknowledgments. We would like to thank M. Astorg, L. Bartholdi, X. Buff, A. Epstein,
J. Hubbard, C. McMullen, and D. Thurston for helpful conversations related to this work.

2. Spaces of rational maps and their modular groups

In this section, we begin with a branched covering of pairs f : (S2, A) → (S2, B). Here we
assume A and B are finite, each containing at least 3 points, and B contains the critical
values of f . We first define the spaces of rational maps Uf andWf , and the regular covering
map ω : Wf → Uf . We then suppose A ⊆ B, define the deformation space Df , and study
the regular covering map ν : Df → Vf induced by ω. The language of covering maps allows
us to translate the problem of comparing subgroups of covering automorphisms to subgroups
of the fundamental groups of spaces. We then describe how equalizers play an important
role in this discussion.

2.1. Rational maps marked by a branched covering. Let f : (S2, A) → (S2, B) be a
branched covering of pairs. A rational map F : (P1, A′) → (P1, B′) is Hurwitz equivalent to
f if there is a commutative diagram

(S2, A)
ψ //

f
��

(P1, A′)

F
��

(S2, B)
φ // (P1, B′)
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where φ and ψ are orientation-preserving homeomorphisms of pairs. The commutative di-
agram is called an f -marking of F and is denoted (ψ, φ, F ). The set of equivalence classes
[ψ, φ, F ] of f -markings (ψ, φ, F ) forms a space we denote by Uf . Here two f -markings
(ψ1, φ1, F1) and (ψ2, φ2, F2) are equivalent if there is a commutative diagram

(S2, A)
ψ2 //

f

��

e′

%%JJ
JJ

JJ
JJ

J
(P1, A′2)

F2

��

α

yysss
sss

sss
s

(S2, A)
ψ1 //

f
��

(P1, A′1)

F1

��
(S2, B)

φ1 // (P1, B′1)

(S2, B)
φ2 //

e
99ttttttttt

(P1, B′2)

β
eeKKKKKKKKKK

where e′ is isotopic to the identity rel A, e is isotopic to the identity rel B, and α and β are
Möbius transformations.

The space Uf may be thought of as the Teichmüller space of f -marked rational maps. In
fact, it can be canonically identified with the Teichmüller space TB of (S2, B) which we now
define.

2.2. Teichmüller and moduli spaces. Recall that the Teichmüller space of (S2, A), de-
noted TA, is the space of orientation-preserving homeomorphisms or markings

φ : (S2, A)→ (P1, A′)

up to pre-composition by isotopy equivalence rel A and post-composition by Möbius trans-
formations.

The branched covering f : (S2, A) → (S2, B) defines a pullback map σf : TB → TA (see
[DH]).

Proposition 2.1. The space Uf is naturally isomorphic to the graph of σf .

The Teichmüller space TA has a natural quotient spaceMA, the moduli space of (S2, A); that
is, the set of all injective maps i : A→ P1 up to post-composition by Möbius transformations.
The map TA → MA which sends the equivalence class of φ to the equivalence class of
φ|A is a universal covering map. The pure mapping class group of (S2, A) is the group of
isotopy classes rel A of orientation-preserving homeomorphisms (S2, A) → (S2, A) that fix
A pointwise. This group acts freely and properly discontinuously on TA by pre-composition
and is isomorphic to the modular group ModA, the group of covering automorphisms of
TA →MA.

2.3. Moduli space of rational maps Hurwitz equivalent to f . We define a moduli
space Wf , a natural quotient map ω : Uf → Wf , and an associated modular group, which
we will denote by Lf .

Consider the space of triples (i, j, F ) where i : A→ P1 and j : B → P1 are injective maps,
and F : (P1, i(A))→ (P1, j(B)) is a rational map. Two such triples (i1, j1, F1) and (i2, j2, F2)
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are equivalent if there is a commutative diagram

A

f |A
��

i1 //

i2

%%
P1

F1
��

α // P1

F2
��

B
j1 //

j2
::P1 β // P1

where α and β are Möbius transformations. Let [i, j, F ] denote the equivalence class of
(i, j, F ). Consider the map which sends [ψ, φ, F ] ∈ Uf to the equivalence class [ψ|A, φ|B, F ].
Let Wf be the image of Uf , and define ω to be

ω : Uf → Wf

[ψ, φ, F ] 7→ [ψ|A, φ|B, F ].

