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SMALL DILATATION HOMEOMORPHISMS
AS MONODROMIES OF LORENZ KNOTS

PIERRE DEHORNOY

Abstract. We exhibit low-dilatation families of surface homeomorphisms among monodromies of Lorenz
knots.

Pseudo-Anosov homeomorphisms are topological/dynamical objects that can be seen as geometric
counterparts of non-cyclotomic irreducible polynomials. In this dictionnary, Mahler measure becomes
what is called geometrical dilatation. A natural task is then to exhibit (or better, to classify) homeo-
morphisms with low dilatation. There exist several constructions of such low-dilatation families (see the
census [Hir11]): for example using fibered faces of the Thurston norm ball [McM00], or using mixed-
sign Coxeter diagrams [Hir12]. The goal of this note is to exhibit an additional construction, that comes
from Lorenz knots, that is, periodic orbits of the Lorenz vector field.

This text contains few new results. Most of the content comes from the article [Deh14] where we
investigated the homological dilatation of Lorenz knots. The interest here is (i) to restrict our attention
to subfamilies of Lorenz knots for which a stronger statement can be obtained with much less technical
e↵orts, (ii) to notice that what was proven for homological dilatation in [Deh14] can also be proven for
geometrical dilatation.

1. Introduction

It is known since Thurston [FLP79, Thu88] that every homeomorphism of a surface is isotopic to
either a periodic homeomorphism, or to a pseudo-Anosov one, or to a reducible one. A pseudo-Anosov
homeomorphism of a surface S is a homeomorphism h such that S admits two transverse measured
foliations, called stable and unstable and usually denoted by (F s, µs), and (F u, µu), that are invariant
under h, and such that there exists a positive real �(h), called the geometrical dilatation of h, such that µs

and µu are uniformly multiplied by �(h)�1 and �(h) under h respectively. Another property of h is that all
closed curves on S are stretched at speed �(h): for any auxiliary metric on S and for any closed curve �
on S , we have limn!1 log(khn(�)k)/n = log(�(h)). The most standard example is given by the action
of a hyperbolic matrix in SL2(Z) on the torus R2/Z2. In this case the invariant foliations are given by
the two eigendirections of the matrix and the dilatation is the largest eigenvalue. On surfaces of higher
genus, the foliations have prong-type singularities (see Figure 1.1). A reducible homeomorphism is one
that admits invariant curves. Such curves divide the surface into elementary pieces where the dynamics
is either periodic or of pseudo-Anosov type.

This decomposition result of Thurston can be compared with the fact that every polynomial is either
cycloctomic, or has positive Mahler measure, or is reducible. The dilatation factor for a pseudo-Anosov
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Figure 1.1. The stable and unstable foliations of a pseudo-Anosov homeomorphism (in red
and green respectively). On the top left around a regular point, on the top right around a 3-prong
singularity, and on the bottom around a boundary component with several singularities.

homeomorphism, or better its normalized version �(h)|�(S )|, is a natural counterpart of the Mahler mea-
sure. In particular, on a given surface, it is easy to find homeomorphisms with arbitrarily high dilatation
(for example by iterating a fixed homeomorphism), but low-dilatation homeomorphisms are harder to
construct. For g � 1 and s � 0, one usually defines �g,s as the infimum of the dilatation of a pseudo-
Anosov homeomorphism on a closed surface of genus g with s boundary components. It is a priori
not clear whether �g,s is 1 or larger, and in the latter case whether it is a minimum or not. D. Penner
showed [Pen91] that �g,s is actually a minimum larger than 1, and that there exist two positive constansts
c1, c2 such that for all g, one has c1

g  log �g,0  c2
g (similar results hold for s � 1). The optimal value

of c1 is not known, and the only known values of �g,0 are �1,0 and �2,0 [CH08]. It also follows from the
work of Penner that, for any positive D and for a fixed surface, only finitely many mapping classes have
a dilatation smaller than D. It is then natural to study what happens when the genus tends to infinity.

A family (hn, Sn)n2N, where Sn is a closed orientable surface and hn a pseudo-Anosov homeomorphism
of Sn, is said to be of low-dilatation if the sequence log(�(hn))|�(Sn)| is bounded.

Low-dilatation families are well understood in the context of 3-manifolds, where a theorem of B. Farb,
C. Leininger and D. Margalit [FLM11] states that the punctured suspensions of a low-dilatation family
live in some fibered faces of the Thurston norm ball of a finite number of 3-manifolds. However it is still
unknown how di↵erent homeomorphisms having the same suspensions are related.

Question 1.1 (Farb-Leininger-Margalit [FLM11]). Given a positive number D, what can be said about
the dynamics of those homeomorphisms with normalized dilatation smaller than D (i.e., those satisfying
log(�(h))|�(S )|  log D)? Are they all obtained by some stabilization of the elements of a finite list?

For example, E. Hironaka showed [Hir07] that the polynomials of smallest Mahler measure in degrees
2, 4, 6, 8, and 10 all arise as dilatations of monodromies of fibered links obtained by Hopf or trefoil
plumbings on some torus links, so that the monodromies are small perturbations of some periodic surface
homeomorphisms.

What we do here is to exhibit low-dilatation families of dynamical origin, by considering certain
subfamilies of the set of Lorenz knots, that is, periodic orbits of the (geometric model of the) Lorenz
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flow. These knots are fibered, so that they give rise to surface homeomorphisms, most of which are of
pseudo-Anosov type. Our statement here is a variant of Theorem A of [Deh14], where we restrict our
attention to subfamilies of Lorenz knots for which we obtain better bounds on the dilatation. Denote by
Lorenzb,k the set of Lorenz knots described by a hanging Young diagram (see later) made of a rectangle
of width b at the bottom of which is attached a diagram with at most k cells (see Figure 1.2).

Figure 1.2. A diagram coding a knot in Lorenzb,k, for b = 6 and k = 11. The mixing zone (in
yellow) corresponds to those additional k cells.

Theorem 1.2. The dilatation � of the monodromy knot in Lorenzb,k of Euler characteristics � satisfies
log(�)  b log k

|�|�k . In particular, for all b and k, the monodromies of the elements of Lorenzb,k form a
low-dilatation family.

For these families of Lorenz knots, Question 1.1 has a positive answer: the monodromies act like
periodic homeomorphisms on a huge part of the surface (corresponding to the rectangular part of the
associated Young diagram), and the non-periodicity is concentrated in a part of the surface of bounded
size (corresponding to the additional k cells). Indeed, the rectangular part of the diagram corresponds
exactly to a torus link, which is known to have periodic monodromy.

2. Lorenz knots as iteratedMurasugi sums

Lorenz knots are defined as periodic orbits of the (geometric) Lorenz flow. They have been introduced
and first studied by J. Birman and R. Williams [BW81]. We refer to the original article or to [Deh11]
for more details. Let us just mention that Lorenz knots form a family that contains all torus knots and is
stable under cabling, so that it also contains all algebraic knots. Also, Lorenz knots are fibered, so that
to each of them is canonically associated its monodromy, a homeomorphism of the genus-minimizing
spanning surface. As Lorenz knots can be considered as perturbations of torus knots, it is natural to
investigate the dilatation of the monodromies of those Lorenz knots which are hyperbolic.

2.a. Young diagrams, Lorenz knots, and canonical spanning surfaces. There are several ways of
enumerating Lorenz knots and links. The most convenient from our point of view is using Young dia-
grams (introduced in this context in [Deh11]). The procedure is shown on Figure 2.3.

Starting from a Young diagram D, one puts its bottom-left corner on top (we call this hanging posi-
tion). Then, by desingularizing evering intersection point into a positive braid crossing, one associates
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Figure 2.3. To every hanging Young diagram D (on the left), one associates a braid �(D) (on
the right) whose closure is the Lorenz link K(D).

a braid, called a Lorenz braid and denoted by �(D). Its closure forms a Lorenz link, that we denote
by K(D). All Lorenz links can be obtained in this way.

Now, to the closure of every braid is associated a canonical spanning surface, obtained by gluing a disc
behind every strand and a ribbon at every crossing. Applying this construction to �(D) yields a canonical
spanning surface for K(D), that we denote by S (D). One can check that the Euler characteristics of S (D)
is the number of cells of D, hence denoted by �(D).

Figure 2.4. To every Lorenz braid �(D) (on the left), one associates a link K(D) and a canonical
spanning surface S (D) (in the middle). This surface can actually be immersed into the plane
(following S. Baader [BD13], on the right). In this representation, the correspondance between
elementary curves (in green) and cells of the diagram is straightforward.

2.b. Monodromy. In this section, we describe an inductive construction of the surface S (K) for every
Lorenz knot K, called the Murasugi sum. This procedure ensures that K is a fibered knot with fiber S (K),
and yields a decomposition of the associated monodromy h(K) as an explicit product of Dehn twists.

By construction, for every cell c of a Young diagram D a simple close curve on S (D) that winds once
around c is canonically associated. We call it a elementary curve and denote it by �(c) (see Figure 2.4
right).

Proposition 2.1. Let D be a Young diagram. Then the Lorenz link K(D) is fibered with fiber S (D), and
its monodromy h(D) is the product of all Dehn twists around all elementary curves of S (D), in the order
prescribed on Figure 2.5.



SMALL DILATATION AND LORENZ KNOTS 5

Figure 2.5. Decomposition of the monodromy h(D) as the product of the Dehn twists around
the �(D) elementary curves on S (D) (that is, those curves that turns once around the cells of D).
The order is from right to left, and in every column from bottom to top.

Note that if K(D) is a multi-component link, the fiber surface may not be unique, as well as the
monodromy. However, if K(D) is a knot, we have uniqueness of the fiber surface and of the monodromy
homeomorphism.

We will only sketch the proof of Proposition 2.1 and refer to the survey [Deh11] for more details. The
starting point is the 2-component Hopf link, which is the Lorenz link associated to the Young diagram
with one cell only. The 2-component Hopf link is known to be fibered, the fiber surface being a twisted
annulus that we call the Hopf annulus, and the monodromy being a right-handed Dehn twist.

Figure 2.6. A Hopf annulus in S3(on the left), with the associated elementary curve (in green).
The action of the monodromy on the annulus (on the right, seen on an abstract annulus) is a Dehn
twist on the green curve: the red segment is sent to the purple one.

The induction step for proving Proposition 2.1 is done using the Murasugi sum of surfaces [Mur58].
This is an operation that takes two surfaces with boundary S 1, S 2, depends on a choice of a 2n-gon in
each of them, and associates a new surface with boundary S 1]S 2 that contains S 1 and S 2 as subsurfaces
(see Figure 2.7). This operation preserves the fibered character, in the following sense: if S 1, S 2 are
two fibered surfaces in S3 with monodromies h1, h2, then the Murasugi sum S 1]S 2, where S 1 is glued
on top, is fibered with monodromy h1 � h2 (see the proof of D. Gabai [Gab83] or an expanded version
in [Deh11]).