The space Wf can be thought of as the moduli space of rational maps which are Hurwitz
equivalent to f . The map ω : Uf → Wf is a regular covering map whose group of covering
automorphisms is the group Lf , which we define below.

2.4. The liftables. Let h : (S2, B)→ (S2, B) be an orientation-preserving homeomorphism
that fixes B pointwise. We say that h is liftable if there is an orientation-preserving homeo-
morphism h′ : (S2, A)→ (S2, A) fixing A pointwise so that the following diagram commutes.

(S2, A)

f
��

h′ // (S2, A)

f
��

(S2, B)
h // (S2, B).

Any lift h′ is unique up to covering automorphisms. The condition that h′ fixes A makes h′

unique (cf. [K]). By the homotopy-lifting property, the group of liftable homeomorphisms
descends to the corresponding group of liftables associated to f

Lf := {[h] ∈ ModB | h is liftable}.

This defines the lifting homomorphism

Φf : Lf → ModA

[h] 7→ [h′].

There is a natural action of Lf on Uf given by

[h] · [ψ, φ, F ] 7→ [ψ ◦ h′, φ ◦ h, F ].

See [K] for a proof of the following proposition.

Proposition 2.2. The map ω : Uf →Wf is a regular covering map with group of covering
automorphisms isomorphic to Lf .
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2.5. Equalizers. Much of the discussion in this paper will use the language of equalizers;
we now recall the definition. Let f, g : X → Y be two maps between sets X and Y . The
equalizer of f and g is

Eq(f, g) := {x ∈ X | f(x) = g(x)}.
Note that the set Eq(f, g) may be empty.

2.6. The deformation space. Assume that A ⊆ B. There are two natural maps

τ1, τ2 : Uf → TA
given by

τ1 : [ψ, φ, F ] 7→ [ψ] and τ2 : [ψ, φ, F ] 7→ [φ]A

where [φ]A denotes the equivalence class of φ in TA.
An f -marking (ψ, φ, F ) is a combinatorial equivalence if [φ]A = [ψ] and ψ|A = φ|A. Then

[ψ, φ, F ] satisfies τ1([ψ, φ, F ]) = τ2([ψ, φ, F ]) if and only if [ψ, φ, F ] contains a combinatorial
equivalence. We define the deformation space Df to be

Df := Eq(τ1, τ2).

We can think of Df as the dynamical Teichmüller space defined by f .

2.7. Moduli space of rational maps combinatorially equivalent to f . We denote the
image of Df in Wf as Vf := ω(Df ). The space Vf can be thought of as the the dynamical
moduli space defined by f , or as the moduli space of rational maps which are combinatorially
equivalent to f . We define the associated modular group in the next section.

There are two natural maps
ρ1, ρ2 :Wf →MA

given by
ρ1 : [ψ|A, φ|B, F ] 7→ [ψ|A] and ρ2 : [ψ|A, φ|B, F ] 7→ [φ|A].

We have
Vf ⊆ Eq(ρ1, ρ2),

and Vf is a union of connected components of Eq(ρ1, ρ2).

2.8. The special liftables. The assumption A ⊆ B determines a subgroup of Lf which
preserves Df . Given g ∈ ModB, we denote by gA the mapping class in ModA defined by g.
We define the special liftables to be

Sf := {` ∈ Lf | Φf (`) = `A}.
Suppose Df 6= ∅, and consider the map ν : Df → Vf given by restricting ω : Uf → Wf .
As established in Proposition 2.5, ν is a regular covering map whose group of covering
automorphisms is isomorphic to Sf . We can therefore think of Sf as the dynamical modular
group of f .

Lemma 2.3. The group Sf preserves Df .