In particular, Murasugi gluing a Hopf annulus to a fibered surface yields another fibered surface. In
this way, starting from the canonical Seifert surface associated to a hanging Young diagram D, we obtain
that the surface associated to the diagram D0 obtained from D by adding a cell on the bottom-right border
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Figure 2.7. Two examples of Murasugi sums of canonical surfaces associated to positive
braids. Observe that in the second example the left summand is glued on top.

of D is also fibered. Moreover, the monodromy associated to a Hopf annulus is a right-handed Dehn twist
so that the monodromy associated to the surface S (D) is a product of Dehn twists along the cores of the
glued Hopf annuli. The order of the product is determined by the order of the gluing. The latter needs to
preserve the respective positions of the Hopf annuli, namely one should glue first an annulus that is on
top of another one. The order given on Figure 2.5 obeys this constaint. This completes the (sketch of)
proof of Proposition 2.1.

2.c. Action of the monodromy on elementary curves. The dilatation of a pseudo-Anosov homeomor-
phism can be read on its action on curves. So, in order to bound the dilatation, one should bound the
stretching of curves under the homeomorphism. Cutting the canonical surface S (D) associated to a dia-
gram D along all elementary curves reduces S (D) to a neighborhood of its boundary, so that elementary
curves contain all the information on S (D). In particular for Lorenz knots, it is enough to estimate the
stretching of elementary curves under h(D) is order to control the dilatation of h(D).
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Now come the two key observations. For some orientation reason, the second observation works only
when considering h�1(D) instead of h(D). Therefore we consider the inverse of the monodromy, which
makes little di↵erence.

We say that a cell c of a hanging Young diagram is internal if there is a cell, say c0, in North-West
position with respect to c (see Figure 2.8). Otherwise it is called external.

Lemma 2.2. Assume that D is a Young diagram, L(D) is the associated Lorenz link, S (D) is the canonical
Seifert surface for L(D), and h(D) is the associated monodromy. Let d be an internal cell of D and a be
the cell in NW position with respect to c. Then we have h(D)�1(�(d)) = �(a).

Figure 2.8. An internal cell and its image under the (inverse of the) monodromy.

The proof is displayed on Figure 2.9, where the successive images of the curve �(d) under consecutive
Dehn twists are depicted (see also [BD13]).

In order to fully control h(D)�1, we need to know what happens to external cells when iterating
(backwards) the monodromy. For a general Lorenz link, the behaviour is rather hard to control (this
is the reason of the heavy computations in [Deh14]). However, if we suppose that the diagram we are
considering lies in Lorenzb,k, things become simpler. In particular the image of an elementary curve
corresponding to an external cell is not so simple, but its second image is.

For D a diagram in Lorenzb,k, we call mixing zone of D the set of those k cells that are outside the
main rectangle of D (see Figure 1.2). We also assume that we have an auxiliary metric on S for which
all elementary curves have length at most 1.

Lemma 2.3. Assume that D is a Young diagram inLorenzb,k, and that h(D) is the monodromy associated
to the canonical surface S (D). Let c be an external cell of D. Then h(D)�2(�(c)) is a curve of length at
most k that lies entirely in the mixing zone.

The proof is depicted on Figure 2.10. The idea is that, with arguments similar to the proof of
Lemma 2.2, one can describe the curve h(D)�1(�(c)): it is the concatenation of one external curve,
and many internal curves. When iterating h(D)�1 once more, the di↵erent contributions cancel, except
in the mixing zone.

2.d. Proof of Theorem 1.2. Assume that D is a Young diagram inLorenzb,k, that S (D) is the associated
canonical surface, and that h(D) is the corresponding monodromy. Denote by l(D) the length of the long
rectangle in D (that is, the complement of the mixing zone). We also take an auxiliary metric on S (D)
for which all elementary curves have length at most 1.
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a

b

c
d

Figure 2.9. Proof of Lemma 2.2. The image of the elementary curve �(d) associated to an
internal cell d under the inverse of the monodromy h(D)�1: first the Dehn twists associated to
cells that are distant from d do not modify �(d). Then it is changed by the Dehn twist around a
into a curve that encircles both a and d. This curve is then unchanged (in particular it does not
intersect the two blue curves �(b) and �(c) on the second picture). Finally it is changed by the
Dehn twist around d into �(a). Subsequent twists to not modify it any more.

Figure 2.10. Proof of Lemma 2.3: an external cell c and its image under h(D)�2. On the
left, h(D)�1(�(c)) is a curve that turns positively around blocks of orange cells and negatively
around blocks of green (and blue) cells. On the center left, the image under h(D)�1 of the curve
h(D)�1(�(c)), except the part that winds around the blue cell. On the center right, the image under
h(D)�1 of the part of the curve h(D)�1(�(c)) that winds around the blue cell. On the right, the
concatenation of those two parts is the curve h(D)�2(�(c)), it is a curve that only winds around
some cells of the mixing zone of D.

Let c be an arbitrary cell in the mixing zone on S (D). By Lemma 2.2, the l(D) first images of the
curve �(c) under h(D)�1 all correspond to internal cells, hence have length one. After a few more iter-
ation, the image is then an elementary external curve, and after two more iterations, it is a curve in the
mixing zone of length at most k. Then the process goes on: the next l iterations yield a curve of length at
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most k. Summarizing, the length of h(D)�n(�(c)) grows by a factor at most k every l(D) steps. Therefore,
the growth rate of �(c) is bounded by log k/l(D).

Now, the same argument works for any cell, not just in the mixing zone, except that the initial dilatation
arises earlier. But this does not change the growth rate, hence h(D)�1 asymptotically streches all curves
on S (D) by a factor at most log k/l(D).

Finally, an elementary computation shows that the Euler characteristics of S (D) is b·l(D)+k, therefore
the dilatation is smaller than b log k/(|�(D)| � k).
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BOUNDS FOR TORSION HOMOLOGY
OF ARITHMETIC GROUPS

VINCENT EMERY

Abstract. This note presents as a survey some ideas used in my paper “Tor-
sion homology of arithmetic lattices and K2 of imaginary fields”. It is essen-
tially based on my talk at the conference “Growth and Mahler measures in
geometry and topology”, Djursholm, July 2013.

1. Introduction
Let X = G/K be a symmetric space of noncompact type, i.e., G is a semisimple

Lie group without compact or Euclidean factors and K ⊂ G is a maximal compact
subgroup. For example, the case G = PSL2(C) corresponds to X = H3, the hyper-
bolic space of dimension 3. A lattice Γ ⊂ G is a discrete subgroup of finite covolume
in G (with respect to any Haar measure on G). It defines an orbifold Γ\X, which
has finite volume with respect to the G-invariant Riemannian metric on X. We
say that Γ is uniform if the quotient Γ\X is compact. If Γ is torsion-free then the
quotient M = Γ\X is a manifold, locally isometric to X. By Selberg’s lemma, any
quotient orbifold of finite volume is covered with finite degree by a manifold. The
study of lattices of G (or orbifolds) can be reduced to irreducible ones, i.e., those
which are not commensurable with a product of two subgroups that are lattices in
factors of G. If G is simple, then trivially all lattices are irreducible.

According to a theorem of Gromov, the Betti numbers of the locally symmetric
spaces M = Γ\X can be bounded linearly in the volume vol(M). This shows that
the complexity of the topology of the manifold M is controlled by a simple geometric
invariant, the volume. Gromov’s theorem is valid in a more generic context than for
symmetric spaces, the relevant condition being the negative curvature. Moreover,
it has been recently extended to the case of orbifolds by Samet [6]. For a fixed
semisimple Lie group G as above (of noncompact type, without compact factors
and without center), the result can be formulated as the following. Here bj(Γ)
denotes the rank of the group homology Hj(Γ) (with coefficient in Z) of Γ.

Theorem 1 (Samet). There exists a constant CG such that for any irreducible
lattice Γ ⊂ G we have

bj(Γ) ≤ CG vol(Γ\X),
for any j.

A natural question is to ask whether a similar result can be proved for the
torsion part of the homology Hj(Γ). A motivation is the growing interest in torsion
homology of arithmetic lattices due to connection with number theory; see [2, 3]. An
arithmetic group is a group of the form (or more precisely commensurable to) H(Z)
where H is an algebraic Q-group. By a theorem of Borel and Harish-Chandra, such

1
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a group is always a lattice in H(R) provided the latter is semisimple. Moreover,
Margulis proved as a consequence of its superrigity theorem that every irreducible
lattice in a semisimple Lie group of real rank at least 2 is arithmetic.

This note presents a short introduction to some ideas used in [4] to obtain upper
bounds on the torsion homology of arithmetic lattices; here we do not discuss the
aspects related to K2 though. It is essentially based on my talk at the conference
“Growth and Mahler measures in geometry and topology”, Djursholm, July 2013.
I would like to thank again both organizers, Eriko Hironaka and Ruth Kellerhals,
for having invited me to this very nice workshop. I also thank the staff of the
Mittag-Leffler institute for the perfect organization.

2. Consequences of Lehmer’s conjecture
Lehmer’s conjecture asserts that the Mahler measure of a noncyclotomic polyno-

mial with integral coefficients is bounded away from 1. A well-known consequence
of this conjecture is the following (cf. [5, Section 10]).

Conjecture 2 (Short geodesic conjecture). Let X be a symmetric space of non-
compact type. There exists ϵ > 0 such that the length of any closed geodesic on an
arithmetic locally symmetric space M = Γ\X is greater than ϵ.

Let us restrict ourselves to compact manifolds M = Γ\X. Assuming Conjecture 2
we can embed around any x ∈ M a geodesic ball Br(x) of radius r = ϵ/2. One needs
about vol(M)/vol(Br(x)) balls to cover all M . Using the notion of nerve of an open
covering like this, one can show that M is homotop to simplicial complex whose
size (i.e, the total number of simplices) is bounded linearly in vol(M). Thus, the
following statement is a consequence of Conjecture 2.

Conjecture 3. There exists a constant βX such that any compact arithmetic
manifold M = Γ\X is homotop to a simplicial complex of size bounded above by
βXvol(M).

A statement like this is exactly what we need to bound the torsion homology
of M . In general, in a complex of abelian groups of bounded ranks the torsion
homology does not need to be bounded (take Z N→ Z with N arbitrarily large).
However, in a simplicial complex the “boundary maps” are concretely given by
the boundary of simplices. This observation can be used to bound the torsion
homology. More precisely, we can use the following result of Gabber to do so. For
a proof see [7, §2.1]. For an abelian group A, we denote by Ators its subgroup of
torsion elements.

Lemma 4 (Gabber). Let A = Za with the standard basis (ei)i=1,...,a and B = Zb,
so that B ⊗R is equipped with the standard Euclidean norm ∥ ·∥. Let φ : A → B be
a Z-linear map such that ∥φ(ei)∥ ≤ α for each i = 1, . . . ,a. If we denote by Q the
cokernel of φ, then

|Qtors| ≤ αmin{a,b} .

Thus, applying Lemma 4 to Conjecture 3 we would obtain a bound, for any j,
log |Hj(M)tors| ≤ CX vol(M)(2.1)

for some constant CX .
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Remark 5. For any n ≥ 2, Conjecture 2 fails for nonarithmetic hyperbolic n-
manifolds (see [1]). Moreover, Conjecture 3 fails for nonarithmetic hyperbolic 3-
manifolds: the statement in the conjecture implies the finiteness of the number
of manifolds of bounded volume, which is known to fail by Thurston-Jørgensen
description of the volume spectrum of 3-manifolds. Note that restricted to the
class of arithmetic manifolds (or lattices) this finiteness property holds for any
symmetric space X, by a theorem of Borel and Prasad.

3. The case of noncompact manifolds
The upper bound for torsion homology (2.1) that would follow from Lehmer’s

conjecture in the case of compact arithmetic manifolds can actually be proved un-
conditionally for noncompact arithmetic manifolds. This is due to the classification
of nonuniform arithmetic lattices, described in the next proposition (cf. [5, Lemma
5.2]).
Proposition 6. Let G be a semisimple real Lie group as in Section 1. If Γ ⊂ G is
an irreducible nonuniform arithmetic subgroup, then it can be written as a subgroup
Γ ⊂ H(Z) of finite index, where H is an algebraic Q-group of same (real) dimension
as G.
Example 7. Every nonuniform arithmetic lattice in PSL2(C) is commensurable to
a Bianchi group PSL2(OF ) for some imaginary quadratic field F . The correspond-
ing Q-group is then given by Weil’s restriction of scalars as H = ResF/Q(PSL2 /F ),
which has dimension 6 = dim(PSL2) · [F : Q]. To obtain all uniform lattices instead,
one needs to take into account fields F of (arbitrarily) large degrees, which will give
raise to algebraic Q-groups of larger dimensions.

As a consequence of Proposition 6, any element in a nonuniform arithmetic group
Γ ⊂ G can be written as a matrix whose characteristic polynomial has integral
coefficients and fixed degree equal to dim(G). But Lehmer’s conjecture is known to
hold when the degrees of the polynomials is fixed (or bounded), and this will show
that the length of closed geodesics is bounded away from 0. In other words:
Proposition 8. Conjecture 2 holds for noncompact arithmetic manifolds M =
Γ\X.

From this result, one can use the same argument to obtain a version of the state-
ment of Conjecture 3 valid for noncompact manifolds. The problem is that the
argument used there assumed that the manifolds were compact. To deal with non-
compact manifolds one needs to remove some neighbourhoods of their unbounded
part and check that the complexity of the topology does not become too bad where
the cuts are performed. This is a difficult task, which could be done by Gelander
in his thesis. He obtained the following result (see [5]):
Theorem 9 (Gelander). There exists a constant βX such that any noncompact
arithmetic manifold M = Γ\X is homotop to a simplicial complex of size bounded
above by βXvol(M).

Together with Lemma 4 one then obtains the following.
Corollary 10. There exists a constant CX such that for any noncompact arithmetic
manifold M = Γ\X, we have for any j:

log |Hj(M)tors| ≤ CX vol(M).



4 VINCENT EMERY

4. An extension to the case of orbifolds
For arithmetic application especially, it is useful to have a version a Corollary 10

where the arithmetic subgroups Γ ⊂ G may contain torsion, i.e., so that the quotient
Γ\X is in general an orbifold. Such an extension was obtained in [4] for G respecting
some conditions, and it was applied to obtain upper bound for K2 of the ring of
integers of totally imaginary number fields.
Theorem 11 (Emery). Let G be a semisimple Lie group as in Section 1 and such
that for any (nonuniform arithmetic) irreducible lattice Γ0 ⊂ G we have Hq(Γ0,Q) =
0 for q = 1, . . . , j. Then, there exists a constant CG such that for any nonuniform
arithmetic irreducible lattice Γ ⊂ G we have:

log |Hj(Γ)tors| ≤ CG vol(Γ\G).

Proof. Using Proposition 6 one sees that we can construct for any Γ as torsion-free
normal subgroup Γ0 ⊂ G whose index is bounded by a constant depending only on
dim(G). Then, the idea is to use Lyndon-Hochschild-Serre spectal sequence

E2
pq = Hp(Γ/Γ0,Hq(Γ0)) =⇒ Hp+q(Γ),

together with Corollary 10, which gives an upper bound for Hq(Γ0). We refer to
[4] for the details. !

For example, if G has real rank at least 2 then superrigidity implies at once
vanishing of the first Betti number and arithmeticity of lattices. Thus, we get the
following result for torsion homology in degree one.
Corollary 12. Let G be a semisimple real Lie group without compact factor and of
real rank at least 2. Then, there exists a constant CG such that for any nonuniform
irreducible lattice Γ ⊂ G we have:

log |H1(Γ)tors| ≤ CG vol(Γ\G).
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SMALL DILATATION PSEUDO-ANOSOV MAPPING CLASSES AND
SHORT CIRCUITS ON TRAIN TRACK AUTOMATA

ERIKO HIRONAKA

Abstract. This note is a survey of recent results surrounding the minimum dilatation
problem for pseudo-Anosov mapping classes. In particular, we give evidence for the
conjecture that the minimum accumulation point of the genus normalized dilatations
of pseudo-Anosov mapping classes on closed surfaces equals the square of the golden
ratio. We also find explicit fat train track maps determining a sequence of pseudo-Anosov
mapping classes whose normalized dilatations converge to this limit.

1. Introduction

Let S be a compact surface of genus g with b boundary components. A mapping class
� on S is a self-homeomorphism of S considered up to isotopy. The map � : S ! S is
pseudo-Anosov if S admits a pair of �-invariant transverse measured singular foliations,
called the unstable foliation (Fu, ⌫u) and stable foliation (Fs, ⌫s), so that the action of �
stretches ⌫u by a constant � > 1, and contracts ⌫s by 1

�

. The constant � has the property
that log(�) is the minimal topological entropy of elements in the isotopy class of � and is
called the dilatation of �. The theory of pseudo-Anosov mapping classes is developed in
detail in [FLP], [CB] and [Thu2].

In a 1991 paper, Penner [Pen] proved that as a function of genus g � 2, the minimum
dilatation �

g

for pseudo-Anosov mapping classes on closed genus g surfaces satisfies

log �
g

⇣ 1

g
.(1)

Penner’s paper has brought recent interest to the minimum dilatation problem, which asks
what are the values of �

g

for g � 2, and what are the mapping classes that realize these
values. So far the exact value of the minimum dilatation �

g

is known only for g = 2 [CH].
In this paper we give a brief survey of the minimum dilatation problem and its relations
to the study of train track maps, digraphs, polynomials and algebraic integers, and give
an illustrative example.

1.1. Lehmer’s problem and dilatations. Questions surrounding the values of �
g

are
closely analogous to Lehmer’s problem on Mahler measures. Dilatations of pseudo-Anosov
mapping classes are special algebraic integers called Perron numbers. These are real alge-
braic integers � > 1 all of whose algebraic conjugates are strictly smaller in complex norm.
Furthermore, dilatations have the property that ��1 is also an algebraic integer, and hence
� is an algebraic unit. The Mahler measure m(�) of an algebraic integer � is the absolute
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value of the product of its conjugates outside the unit circle. In [Leh] Lehmer asks: is there
is a positive gap between 1 and the next largest Mahler measure? A negative answer would
mean that the set of Mahler measures is dense in the interval [1,1). Lehmer’s question
leads immediately to several others.

For each fixed degree n, any bound on Mahler measure bounds the size of the coe�cients
of the minimal polynomial, and hence the Mahler measures greater than one for algebraic
integers of fixed degree n achieve a minimum m

n

> 1. It is not known how m
n

behaves as n
goes to infinity, nor about properties of the algebraic integers achieving m

n

. For example:
is there a bound on the number of algebraic conjugates outside the unit circle?

The complex norm h(�) of the largest conjugate of an algebraic integer � is called the
house of �. The normalized house

h(�)dalg

is the house raised to the degree of the minimal polynomial. It is not known whether
this coarse upper bound for Mahler measure is bounded away from one for non-cyclotomic
algebraic integers (cf. [Dob]).

1.2. Perron numbers. For Perron numbers, there is an alternative way to normalize
house, other than algebraic degree. Each Perron number is the spectral radius of a Perron-
Frobenius matrix: a d ⇥ d matrix M with non-negative integer entries such that for some
power k � 1, Mk has strictly positive entries. The minimum such d, which is an upper
bound for dalg, is the degree of the characteristic polynomial of M , called the Perron-
Frobenius degree of the Perron number. McMullen recently showed in [McM2] that for
Perron units � with Perron-Frobenius degree dPF, we have

�dPF � �40 ,(2)

where �0 is the golden ratio.

1.3. Normalized dilatations. It is an open question whether all Perron units are di-
latations of pseudo-Anosov mapping classes (partial results in this direction were found by
Thurston in [Thu3]). Define the genus-normalized dilatation to be �(�)g and let `

g

= (�
g

)g,
the minimum genus-normalized dilatation for fixed genus g. Penner’s result (1) is equivalent
to the statement that there are constants c and C so that

1 < c  `
g

 C.

It is an open problem to determine sharp bounds for c and C, or to find the limit of `
g

as
g goes to infinity.

McMullen’s result (2) on normalized Perron units is evidence for the following conjecture.

Conjecture 1.1. The smallest accumulation point for the sequence `
g

is �20 .

For the pseudo-Anosov mapping classes (S
g

,�
g

) that we later describe in this paper, the
surfaces S

g

have genus g, the normalized dilatations �(�
g

)g converge to �20 , hence �20 is an
upper bound for the smallest accumulation point. This together with McMullen’s result
(2) is not enough to prove the conjecture, however, since in general both dalg and 2g can
be strictly smaller than dPF, and the latter can be as large as 6g � 6 [Pen].
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Conjecture 1.1 was originally inspired by a question of Lanneau and Thi↵eault posed
in [LT]. An orientable pseudo-Anosov mapping class is one where the stable and unstable
foliations are orientable. Lanneau and Thi↵eault ask whether for orientable pseudo-Anosov
mapping classes on surfaces of even genus, the minimum dilatation is the largest real root
of the polynomial

LT
n

(x) = x2n � xn+1 � xn � xn�1 + 1.

If �
n

is the largest root of LT
n

(x), then it is not hard to show that (�
n

)n is a monotone
decreasing sequence converging to �20 .

1.4. Main example. In this paper, we explicitly define a sequence of pseudo-Anosov
mapping classes whose genus normalized dilatations define a strictly monotone decreasing
sequence converging to �20 . The existence of such sequences was already proved in [Hir]
[AD] and [KT2], but the description we give here, using the language of fat train track
maps and digraphs, is the first constructive one, and serves to give a glimpse of what small
dilatation mapping classes look like in general.