Proof. An f -marking (ψ, φ, F ) represents an element in Df if and only if [ψ] = [φ]A in TA.
Because [h] ∈ Sf , [φ ◦ h]A = [h]A · [φ]A = [h′] · [ψ] = [ψ ◦ h′], so [h] · [φ, ψ, F ] ∈ Df . �

Lemma 2.4. For [h] ∈ Lf , if [h] · Df ∩ Df 6= ∅, then [h] ∈ Sf .
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Proof. Take [h] ∈ Lf , and let [ψ, φ, F ] ∈ Df . Assume that [h] · [ψ, φ, F ] ∈ Df . Then we have

[ψ ◦ h′] = [φ ◦ h]A equivalently [h′] · [ψ] = [h]A · [φ]A

in TA. Because [ψ] = [φ]A and because the action of ModA on TA is free, we have [h′] = [hA],
so [h] ∈ Sf . �

Proposition 2.5. The map ν : Df → Vf is a regular covering map with covering automor-
phisms Sf .

Proof. Lemmas 2.3 and 2.4 imply that Vf is the quotient of Df by the action of Sf . �

2.9. Connected components of Df . Assume Df 6= ∅, and let u0 ∈ Df be a basepoint.
Let v0 := ν(u0), let V0 be the connected component of Vf containing v0, let D0 := ν−1(V0)
and let ν0 := ν|D0 . Proposition 2.5 implies that

ν0 : (D0, u0)→ (V0, v0)

is a regular covering map with covering automorphisms Sf . Consider the defining map for
the covering ν0

h0 : π1(V0, v0)→ Sf

defined by path-lifting. The image Eu0 of h0 is the group of covering automorphisms of ν0
restricted to the connected component Du0 of D0 containing u0.

Lemma 2.6. There is a bijection between the cosets of Eu0 in Sf and the connected compo-
nents of D0 given by

gEu0 7→ g(Du0).

Proof. It suffices to note that we have equality of cosets g1Eu0 = g2Eu0 if and only if g1(u0)
and g2(u0) are in the same connected component of D0. We have g1Eu0 = g2Eu0 if and only
if g−11 g2 ∈ Eu0 or equivalently g−11 g2(Du0) = Du0 . Multiplying by g1 gives the equivalent
statement

g1(Du0) = g1(g
−1
1 g2)(Du0) = g2(Du0).

�

2.10. Equalizers and fundamental groups. We study the groups Sf and Eu0 using the
language of equalizers. In general, given two maps

ξ1, ξ2 : (X , x0)→ (Y , y0)

between connected finite CW-complexes we define the equalizer group by

S(ξ1, ξ2) := {γ ∈ π1(X , x0) | (ξ1)∗(γ) = (ξ2)∗(γ)}.

Let ι : (Eq(ξ1, ξ2), x0) ↪→ (X , x0) be the inclusion, and define

E(ξ1, ξ2) := ι∗(π1(Eq(ξ1, ξ2), x0)).

We have E(ξ1, ξ2) ⊆ S(ξ1, ξ2).
To study Eu0 and Sf we recall the natural maps ρ1, ρ2 : (Wf , v0)→ (MA,m0), and consider

the groups S(ρ1, ρ2) and E(ρ1, ρ2). These are related to Sf and Eu0 via the defining map

h : π1(Wf , v0)→ Lf
6



for the covering ω : (Uf , u0)→ (Wf , v0). Recall that h is defined by h(γ) := [hγ], where [hγ]
is the unique covering automorphism taking u0 to the endpoint of the lift of γ to Uf based
at u0.

Let hS and hE be the restrictions of h to the subgroups S(ρ1, ρ2) and E(ρ1, ρ2) in π1(Wf , v0).
Then we have the following.

Proposition 2.7. The maps hE and hS define isomorphisms

hE : E(ρ1, ρ2)→ Eu0 ,

and
hS : S(ρ1, ρ2)→ Sf .

Lemma 2.6 gives the following result.

Corollary 2.8. There is a bijection between the connected components of D0 and the cosets
S(ρ1, ρ2)/E(ρ1, ρ2).

Remark 2.9. Since the spaces Uf and Wf are connected, S(ρ1, ρ2) only depends on f and
not on the choice of basepoint u0. It is currently unknown, at least to the authors, whether
Vf is always connected, or whether E(ρ1, ρ2) is independent of the choice of basepoint.