We show the following.

Theorem 1.2. There is a sequence of pseudo-Anosov mapping classes (S
n

,�
n

) described
by fat train track maps f

n

: ⌧
n

! ⌧
n

, n � 2 with the following properties:

(1) S
n

is a closed orientable surface of genus g = n if 3 doesn’t divide n and genus
g = n� 1 if 3 divides n,

(2) �(�
n

) is the largest real root of LT
n

(x),
(3) the genus-normalized dilatations of (S

n

,�
n

) converge to �20 .
(4) (S

n

,�
n

) is an orientable mapping class if and only if n is even,
(5) (S

n

,�
n

) have the smallest dilatation among orientable pseudo-Anosov mapping
classes of genus g = n when n = 2, 4, 8, and of genus g = 5 when n = 6.

(6) the train track maps f
n

have folding decompositions corresponding to length 3 cir-
cuits on fat train track automata, and

(7) the topological type of the digraph associated to the train track map f
n

is fixed for
n � 2.

Corollary 1.3. The square of the golden mean �20 is an accumulation point for normalized
dilatations of orientable pseudo-Anosov mapping classes.

Sequences satisfying properties (1)–(5) were also found in [Hir] as mapping classes associ-
ated to a convergent sequence on a fibered face. The di↵erence in this paper is that our
description is constructive.

1.5. Organization. Thurston’s fibered face theory [Thu1], Fried’s results about cross-
sections of pseudo-Anosov flows [Fri], McMullen’s theory of Teichmüller polynomials [McM1]
and the universal finiteness theorem of Farb, Leininger and Margalit [FLM] together im-
ply that the problem of finding minimum dilatations reduces to understanding the roots of
families of polynomials arising as specializations of a finite list of multivariable polynomials.
We recall these results in Section 2. In Section 3 we describe the restriction of Lehmer’s
problem to Perron units, and its recent partial solution by McMullen [McM2]. The special

3



case of orientable pseudo-Anosov mapping classes, and the Lanneau-Thi↵eault question is
discussed in Section 4. In Section 5 we define fat train track maps, and their automata.
We also explain how to compute Both the Teichmüller and Alexander polynomials in this
context. In Section 6, we describe a sequence of fat train track maps whose Teichmüller
polynomial specializes to the LT polynomials, and prove Theorem 1.2.

2. Fibered faces, dilatations and polynomials

Fibered face theory gives a natural way to partition the set of pseudo-Anosov mapping
classes into families that are in one-to-one correspondence with rational points on convex
Euclidean polyhedra (possibly single points). Each family contains mapping classes defined
on di↵erent surfaces, but having related dynamics. In particular, the normalized dilatation
varies continuously with respect to the induced Euclidean metric. Furthermore, each set
has an associated Teichmüller polynomial, whose specialization at each point in the set
determines the dilatation of the associated mapping class.

2.1. Fibered face theory. In [Thu1], Thurston defines a norm || || on H1(M ;R) as
follows. Given a surface (S, @S) ⇢ (M, @M), let

��(S) =
X

S

0⇢S

max{��(S0), 0},

where the sum is taken over connected components S0 of S. Given ↵ 2 H1(M ;Z), let
||↵|| = min{��(S) : (S, @S) ⇢ (M, @M) is Poincaré dual to ↵}.

Then || || extends to a unique norm on H1(M ;R). Furthemore, the unit norm ball is a
convex polyhedron, and the convex hull of rational vertices. The norm || || is called the
Thurston norm, and the unit ball is called the Thurston norm ball.

An element of H1(M ;Z) is called fibered if it is dual to the fiber of a fibration  
↵

: M !
S1 over the circle.

Theorem 2.1 (Thurston [Thu1]). For every open top-dimensional face F of the unit
Thurston norm ball, either every integral point in the cone F · R+ over F is fibered, or
none of them are.

If the integral points on F · R+ are fibered, we say F is a fibered face and F · R+ is a
fibered cone.

Circle fibrations of M are in one-to-one correspondence with mapping classes (S,�) with
the property that M is the mapping torus of (S,�):

M ' S ⇥ [0, 1]/(x, 1) ⇠ (�(x), 0),

where S is homeomorphic to the fiber of the fibration. The mapping class (S,�) is called
the monodromy of the fibration.

A primitive integral element in H1(M ;Z) is a point with relatively prime integral coef-
ficients. Given a fibered element ↵ 2 H1(M ;Z), any positive integer multiple m↵ has the
property that  

m↵

is the composition of  
↵

with the m-fold cyclic covering of the circle to
4



itself. If follows that primitive integral elements on fibered cones correspond to fibrations
of M over the circle with connected fibers.

A key theorem of Thurston that connects the classification of mapping classes and that
of fibered 3-manifolds is the following.

Theorem 2.2 (Thurston [Thu2]). A mapping class is pseudo-Anosov if and only if its
mapping torus is a hyperbolic 3-manifold.

It follows that there is a one-to-one correspondence between pseudo-Anosov mapping
classes (S,�) on surfaces S and rational points on fibered faces of hyperbolic 3-manifolds
whose denominator equals |�(S)|.
2.2. Removing singularities. To study the dynamical properties of a pseudo-Anosov
mapping class it is natural to remove the singularities of the invariant stable and unstable
foliations. This process preserves essential information about the surface (e.g., genus) and
the dynamics of the mapping class (e.g., dilatation). In many cases, this process increases
the first Betti number of the mapping torus, and hence the dimension of the associated
fibered face.

Lemma 2.3. Let S be a compact surface with boundary, and � a pseudo-Anosov map on
S. The first Betti number of the mapping torus of (S,�) is r + 1, where r is the rank of
the �-invariant homology H1(S, @S;Z).

Proof. See, for example, [McM1].

Define the singularities of a pseudo-Anosov mapping class (S,�) to be the set of singu-
larities of the stable and unstable �-invariant foliations. The union of singularities on S
is a finite set of points closed under the action of �. Let S0 be the complement of small
neighborhoods of the singular points. There is a unique pseudo-Anosov mapping class
�0 defined on S0 determined up to isotopies that fix the boundary component pointwise.
Correspondingly, there is a well-defined way to define invariant foliations for �0 whose
extensions to S are the original invariant foliations of �, so that certain leaves terminate
at the boundary. The leaves terminating at a boundary component are called prongs, and
the degree of the singularity equals the number of prongs minus 2.

By this construction, the dilatations �(�) and �(�0) are stretching factors of the same
maps on the same foliations, and hence are equal. Furthermore, (S,�) can be recovered
from (S0,�0) by closing o↵ the boundary components with disks.

Corollary 2.4. Suppose (S,�) is a pseudo-Anosov mapping class such that the number of
orbits of boundary components and the number of orbits of singularities add up to at least
2. Then the first Betti number of the mapping torus of (S0,�0) is greater than or equal to

2, and hence (S0,�) corresponds to a point on a fibered face of positive dimension.

Proof. For any mapping class � on a surface with boundary S, the sum � of loops around the
orbits of a boundary component determines a �0-invariant element [�] in H1(S0, @S0;Z).
If there is more than one orbit, then [�] is non-trivial. The rest follows from Lemma 2.3.

5



2.3. Normalized dilatations. The normalized dilatation of a pseudo-Anosov mapping
class (S,�) is defined by

L(S,�) = �(�)|�(S)|.

Given a fibered element ↵ 2 H1(M ;Z) with monodromy (S
↵

,�
↵

) define

H(↵) = log(�(�
↵

)).

When ↵ is an integral element, H(↵) is the topological entropy of �
↵

.

Theorem 2.5 (Fried [Fri], McMullen [McM1]). The function H(↵) extends to a real an-
alytic, convex function that is homogeneous of degree �1 on each fibered cone F · R+ and
goes to infinity toward the boundary of the fibered face F .

Given a primitive integral point ↵ 2 F · R+, let ↵ = ↵/q be its projection onto F .

Corollary 2.6. The function on the rational points of a fibered face F that sends ↵ to
L(S

↵

,�
↵

) extends to a real analytic, strictly convex function on F that goes to infinity
toward the boundary of F .

Proof. By homogeneity, we have

log(L(S
↵

,�
↵

)) = ||↵|| log(�(�
↵

)) = H(↵).

Remark 2.7. Strict convexity of H and its behavior toward the boundary of F imply that
this function has a unique minimum on F . The minimum, however, does not necessarily
occur at a rational point, and hence it may not be realized by the monodromy of a circle
fibration [Sun].

Corollary 2.8. Any convergent sequence on the interior of a fibered face that is not even-
tually constant corresponds to a family of pseudo-Anosov mapping classes with unbounded
Euler characteristic and bounded normalized dilatation.

Farb, Leininger and Margalit prove the following partial converse.

Theorem 2.9 (Universal Finiteness Theorem [FLM]). Let � be a family of pseudo-Anosov
mapping classes with the property that for some constant C > 1, we have

L(S,�) < C

for all (S,�) in F . Then there is a finite set of manifolds M = {M1, . . . ,M
k

} so that the
mapping torus (S0,�0) corresponding to each element of � is an element of M.

It follows that to study the dynamics of a family of mapping classes with bounded nor-
malized dilatation, it su�ces to look at a finite collection of fibered faces of hyperbolic
3-manifolds.
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2.4. Teichmüller polynomials. In [McM1], McMullen defined, for each fibered hyper-
bolic 3-manifold M , and fibered face F ⇢ H1(M ;R), an element ⇥

F

2 ZG, called the
Teichmüller polynomial where ZG is the group ring over G = H1(M ;Z)/torsion. Since G
is a free abelian group, we can identify elements with monomials in the generators of G,
and think of elements of ZG as polynomials in several variables with integer coe�cients.
Given an element ✓ 2 ZG, written

✓ =
X

g2G
a
g

g,

and ↵ 2 H1(M ;Z), the specialization of ✓ at ↵ is defined by

✓(↵)(t) =
X

g2G
a
g

t↵(g).

Theorem 2.10 (McMullen [McM1]). Let F be the fibered face of a hyperbolic 3-manifold.
Then for each integral ↵ 2 F · R+, the dilatation of (S

↵

,�
↵

) equals the house of the
specialization

�(�
↵

) = |⇥(↵)
F

|.
Combining the Universal Finiteness Theorem (Theorem 2.9) with Penner’s result on

the asymptotic behavior of minimum dilatations given in Equation (1), it follows that
there are a finite number of fibered faces that contain points corresponding to mapping
classes whose closures (obtained by filling in punctures) give rise to mapping classes (S

g

,�
g

)
realizing �(�

g

) = �
g

. Theorem 2.10 shows further that there is a finite set of group ring
elements ⇥

i

2 ZG
i

, i = 1, . . . , k, so that the dilatations of these maps equal the house of
specializations of these elements.