2.11. Example. We apply the previous definitions to a specific example that will be useful
in the next section.

Let
X := {(x, y) ∈ C2 | x 6= 0, x 6= 1, y 6= 0, y 6= 1 and x+ y 6= 1},

and let ξ1, ξ2 be the projections onto the x and y coordinates. Let δ : X → X be given by
δ(x, y) := (y, x). Then ξ1 = ξ2 ◦ δ and ξ2 = ξ1 ◦ δ.

Define a quotient space of X as follows. Let

Q := {(z, w) ∈ C2 | z 6= 1, w 6= 0 and w − z 6= −1}.
Let a satisfy 1/2 < a < 1, let x0 := (a, a) ∈ E := Eq(ξ1, ξ2), and let q0 := (2a, a2). Let s be
the quotient map

s : (X , x0) → (Q, q0)
(x, y) 7→ (x+ y, xy).

We now describe the fundamental group of Q.
Let K1 ⊆ X be

K1 := ξ−11 (a) = {(a, y) ∈ X | y /∈ {0, 1− a, 1}},
and let K2 := δ(K1). Since 1/2 < a < 1, the inclusions of K1 and K2 into X are general
fibers of the singular fibrations ξ1 and ξ2. Thus, the inclusions induce epimorphisms

π1(K1, x0)→ ker((ξ1)∗) and π1(K2, x0)→ ker((ξ2)∗).

Let
L := {(z, w) ∈ Q | w = a(z − a)},

which is the image of K1 and K2 inside Q, and let

E := {(z, w) ∈ Q | 4w = z2},
which is the image of E inside Q. Then q0 ∈ L ∩ E and the line L is tangent to the conic E .
Let ιL : L → Q be the inclusion map. Since L is isomorphic to a complex line with three
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points removed, its fundamental group π1(L, q0) is the free group on three generators r′, s′

and c′, where

(a) r′, c′ and s′ are freely homotopic to small positively-oriented loops around the three
punctures of L corresponding to {w = 0}, {z = 1} and {w = z − 1}, and

(b) r′c′s′, c′s′r′ and s′r′c′, are each homotopic rel q0 to a large simple closed loop encircling
the three punctures.

By the Zariski-van Kampen theorem, the map

(ιL)∗ : π1(L, q0)→ π1(Q, q0)

is surjective. Thus, r := (ιL)∗(r
′), s := (ιL)∗(s

′) and c := (ιL)∗(c
′) generate π1(Q, q0).

Figure 1. The space X (on the left) is the complement of the vertical, hori-
zontal and anti-diagonal lines. The space Q (on the right) it is the complement
in C2 of the three lines intersecting at (1, 0).

Since the lines {w = 0}, {w = z − 1} and {z = 1} all meet at the point (1, 0), the pencil
of lines on Q through (1, 0) defines a fiber bundle

β : (Q, q0) → (P1 −R, r0)
(z, w) 7→ [z − 1 : w],

where R := {[0 : 1], [1 : 0], [1 : 1]} ⊆ P1, and r0 := [2a − 1 : a2]. The general fiber F is
isomorphic to the punctured plane C − {0}, and the monodromy of the fibration preserves
the complex structure of C− {0}, and hence acts trivially on the fundamental group of the
fiber F0 through q0. Thus, π1(Q, q0) is isomorphic to Z× F2.

Let d′ be the positively-oriented generator of π1(F0, q0) and d its image in π1(Q, q0). Let
r := β∗(r), s := β∗(s) and c := β∗(c) Then rcs, csr and src are represented by loops that
encircle R in P1 and hence are trivial in π1(P1 −R, r0). It follows that the exact sequence
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of the fiber bundle gives the commutative diagram:

1 // π1(F0, q0) //

��

π1(Q, q0)
β∗ //

��

π1(P1 −R, r0)

��

// 1

1 // 〈d′〉 // 〈r, c, s, d | d = rcs = csr = src〉 // 〈r, c, s | rcs = 1〉 // 1

where the vertical arrows are isomorphisms, and the horizontal arrows are exact. We have
shown the following.

Lemma 2.10. The fundamental group of Q is given by

π1(Q, q0) = 〈r, c, s, d | d = rcs = csr = src〉 ' Z× F2,

and, in particular, the element d ∈ π1(Q, q0) generates the central Z factor.