We now change notation, and think of group rings ZG as Laurent polynomial rings. That
is, if G has generators t1, . . . , t

k

, then there is a natural isomorphism of ZG with the Laurent
polynomial ring ⇤(t1, . . . , t

k

) = Z[t±1
1 , . . . , t±1

k

], where each element of G is considered as
a monomial in t1, . . . , t

k

. Similarly, there is an isomorphism of Zk with Hom(G;Z) where
m = (m1, . . . ,m

k

) corresponds to the map that sends t
i

to tmi , where we think of t as the
generator of Z. By these identifications, the specialization of p(t1, . . . , t

k

) 2 ⇤(t1, . . . , t
k

),
at m is defined by

p(m)(t) = p(tm1 , . . . , tmk).

Putting the Universal Finiteness Theorem (Theorem 2.9) together with Theorem 2.10,
we have the following.

Theorem 2.11 (Universal Finiteness Theorem II). For any constant C, there is a finite
list of Laurent polynomials p1, . . . , pr 2 Z[[t1, . . . , t

k

]] so that if (S,�) satisfies L(S,�) < C,
then

�(�) = |p(m)
i

(t)|
for some i = 1, . . . , r and m 2 Zk.
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2.5. The magic manifold. All of the known minimum dilatation examples for punctured
as well as closed surfaces are associated, after possibly adding or removing punctures, to
points on the fibered face of the magic manifold (see [KT1] [KKT]). This is the 3-cusped
hyperbolic 3-manifold that is topologically equal to the complement of the link drawn
in Figure 1 in the 3-sphere S3. The name magic manifold appears also in the context of
hyperbolic 3-manifolds which admit many non-hyperbolic Dehn fillings, and is the 3-cusped
hyperbolic 3-manifold with smallest volume [Gor].

Figure 1. Magic Manifold as complement of links in S3.

The first homology group G = H1(M ;Z) is a free group on 3 generators x, y, z cor-
responding to meridian loops around the component of the link. The symmetry of the
link induces a symmetry on the Thurston norm. Let x̂, ŷ, ẑ be the dual elements. These
form a basis for H1(M ;R), and x, y, z define coordinate functions on H1(M ;R). With
respect to these coordinates, Thurston norm ball is the convex polytope with vertices
(±1, 0, 0), (0,±1, 0), (0, 0,±1), (±1,±1,±1). Consider the face F defined by the convex
hull of (1, 0, 0), (1, 1, 1), (0, 1, 0), (0, 0,�1). The cone over F can be characterized by the
property

x+ y � z > max{x, y, x� z, y � z, 0},
and F is given by

{(x, y, z) : x+ y � z = 1, x > 0, y > 0, x > z, y > z}.
We switch to multiplicative notation by replacing x, y, z with tx, ty, tz. Then, the Te-
ichmüller polynomial for F is given by

P (tx, ty, tz) = tx+y�z � tx � ty � tx�z � ty�z + 1.(3)

2.6. Dehn Fillings. Let M be a hyperbolic 3-manifold with cusps. Each cusp looks
topologically like

S1 ⇥ S1 ⇥ (0,1),

and we can think of M as the interior of a 3-manifold Mu with torus boundary compo-
nents. A Dehn filling of Mu at a torus boundary component is the 3-manifold given by
attaching a solid torus by identifying boundaries. The filled 3-manifold is determined up to
homeomorphism type by the image of the contracting loop on the surface of the solid torus
in ⇡1(M). This can be specified by a slope when M is a knot or link complement in S3

as follows. The meridian µ is the element of the fundamental group of the torus boundary
component that contracts in S3, and the longitude � is the element whose linking number

8



with the knot in S3 equals zero. Then Dehn fillings are determined by rational numbers
p

q

, where qµ + p� is the contracting loop. If the component of the link is clear, we write

the Dehn filling as M( b
a

). Thus, for example, if M is the complement of a knot in S3,
then M(0) = S3. If M 0 is obtained from the complement M of a link with k components
`1, . . . , `

k

with meridians µ
i

and longitudes �
i

, then we write M 0 as M 0 = M(p1
q1
; . . . ; pk

qk
).

If M has a circle fibration  : M ! S1 with monodromy (S,�), then the intersection
of S with a cusp of M determines a Dehn filling M 0 of M along the cusp. Let F be the
fibered face of M containing the dual element ↵

S

of S. The map H1(M 0;R) ! H1(M ;R)
defined by the inclusion M ,! M 0 is one-to-one, since every loop on M 0 can be pushed o↵
into M . Let F 0 be the preimage of F in H1(M 0;R). Since the map H1(M ;R) ! H1(M 0;R)
has kernel generated by the contracting loop of the Dehn filling, we have the following.

Proposition 2.12. If the boundary slope is a finite order element of H1(M ;R), then the
inclusion F 0 ,! F is a bijection. Otherwise, F 0 maps to a co-dimension one linear section
of F .

The elements of F 0 inherit many of the properties of F .

Proposition 2.13. Let ↵0 be a rational element of F 0, and ↵ its image in F .

(1) The boundary slopes defined by the intersection of the dual surface S
↵

with the cusp
are all homologically equivalent to that defined by S.

(2) The intersections S0
↵

with the filled cusp define a periodic orbit of �0
↵

.
(3) If the points in the periodic orbit do not come from poles of the quadratic di↵er-

ential on S determined (up to scalar multiple) by the stable and unstable foliations
associated to �

↵

, then (S
↵

,�
↵

) is pseudo-Anosov and

�(�0
↵

) = �(�
↵

).

The proof of parts (1) and (2) of Proposition 2.13 is an easy consequence of the defi-
nitions. Part (3) follows from the fact that the stable and unstable foliations of (S

↵

,�
↵

)
also form stable and unstable foliations for (S0

↵

,�0
↵

) as long as the periodic orbit does not
consist of poles.

Remark 2.14. In the case of poles, it is possible that (S0
↵

,�0
↵

) is not pseudo-Anosov. In
this case, by Theorem 2.2, it follows that the Dehn filling M 0 is not hyperbolic, and hence
(S0

↵

,�0
↵

) is not pseudo-Anosov for all rational ↵0 2 F 0. Such a Dehn filling is called an
exceptional Dehn filling, and it was shown by Thurston that there are only a finite number
of boundary slopes with this property.

Let ⇥ 2 ZG be the Teichmüller polynomial for F and ⇥0 2 ZG0 the Teichmüller poly-
nomial for F 0, where G = H1(M ;Z)/torsion and G0 = H1(M 0;Z)/torsion.
Proposition 2.15. If no periodic orbit contains poles, then the Teichmüller polynomial of
F 0 is a factor of the specialization of the Teichmüller polynomial for F defined by the map
i⇤ : G ! G0 induced by the inclusion i : M ! M 0, that is, if

⇥ =
X

g

a
g

g,

9



then ⇥0 divides
P

g

a
g

i⇤(g).

Remark 2.16. Assuming the case that the periodic orbit does not consist of poles, the
e↵ect of Dehn filling on normalized dilatation is more complicated than for the dilatation
itself. For example, if ↵0 is a rational element of F 0 and ↵ is its image in F , then

�(S
↵

) = �(S0
↵

)� s
↵

,

where s
↵

is the number of components in the intersection of S
↵

with the cusp, and depends
on ↵. Thus, the normalized dilatation function L on F 0 is not the pull back of the normal-
ized dilatation function on F , and the e↵ect of pull back on the minimizer of normalized
dilatation is not obvious.

2.7. Fibered faces of the manifold Mm( 1
�2). The minimum dilatation orientable pseudo-

Anosov mapping class of genus 8 is the monodromy of a fibration of M
s

= Mm( 1
�2) (see

[Hir]). The manifold M
s

is homeomorphic to the complement of the encircled closure of
the braid �1�

�1
2 , where �1 and �2 are the standard braid generators of the braid group

on 3-strands. This two component link, known as 622 in Rolfsen’s knot table [Rolf], is
symmetric in the two components and can be drawn in two ways (see Figure 2).

K

2
KK

1

K
1

2

Figure 2. Two drawings of the 622 link.

Let Mm be the magic manifold described in Section 2.5. Assume that the Dehn filling is
done on the cusp of Mm corresponding to the coordinate function y. Then inclusion map
Mm ! M

s

induces the surjection

H1(Mm;R) ! H1(Ms

;R)

has kernel generated by ty+2(x+z). Substituting x = b, z = a and y = �2(b + a) in
Equation 3 gives

P (ta, tb) = t3b+a � t2b+2a � tb � tb�a � ta+2b + 1

= (tb+a + 1)(t2b � tb+a � tb � tb�a + 1).

Let Fm be the fibered face described in Section 2.5. In [Hir], we show that the fibered
face F

s

of M
s

corresponding to Fm is the locus

F
s

= {(x, z) : x = 1, �1 < z < 1},
10



and the Teichmüller polynomial equals

✓
s

(ta, tb) = t2b � tb+a � tb � tb�a + 1.

The Alexander polynomial of M
s

equals [Rolf]

�
s

(ta, tb) = t2b � tb+a + tb � tb�a + 1.

Let ↵(a, b) denote the element of H1(M : R that sends x to b and z to a. If b is even, and
a is odd, then

|✓
s

(ta, tb)| = |�
s

(ta, tb)|
and we have the following.

Proposition 2.17. On the fibered face F
s

of M
s

, the monodromy of ↵(a, b) is orientable
if and only if b is even and a is odd, and in particular, it is orientable when b is even and
a = 1.

The monodromy (S(a,b),�(a,b)) associated to a rational point on F
s

whose primitive
element has coordinates (a, b) has topological Euler characteristic equal to minus the degree
of the Alexander polynomial. Thus, the genus of S(a,b) is given by

g(a, b) = 1 + b� s

2
,

where s is the number of punctures of S(a,b).
Let K1 and K2 be the connected components of the 622-link, and let µ

i

and �
i

be their
meridian and longitude for i = 1, 2. Then µ1 and µ2 generate H1(Ms

;Z) and
�1 = 3µ2 �2 = 3µ1.

Take any integral (a, b) 2 F
s

· R+, and let ↵ = ↵(a, b). Let B
i

be the boundary tori of
tubular neighborhoods of K

i

in M
s

. For i = 1, 2, let m
i

= ↵(µ
i

) and `
i

= ↵(�
i

) be the
images of the meridians and longitudes of K

i

. Let

d1 = gcd(a, 3b) and d2 = gcd(3a, b).

Then d
i

is the index of the image of ⇡1(Bi

) in Z, and hence is equal to the number of
connected components of S(a,b) \B

i

.
In the particular case where (a, b) = (1, n), we have the following.