The next proposition will be a key step in our proof of Theorem 1.3.

Proposition 2.11. There is a γ ∈ S(ξ1, ξ2) so that γn 6∈ E(ξ1, ξ2) for all n 6= 0, and hence

[S(ξ1, ξ2) : E(ξ1, ξ2)] =∞.

Proof. We prove the proposition in two steps.

Step 1. We show that the image of E(ξ1, ξ2) under s∗ intersects ker(β∗) in the trivial element.
The map s sends E isomorphically onto E which is tangent to the lines {w = 0} and
{w = z − 1} (see Figure 1).

Let j : (E , q0)→ (Q, q0), be the inclusion map. On E , the pencil β defines a covering

β ◦ j : (E , q0)→ (P1 −R, r0),
since all lines in Q through (1, 0) intersect E transversally in 2 points, and we have an
endomorphism

(β ◦ j)∗ : π1(E , q0)→ π1(P1 −R, r0).
Thus, j∗(π1(E , q0)) intersects the kernel of β∗ in the identity element.

Step 2. We find an element γ ∈ S(ξ1, ξ2) of infinite order, such that s∗(γ
n) lies in the kernel

of β∗ for all n 6= 0.
Let γ1 ∈ π1(X , x0) be freely homotopic to a simple closed curve ` on K1 that goes around

the image of the path

τ : [0, 1] → C2

t 7→ (a, t)

with positive orientation relative to the complex structure. The image of τ is the straight
line from (a, 0) to (a, 1). Thus, γ1 may also be thought of as freely homotopic in K1 to a
loop around the point at infinity on K1. Let τ be the path given by

τ : [0, 1] → P1

t 7→ (β ◦ s ◦ τ)(t) = [a+ t− 1 : at].

This is a path from [1 : 0] to [1 : 1] that passes through [0 : 1] (when t = 1 − a). It follows
that (P1 − R) − τ([0, 1]) is simply connected. Since β∗(s∗(γ1)) lies in (P1 − R) − τ([0, 1]),
s∗(γ1) lies in the kernel of β∗.
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Let γ2 := δ∗(γ1) ∈ π1(X , x0), and let γ := γ1γ2. Since (ξ1)∗(γ) = (ξ2)∗(γ), we have
γ ∈ S(ξ1, ξ2). Furthermore, s∗(γ

n) = s∗(γ1)
2n = s∗(γ2)

2n and lies in the kernel of β∗ as
desired.

To see that s∗(γ) has infinite order in π1(Q, q0), note that L = s(K1) is a generic line in
Q. Continuously moving L along lines of the same slope to a generic line through (1, 0) in Q
defines a free homotopy equivalence of s∗(γ) to a loop in a fiber of β. Since s∗(γ1) generates
π1(L − (s ◦ τ)([0, 1]), q0), we have s∗(γ1) = d. Thus s∗(γ) = d2, which has infinite order in
π1(Q, q0). �

Remark 2.12. Since γ maps to the center of π1(Q, q0) under the map s∗, we could have
replaced γ by any conjugate of γ, and the statement of Proposition 2.11 would still hold.

3. Application to quadratic rational maps

Let f represent an element of Per4(0)∗. By conjugating with a Möbius transformation, we
may suppose that f has a superattracting cycle of the form

0
2 //∞ // 1 // add(1)

where 0 is the periodic critical point.
Let A := {0, 1,∞, a}, let B := A ∪ {b} where b /∈ A is the other critical value of f , and

let u0 ∈ Df be the basepoint associated to the rational map f .
Let (α, β, F ) represent a point in Wf . By post-composing with Möbius transformations,

we may suppose that

α|{0,1,∞} = id|{0,1,∞} and β|{0,1,∞} = id|{0,1,∞}.
Then the point [α, β, F ] ∈ Wf is determined by the complex numbers x := α(a), y := β(a),
z := β(b), and a quadratic rational map