Lemma 2.18. The number of punctures s of S(1,n) is given by

s =

⇢
2 if 3 doesn’t divide n
4 if 3 divides n

Corollary 2.19. The monodromies (S1,g,�1,g), where g = 2, 4 (mod 6), have the property
that

(1) S1,g has genus g;
(2) S1,g has two singularities of degrees 3g � 2 and g � 2, respectively;
(3) (S1,g,�1,g) is orientable; and
(4) �(�1,g) = |LT1,g|.
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By Fried’s theorem (Theorem 2.5), the function L(S,�) extends to a continuous convex
function on F that goes to infinity toward the boundary. Thus, it has a unique minimum
in F

s

. The Teichmüller polynomial is invariant under the involution on H1(Ms

;R) given
by sending z to �z. It follows that �(S,�)) is symmetric around the z = 0 axis, and the

minimum of L on F occurs at the rational point ↵(0,1)
||↵(0,1) , and is given by

�(�(0,1)) = |t3 � 3t+ 1| = 3 +
p
5

2
= �20 .

Thus the conjectural minimum accumulation point for genus normalized dilatations of
pseudo-Anosov mapping classes (Conjecture 1.1).

Concretely (S(0,1),�(0,1)) is the mapping class known as the simplest hyperbolic braid.
Using the left diagram in Figure 2, consider the three times punctured disk D bounded
by the encircling link K2. Then D is Poincare dual to µ2 considered as an element of
H1(Ms

;Z), and hence is the dual surface to ↵(0, 1). The mondromy is defined by con-
sidering M

s

as the complement of the braid defined by K1 in a solid torus given by the
complement of a thickened K2 in S3. The solid torus fibers uniquely up to isotopy over S1

with fiber D, and the monodromy is the braid monodromy defined by K2, namely the one
defined by �1�

�1
2 , where �1 and �2 are the braid generators.

The points ↵(1, n) in H1(M
s

;R) define rays converging to the ray through ↵(0, 1), and
hence the sequence L(S(1,n),�(1,n)) converges to ! L(S(0,1),�(0,1)). Since �(D) = �2, we
have

�(�(1,g))
2g = L(S(1,g),�(1,g)) ! L(S(0,1),�(0,1)) = �40 .

This leads to the more general version of Conjecture 1.1.

Conjecture 2.20. The smallest accumulation point for normalized dilatations is �40 .

The minimum dilatation orientable pseudo-Anosov mapping classes of genus 7 was found
independently in [AD] and [KT2] and is the monodromy of M

w

= M
m

( 3
�2), which is the

complement of the (�2, 3, 8)-pretzel link, also known as the Whitehead sister-link in S3.
The minimum dilatations of pseudo-Anosov mapping classes arising as monodromies of
circle fibrations of M

w

are all of the form |LT
a,b

|, where a 2 {3, 7, 13, 17} and b = g + 2.
Putting together the examples above, we have the following.

Proposition 2.21. For all g
�
g

 |LT1,g|,
and hence

lim sup(�
g

)g  �20
and

lim supL(S,�)  �40 .

Let �(a,b) = |LT(a,b)|, and let �(x,y,z) = |P (tx, ty, tz)|. In Table 1, we show the smallest
known dilatations for orientable and unconstrained pseudo-Anosov mapping classes on
closed surfaces of genus 2 through 12. These put together the results in [AD] (Table 1.9),
[KT2] (Thm 1.6, 1.7, 1.12, and Prop. 4.3.7), [KKT] (Table 1) and [Hir] (Prop 4.7).
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g orientable unconstrained
2 �(1,2) ⇡ 1.72208 same
3 �(3,4) ⇡ 1.40127 same
4 �(1,4) ⇡ 1.28064 �(3,5) ⇡ 1.26123
5 �(1,6) ⇡ 1.17628 �(1,7) ⇡ 1.14879
6 �(10,8,3) ⇡ 1.20189 �(1,8) ⇡ 1.12876
7 �(2,9) ⇡ 1.11548 same
8 �(1,8) ⇡ 1.12876 �(18,17,7) ⇡ 1.10403
9 �(2,11) ⇡ 1.09282 same
10 �(1,10) ⇡ 1.10149 �(1,12) ⇡ 1.08377
11 �(1,12) ⇡ 1.08377 �(1,13) ⇡ 1.07705
12 �(12,20,3) ⇡ 1.10240 �(3,14) ⇡ 1.07266

Table 1. Smallest known dilatations for genus g  12.

2.8. Dilatations of pseudo-Anosov mapping classes. We are particularly interested
in the subclass of pseudo-Anosov mapping classes whose stable and unstable foliations are
orientable. This is equivalent to the condition that the homological dilatation �hom(�),
which is the spectral radius of the action of � on the first homology of S, is equal to
the geometric dilatation �(�). Such mapping classes are called orientable. Let �+

g

be the
minimum dilatation for orientable pseudo-Anosov mapping classes on S

g

. By the results
in [Pen] and [HK], �+

g

has the same asymptotic behavior as �
g

:

log(�+
g

) ⇣ 1

g
.

In the orientable case, �+
g

has been computed for g = 2, 3, 4, 5, 7, 8 beginning with work
by Lanneau and Thi↵eault in [LT] and continuing with [Hir], [AD] [KT2]. In [LT] Lanneau
and Thi↵eault also gave the first attempt to describe the behavior of minimum dilatation
explicitly as a function of g. Given a polynomial p(t), the house of p(t) is given by

|p| = max{|µ| : p(µ) = 0}.
Question 2.22. Let

p
n

(t) = t2n � tn+1 � tn � tn�1 + 1.

Then for even genus g � 2,

�+
g

= |p
g

|.
If the answer to Question 2.22 is a�rmative, then

lim inf
g!1

(�+
g

)g  �20 ,

where �0 is the golden mean. This suggests the following conjecture (cf. Conjecture 1.1).
13



Conjecture 2.23. The genus-normalized minimum dilatations satisfy

lim inf
g!1

(�+
g

)g = �20 .

3. Digraphs and Perron units

The dynamics of a pseudo-Anosov mapping class � : S ! S, in particular, the structure
of the stable and unstable invariant foliations, can be captured in terms of an associated
directed graph, via an associated train track map. The train track map defines a Perron-
Frobenius linear map T that preserves a symplectic bilinear form, and the dilatation of
the mapping class equals the Perron-Frobenius eigenvalue of T . It follows that dilatations
are Perron units. The minimum dilatation problem for pseudo-Anosov mapping classes is
closely related in spirit to Lehmer’s problem for Mahler measures of monic integer polyno-
mials posed in [Leh]. In this section, we review Lehmer’s question on the distribution of
algebraic integers, and focus on the particular case of Perron units.

3.1. Mahler measure and Lehmer’s question. Given a monic integer polynomial

p(t) = td + a
d�1t

d�1 + · · ·+ a0, a
i

2 Z

the Mahler measure is given by

M(p) =
Y

p(µ)=0

max{1, |µ|}.

In [Leh], Lehmer asks: is there a positive gap between 1 and the next smallest Mahler
measure?

The smallest known Mahler measure greater than one is called Lehmer’s number

�
L

⇡ 1.17628,

and its minimal polynomial for �
L

is

p
L

(t) = t10 + t9 � t7 � t6 � t5 � t4 � t3 + t+ 1.

By a result of Smyth [Smy], the smallest Mahler measure of a non-reciprocal irreducible
polynomial is approximately �

S

= 1.32472, which is greater than �
L

. Thus to solve
Lehmer’s problem it su�ces to look at reciprocal polynomials.

3.2. Normalized house. The house of a polynomial is given by

|p| = max{|µ| : p(µ) = 0}.
We have the inequalities

|p|  M(p)  |p|d.(4)

We call |p|d the normalized house of p(t). It is an open question whether there is a positive
gap between 1 and the next smallest normalized house. If the answer is no, it would imply
that there are sequences of Mahler measures converging to 1 from above.
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Lehmer’s polynomial p
L

has only one root outside the unit circle, and hence we have
the first inequality in Equation (4),

|p
L

| = M(p
L

).

The second inequality is also sharp (e.g., take p(t) = tn � 2).

3.3. Perron numbers. A Perron-Frobenius matrix T is an n ⇥ n matrix whose entries
are all non-negative real numbers, and such that for some k0, the entries of T k are all
positive all k � k0. Given a non-negative matrix T = [a

i,j

], one can define an associated
directed graph, or digraph, D with n vertices v1, . . . , vn and a

i,j

directed edges from v
i

to
v
j

. By this correspondence T is Perron-Frobenius if and only if D is strongly connected,
i.e., there is a directed path between any two vertices, and aperiodic, the path lengths of
cycles have no common divisor greater than one [Kit]. By the Perron-Frobenius theorem,
if T is Perron-Frobenius, then there is a vector v with positive entries such that Tv = �v,
for some � > 1, and � is completely determined by these properties. This � is called the
Perron-Frobenius eigenvalue of T , or dilatation of D.

A Perron number is a real algebraic integer � > 1 such that all algebraic conjugates have
complex norm strictly less than �. An algebraic integer is a Perron number if and only if
it is the Perron-Frobenius eigenvalue of a matrix. Pisot and Salem numbers are examples
of Perron numbers. A Pisot number is an algebraic integer greater than one all of whose
other algebraic conjugates lie strictly inside the unit circle. A Salem number is an algebraic
integer greater than one all of whose other algebraic conjugates lie on or inside the unit
circle with at least one on the unit circle. The smallest Pisot number is the smallest Mahler
measure �

S

for non-reciprocal polynomials found by Smyth. It is not known whether there
are Salem numbers arbitrarily close to 1 or whether the infimum of all Mahler measures
greater than 1 is a Salem numbers. The smallest known Salem number is Lehmer’s number
�
L

.
Graph theory provides an answer to the minimum normalized house problem for Perron

numbers and their defining polynomials. Recalling the correspondence between Perron-
Frobenius matrices and digraphs, one notes that the smallest dilatation digraph has the
form given in Figure 3 (see [Pen]). The characteristic polynomial of the digraph is

p
n

(t) = tn � t� 1,

for n � 4. The polynomial is interesting also in the case n = 2, since |p2| = �0 is the golden
mean, and in the case n = 3, since p3 = x3 � x � 1 is the Smyth polynomial defining �

S

.
We also have

lim
n!1

|p
n

|n = 2,

where the convergence is from above.
Properties of the normalized house of reciprocal Perron numbers were recently studied

in [McM2], showing that any Perron unit ↵ of degree n satisfies the inequality

↵n � �40 ,

where �0 is the golden mean (see Theorem 3.2).
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Figure 3. Minimum dilatation digraph.

3.4. Complexity of digraphs. The complexity c of a digraph is the number of edges
minus the number of vertices of the graph (or minus the topological Euler characteristic).

Lemma 3.1 (Ham-Song [HS]). If � is the spectral radius of M , then c satisfies the in-
equality

c  �2n � 1.

Figure 4. Digraphs realizing LT1,n.

Figure 4 shows a family of directed graphs whose characteristic polynomials are given
by LT1,3. In the Figure, an edge labeled m is subdivided into a chain of m edges and m�1
additional vertices. Other examples of digraphs with the same dilatation were found in
[Bir]. The ones shown in Figure 4 have the additional property that they are defined from
the transition matrix of train track maps associated to pseudo-Anosov mapping classes
(see Section 6).

The LT polynomials satisfy
|LT1,n|  |LT

a,n

|
for all 1  a < n, and for any fixed 0 < a,

lim
n!1

|LT
a,n

|2n =

 
3 +

p
5

2

!2

= �40 .
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Thus to find the smallest Perron units, it su�ces to consider only those with � < �
n

=
|LT1,n|. It follows that to solve the minimum dilatation problem it su�ces to look at
mapping classes whose corresponding digraphs have complexity c  5.

3.5. Dilatations of digraphs whose matrices preserve a symplectic form. It is
well-known that any Perron number can be realized as the spectral radius of a Perron
Frobenius matrix. Furthermore, any Perron unit is the dilatation of a Perron Frobenius
matrix that preserves a symplecitc form. It is not known, however, whether every Perron
unit is a dilatation of pseudo-Anosov mapping class.

Given a Perron unit �, we define its PF-degree to be the minimum dimension of a Perron
Frobenius matrix realizing �. McMullen has recently announced the following result giving
further support to Conjecture 1.1.

Theorem 3.2 (McMullen [McM2]). Let p
d

be the minimum Perron unit of Perron degree
d. Then

(1) (p
n

)n � �40 for all n � 1, and
(2) lim

n!1(p
n

)n = �40 .

4. Orientable pseudo-Anosov mapping classes

In [LT] Lanneau and Thi↵eault studied potential defining polynomials for �+
g

in the
cases g = 2, . . . , 8, and found lower bounds for �+

g

for these g. Using known examples
whose dilatations match these lower bounds they determined �+

g

for g = 2, 3, 4, 5. From

the results of Cho and Ham in [CH], it follows that �2 = �+2 . Lanneau and Thi↵eault’s
lower bound for g = 6 agrees with �+5 , showing that �+

g

is not strictly monotone decreasing.

An example realizing �+7 was found in [AD] and in [KT2], and an example realizing �+8 was
found in [Hir]. The exact value for �+6 is not known.

The minimum dilatations of orientable pseudo-Anosov mapping classes for low genus
are given in Table 2. The associated PF-polynomial is the characteristic polynomial of
an associated Perron-Frobenius matrix. This is not necessarily irreducible. In Table 2 we
repeatedly see the cyclotomic factor �(t) = t2 � t+ 1.

g �+
g

⇡ PF polynomial factorization
2 1.72208 t4 � t3 � t2 � t+ 1 irreducible
3 1.40127 t8 � t7 � t4 � t+ 1 �(t)(t6 � t4 � t3 � t2 + 1)
4 1.28064 t8 � t5 � t4 � t3 + 1 irreducible
5 1.17628 t12 � t7 � t6 � t5 + 1 �(t)(t10 + t9 � t7 � t6 � t5 � t4 � t3 + t+ 1)
7 1.11548 t18 � t11 � t9 � t7 + 1 �(t)(t14 + t13 � t9 � t8 � t7 � t6 � t5 + t+ 1)
8 1.12876 t16 � t9 � t8 � t7 + 1 irreducible

Table 2. List of minimum dilatations and their PF polynomials.
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For a, b 2 Z, define the Lanneau-Thi↵eault polynomial LT
a,b

to be the polynomial

LT
a,b

(t) = t2b � tb+a � tb � tb�a + 1.

As can be seen from Table 2, for g = 2, 3, 4, 5, 7, 8, the PF polynomial for the minimum di-
latations of orientable pseudo-Anosov mapping classes is a Lanneau-Thi↵eault polynomial.

Question 2.22 can be rephrased as follows.

Question 4.1 (Lanneau-Thi↵eault Question). For even g � 2 is it true that

�+
g

= |LT1,g|
where |LT1,g| is the house of LT1,g(t)?

By the following result, |LT1,g| is an upper bound for �+
g

for g ranging in an arithmetic
sequence or even integers.

Theorem 4.2. [[Hir]] For each g ⌘ 2, 4 (mod 6), there is an orientable pseudo-Anosov
mapping class on a genus g closed surface with dilatation equal to |LT1,g|.

5. Fat train track maps and automata

For each pseudo-Anosov mapping class, one can associate a fat train track map that
encodes essential geometric information, including information about singularities, the in-
variant stable foliation, and dilatations. In this section, we give relevant background and
definitions.

5.1. Train tracks and train track maps. A train track is a finite topological graph ⌧
(or 1-complex) with no double edges or vertices of degree one. A smoothing of ⌧ at a vertex
v is a choice of tangent directions for the half edges of ⌧ that meet at v, that is if e1 and
e2 meet at a vertex, then they meet either smoothly or in a cusp.

In Figure 5, e3 meets e1 and e2 smoothly, while e1 and e2 meet at a cusp.

1

e2

e3e3

e1

e2

e

Figure 5. Smoothing at a trivalent vertex

Figure 6 shows a smoothing of a degree four vertex.
For our examples, we will consider train tracks consisting of a 3b-gon whose edges meet

in cusps and 2b-edges attached smoothly to the vertices of the 3b-gon in one of the ways
shown in Figure 5 and Figure 6.

By a fat graph, we mean a graph such that at any vertex v, there is a cyclic ordering of
the half edges that meet at v. This gives a local embedding of the half edges meeting at v
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1

e1

e2

e4

e3

e4

e3e2

e

Figure 6. Smoothing at a degree 4 vertex

into a disk centered at v. Given any fat graph �, there is a canonical orientable surface S�

with boundary on which � embeds so that

(1) at each vertex the ordering of the edges corresponds to the counterclockwise order-
ing on the surface; and

(2) S� deformation retracts to the image of � under the embedding.

Each boundary component is one boundary component of an annular complementary com-
ponent of ⌧ on S�. Consider the edges surrounding the other interior boundary component.
Each time two adjacent edges meet in a cusp, we call it a vertex of the polygon formed by
⌧ around the boundary component. If the number of vertices of the polygon is k, we say
the boundary component is contained in a k-gon of ⌧ .

A fat train track ⌧ embedded on a surface S fills S if S is obtained from S
⌧

by filling in
some subset (possibly empty) of the boundary components of S

⌧

with disks.
A train track map f : ⌧ ! ⌧ is a local embedding so that vertices map to vertices, and

edges map to edge-paths on ⌧ so that no subinterval of an edge passes across two half edges
meeting at a cusp. We consider train track maps up to isotopy on ⌧ .

A train track map f determines a linear transformation RE to itself as followis. Let E
be the set of (unoriented) edges of ⌧ . Given e 2 E , let

f⇤(e) =
X

e

0

a
e

0e0,

where a
e

0 is the number of times f(e) passes over e0. Define T : RE ! RE , where for each
w 2 RE ,

T (w)(e) = w(f⇤(e)),

where w extends linearly. The transformation T is called the transition map defined by f .
The weight space W

⌧

of a train track ⌧ is the subspace of RE consisting of edge labels
so that if three half edges e1, e2 and e3 meet at a vertex as in Figure 5, then

w(e1) + w(e2) = w(e3),

and if e1, e2, e3 and e4 meet as in Figure 6, then

w(e1) + w(e2) = w(e3) + w(e4).

An edge labeling w determines a labeling on edge paths, which we also denote by w. Given
a train track map f with transition map T , we have T (W

⌧

) = W
⌧

.
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A train track ⌧ ⇢ S and train track map f : ⌧ ! ⌧ is compatible with a mapping class
(S,�), if ⌧ fills S and the induced map �⇤ on ⌧ equals f .

Theorem 5.1. If (S,�) is pseudo-Anosov, then

(1) (S,�) has a compatible train track ⌧ and train track map f : ⌧ ! ⌧ ;
(2) the induced map f⇤ on W

⌧

is Perron-Frobenius, and preserves a symplectic form;
and

(3) �(�) is the spectral radius of f⇤.

In the examples that follow, it is possible to find a subcollection of edges in E whose
duals in RE form a basis for W

⌧

. We call these the real edges of ⌧ and the complementary
set of edges the infinitessimal edges.

5.2. Simplest hyperbolic braid. Figure 7 gives an example of a fat train track and train
track map compatible with the simplest hyperbolic braid. The weights in the weight space
are determined by their labels on the two longer edges of the train track, and the three
encircling loops are the corresponding infinitessimal edges. The action of the simplest
hyperbolic braid monodromy defined by �1�

�1
2 acts on the real edges according to the

matrix 
1 1
1 2

�
,

and the dilatation is the largest eigenvalue 3+
p
5

2 = �20 .

Figure 7. Train track for simplest hyperbolic braid monodromy

5.3. Orientable train tracks. Each train track on S determines a foliation on S as
follows. For each complementary region of ⌧ on S surrounded by a k-gon, the foliation has
a k-pronged singularity. A train track is orientable, if there is an orientation on the edges
so that if two edges meet smoothly at a vertex, the orientations are compatible.

Figure 8 sketches the foliation around a boundary component of S corresponding to a
hexagon on a fat train track. The orientation on the train track determines an orientation
on the foliations.

Thus, we have the following.

Proposition 5.2. A pseudo-Anosov map (S,�) that has a compatible train track map
f : ⌧ ! ⌧ , where ⌧ is orientable, is orientable.
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Figure 8. A hexagon on a fat traintrack, and corresponding foliations.

5.4. Train track automaton. Given two fat train tracks ⌧1 and ⌧2, a folding map f :
⌧1 ! ⌧2 is a quotient map obtained by identifying edge-segments of a pair of edge in ⌧1 as
follows. Take two edges e1 and e2 on ⌧1 with half edges that meet at a cusp at a vertex
v, and that are adjacent in the fat graph ordering. Then the folding map of e1 over e2 is
obtained by identifying the embedded image of a closed interval in e1 with endpoint v with
e2 by a homeomorphism sending v to v. The fat train track automaton is the set of all fat
train tracks with a directed edge from one train track to another if there is a folding map
between them.

Each folding map is a homotopy equivalence of graphs and defines a linear transformation
between edge labels, and between weight spaces. A circuit in the fat train track automaton
corresponds to a composition of folding maps together with an homeomorphism of train
tracks. Thus, the transition matrix for the train track map corresponds to a composition
of transition matrices for folding maps and a permutation matrix.

A train track automaton is a directed graph whose vertices are train tracks and edges
are folding maps.

Proposition 5.3 (Stallings [Sta], Ham-Song [HS]). Any pseudo-Anosov mapping class can
be represented by a circuit on a train track automaton.

6. Small dilatation examples

In this section, we define train track maps for mapping classes (S
n

,�
n

) for all integers
n � 2, and describe corresponding circuits in the train track folding automaton, and
digraphs. These train track maps define mapping classes with the same genus, boundary
components, and dilatations as (S1,n,�1,n).