F : (P1, {0, 1,∞, x})→ (P1, {0, 1,∞, y, z})
satisfying

0

2

��

∞

��

1

��

x

��

c

2

��
∞ 1 y 0 z

where 0 and c are the two critical points of F . The map F must be of the form

F (t) =
(t− x)(t− r)

t2

where r = y
x−1 + 1. Thus, F and the critical value z are determined by x and y, as long as

x, y satisfy certain algebraic conditions. In these coordinates, the map ρ :Wf →MA×MA

is given by
ρ = (ρ1, ρ2) : [x, (y, z), F ] 7→ (x, y),

and the image of ρ is equal to MA ×MA − C for an algebraic set C. A computation shows
that C is given explicitly by

C = {x+ y = 1} ∪ {x2 − y − 2x+ 1 = 0} ∪ {x2 + y = 1} ∪ {2xy + x2 − y − 2x+ 1 = 0}.
We have shown the following.
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Proposition 3.1. The map ρ : Wf →MA ×MA is an isomorphism onto a Zariski dense
subset, and Vf maps isomorphically to Wf ∩ Eq(ρ1, ρ2); in particular, Vf is connected.

We are now ready to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. By Corollary 2.8, to prove Theorem 1.3 it suffices to show that there
is an element γ ∈ S(ρ1, ρ2) such that no nonzero power of γ lies in E(ρ1, ρ2). We do this by
reducing to the setting of the example in Section 2.11.

The space Wf embeds onto a Zariski dense subset in X :=MA×MA−{x+ y = 1}. Let
ι :Wf → X be the embedding, and let x0 := ι(v0). Then the induced map

ι∗ : π1(Wf , v0)→ π1(X , x0)
is an epimorphism. Furthermore, the maps ρ1, ρ2 :Wf →MA factor as

ρ1 = ξ1 ◦ ι and ρ2 = ξ2 ◦ ι
where ξ1, ξ2 : MA ×MA → MA are projections onto the x and y coordinates. It follows
that ι∗(S(ρ1, ρ2)) = S(ξ1, ξ2) and ι∗(E(ρ1, ρ2)) = E(ξ1, ξ2).

By Proposition 2.11 the index [S(ξ1, ξ2) : E(ξ1, ξ2)] is infinite. It follows that the index
[S(ρ1, ρ2) : E(ρ1, ρ2)] is also infinite. By Lemma 2.6 this implies that Df has infinitely many
components. �

We finish with a constructive description of an element in Sf whose action on connected
components of Df has an infinite orbit. The Birman exact sequence [B] for A = {0, 1,∞, a}
is

1→ π1(P1 − {0, 1,∞}, a)
η−→ ModA −→ Mod{0,1,∞} → 1,

where η takes a loop ` based at a to the point-push map associated to `. Since Mod{0,1,∞} is
trivial, η is an isomorphism. Our choice of basepoint a = m0 identifies π1(P1 − {0, 1,∞}, a)
with π1(MA,m0) and η becomes the defining map from π1(MA,m0) to ModA that determines
the regular covering TA →MA.

Proposition 3.2. Let Du0 be the connected component of Df containing u0. Let κ ∈ π1(P1−
{0, 1,∞}, a) be represented by a simple closed path based at a separating {0, 1} from {∞}.
Then there is an element s ∈ Sf such that

Φf (s) = sA = η(κ),

and the map
n 7→ sn(Du0),

defines a bijection from Z to a subset of the connected components of Df .

Proof. Let γ′1 ∈ π1(X , x0) be such that (ξ1)∗(γ
′
1) = κ. As in our proof of Proposition 2.11,

we can assume that γ′1 has a representative ` contained in the generic fiber K1 := ξ−11 (a),
such that ` avoids the set

τ := {(a, y) ∈ C2 | 0 ≤ y ≤ 1}
in K1. Let γ1 ∈ π1(Wf , v0) be such that the map induced by inclusion ι :Wf → X gives

ι∗(γ1) = γ′1,

and let γ2 ∈ π1(Wf , v0) be such that

ι∗(γ2) = δ∗(γ
′
1).

11



The elements γ1 and γ2 exist because ι∗ is surjective. Then γ = γ1γ2 defines an element of
S(ρ1, ρ2), and s := h(γ) ∈ Sf satisfies Φf (s) = sA = η(κ). �
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