We begin with a fat train track map defining (S2,�2) in Figure 9 . One can check
that all of the train tracks in the circuit shown in Figure 9 fix a genus two surface with
two complementary disk components, one bounded by the central hexagon, and the other
bounded by the edges of the hexagon and by each side of the four real edges. The train track
map defined by composing the folded mapping classes described in the circuit corresponds
to the orientable pseudo-Anoosv mapping classes whose dilatation realizes �2 = �+2 .
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The center hexagon is made up of infinitessimal edges and the other four edges are real
edges. Starting at the upper left train track in the the automaton, we first fold edge a over
edge c and the following adjacent infinitessimal edge. In the next step we fold b over the
new edge a. Then we fold the new edge b over c. Finally by a rotation, we return to the
original train track.

rotation

a

c

b

a

b

b

c

b −> b+c

b −> a+b

a −> a+c

Figure 9. Train track circuit for example realizing �+2 and �2.

The transition matrices for the folding diagrams starting at the top left and going around
counter-clockwise are:

2

664

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

3

775

2

664

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775

2

664

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

3

775 and

2

664

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

3

775 .

The composition is given by 2

664

1 1 0 0
0 0 0 1
0 1 0 0
1 1 1 0

3

775
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and its characteristic polynomial is x4 � x3 � x2 � x+ 1. This gives

�2 = �+2 = |x4 � x3 � x2 � x+ 1| ⇡ 1.72208.

The train track in Figure 9 generalizes to the one in Figure 10.

b −> a + b

rotation

a

b

c

a

b

b

c

a −> a+c

b −> b+c

Figure 10. Circuit in train track automaton for (S
n

,�
n

)

Let G
n

be the digraphs in Figure 4. The “shape” of the train track map and folding
maps for (S

n

,�
n

) are related to each other in a systematic way, and one observes the
following.

Proposition 6.1. The digraphs associated to the transition matrices for the train track
maps of (S

n

,�
n

) are G
n

, and hence the dilatations of (S
n

,�
n

) are given by

�(�
n

) = |LT1,n|.
The genus of S

n

can be determined from the topological Euler characteristic of G
n

,
�(G

n

) = 2n and the number of boundary components of the fat graph. There is one
component for the central 3n-gon, and either one or three other boundary components,
depending on whether n is divisible by 3. This implies the following.

Proposition 6.2. The surface S
n

has genus g = n if n = 1, 2 (mod 3), and has genus
g = n� 1 if n = 0 (mod 3).
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From the train track maps, we can also determine when the mapping classes are ori-
entable, for this is exactly when the train tracks themselves are orientable as seen in the
next proposition.

Proposition 6.3. The mapping class (S
n

,�
n

) is orientable if and only if n is even.

Proof. The complementary region of (S
n

,�
n

) splits into a central 3n-gon and either one
n-gon, or three n/3-gons, depending on whether or not n is divisible by 3. In order for the
train track to be orientable, we need to have each polygon have an even number of sides.
Thus, n must be even.

When n is even, there are two possible ways to orient the central 3n-gon. Each extends
to a compatible orientation on the entire train track. (An example is shown in Figure 11).

Figure 11. Oriented train track for n = 4.
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COXETER GARLANDS IN H4 AND 2-SALEM NUMBERS

YOHEI KOMORI

1. Introduction

One idea to construct a series of hyperbolic Coxeter polytopes is to paste
copies of an initial Coxeter polytope along their orthogonal facets. (cf.[20]).
T. Zehrt and C. Zehrt [21] studied such Coxeter polytopes in 4-dimensional
hyperbolic space H4, called Coxeter garlands whose initial truncated simplex
has 2 orthogonal facets (cf.[14]). They computed the growth functions Gn(t)
of hyperbolic Coxeter groups Gn associated to Coxeter garlands and showed
that they have two reciprocal pairs of poles on the positive real axis and
remaining poles are on the unit circle.

On the other hand Cannon and Wagreich [1] and Parry [11] proved that
the growth functions of cocompact 2 and 3-dimensional hyperbolic Coxeter
groups have one reciprocal pairs of poles on the positive real axis and re-
maining poles are on the unit circle. As a consequence, the growth rates of
cocompact 2 and 3-dimensional hyperbolic Coxeter groups are Salem num-
bers or quadratic units.

By means of results in [21] we will show that the growth rate of a Coxeter
Garland Gn is always a 2-Salem number, which is a generalization of a
Salem number (cf.[13, 10]). Numerical calculations were performed by using
Mathematica 9.

Y. Umemoto considered different series of hyperbolic Coxeter polytopes
in H4, called Coxeter dominoes and proved that infinite many Coxeter domi-
noes have 2-Salem numbers as their growth rates [18]. She also showed that
a Coxeter Garland Gn has a 2-Salem number as its growth rates when n is
congruent to 1 modulo 15 [19].

The paper is organized as follows. In section 2 we collect basic definitions
and results of hperbolic Coxeter groups and their growth functions. 2-Salem
number is defined in section 3, and in section 4 we review a work of T. Zehrt
and C. Zehrt [21] on Coxeter garlands. We will show our main result in
section 5.

The author would like to thank Ruth Kellerhals and Eriko Hironaka for
their wonderful organization of the conference on Growth and Mahler mea-
sure in geometry and topology at the Mittag-Leffler Institute on July, 2013.
Thanks also to Ruth Kellerhals again and Yuriko Umemoto for helpful dis-
cussion and stimulative comments. This work was partially supported by
Grant-in-Aid for Scientific Research(C) (19540194), Ministry of Education,
Science and Culture of Japan.
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2 YOHEI KOMORI

2. Hyperbolic Coxeter groups and their growth functions

A convex polytope P with finite number of facets in the n-dimensional
hyperbolic space Hn is called a hyperbolic Coxeter polytope if its dihedral
angles are submultiples of π (cf.[12]). We can associate to P a graph called
the Coxeter diagram Γ of P as follows: each vertex of Γ represents a facet
of P and two vertices are connected by an edge with number m ≥ 3 if the
dihedral angles between two facets corresponding to two vertices is equal to
π/m. If two facets are orthogonal then the corresponding two vertices are not
connected, while if two facets are ultra-parallel then the corresponding two
vertices are connected by a dotted edge (see Figures 1 and 2). The set S of
reflections with respects to facets of P generates an infinite discrete group W
acting on Hn, and we call (W,S) a n-dimensional hyperbolic Coxeter group.
The growth function W (t) of (W,S) is the formal power series

∑∞
k=0 aktk

where ak is the number of elements g ∈ W whose word length with respect to
S is equal to k (cf.[5]). Since the cardinality of W is infinite and that of S is
finite, the growth rate of (W,S) ω := lim supk→∞ k

√
ak is bigger than or equal

to 1 while it is less than or equal to the cardinality |S| of S, since ak ≤ |S|k,
i.e. 1 ≤ ω ≤ |S|. By means of Cauchy-Hadamard formula, the radius of
convergence R of W (t) is the reciprocal of ω, i.e. 1/|S| ≤ R ≤ 1. Therefore
W (t) is not only a formal power series but also an analytic function of t ∈ C
on the open disk |t| < R. In practice the analytic function W (t) on |t| < R
extends to a rational function P (t)/Q(t) on C by analytic continuation where
P (t), Q(t) ∈ Z[t] are relatively prime. We also have precise formulas due to
Solomon [16] and Steinberg [17] to calculate the rational function P (t)/Q(t)
from the Coxeter diagram of (W,S) ([16, 17]. See also [6, 8]).

Theorem 1 (Steinberg formula). Let us denote by (WT , T ) the Coxeter
subgroup of (W,S) generated by the subset T ⊆ S, and let its growth function
be WT (t). Set F = {T ⊆ S : WT is finite }. Then

1
W (t−1)

=
∑

T∈F

(−1)|T |

WT (t)
.

Theorem 2 (Solomon formula ). The growth function G(t) of an irreducible
finite Coxeter group (G,T ) can be written as G(t) =

∏k
i=1[mi + 1] where

[n] := 1 + t + · · · + tn−1 and {m1,m2, · · · ,mk} is the set of exponents of
(G, T ).

Since ak is a natural number for all k ≥ 0, t = R is a pole of W (t) on the
circle |t| = R. Hence R is a real zero of the denominator Q(t) closest to the
origin 0 ∈ C of all zeros of Q(t). Theorem 2 implies that P (0) = ±1. Hence
a0 = 1 implies that Q(0) = ±1. Moreover de la Harpe [4] proved that Γ is of
exponential growth, i.e. ω > 1. Therefore the growth rate ω, the reciprocal
of R, becomes a real algebraic integer grater than 1 whose conjugates have
moduli less than or equal to the modulus of ω.
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The growth function W (t) of a cocompact hyperbolic Coxeter group has
special symmetries: Serre [15] and Charney and Davis [1] proved that for
cocompact n-dimensional hyperbolic Coxeter groups, W (t) is reciprocal, i.e.
W (1/t) = W (t) when n is even, and anti-reciprocal, i.e. W (1/t) = −W (t)
when n is odd.

3. 2-Salem numbers

In this section we review the notion of 2-Salem numbers following Samet
[13] and Kerada [10]. We start from the definition of Salem numbers. A real
algebraic integer τ > 1 is called a Salem number if τ−1 is a conjugate of τ and
all conjugates of τ other than τ and τ−1 lie on the unit circle, and at least
one of them is on the unit circle. We remark that a quadratic unit is not a
Salem number in this sense. It can be proved that the minimal polynomial of
τ over Z is palindromic of even degree, where a polynomial Q(t) of degree d
is called palindromic if Q(t) satisfies Q(t) = tdQ(1/t). Cannon and Wagreich
[1] and Parry [11] proved

Theorem 3 (Cannon, Wagreich and Parry). The growth rates of cocom-
pact 2 and 3-dimensional hyperbolic Coxeter groups are Salem numbers or
quadratic units.

It seems a natural question whether quadratic units can be realized actu-
ally as growth rates of cocompact 2 and 3-dimensional hyperbolic Coxeter
groups. We answer in the affirmative by giving concrete examples.

Example 1. The growth function for hyperbolic pentagon angles
π/2,π/4,π/4,π/4, π/4 is

fS(x) =
(x + 1)2(x2 + 1)

(x2 − 4x + 1)(x2 + x + 1)
.

Therefore its growth rate is a quadratic unit.

4

44

Figure 1
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Example 2. The growth function for 3-dimensional hyperbolic Lambert cube
(cf.[7, 9]) defined by the Coxeter diagram of Figure 1 is

fS(x) =
(x + 1)3(x2 + 1)

(x − 1)(x2 − 3x + 1)(x2 + x + 1)
.

Therefore its growth rate is a quadratic unit.

Now we come to the definition of 2-Salem numbers.

Definition 1 (cf.[13, 10]). A real algebraic integer α > 1 is called a 2-
Salem number if it has a real conjugate β > 1 while other conjugates ω
satisfy |ω| ≤ 1 and at least one of them is on the unit circle.

It can be proved that 1/α < 1 and 1/β < 1 are also conjugate of α and
other conjugates are on the unit circle. Also the minimal polynomial of α
over Z is palindromic of even degree.

4. Coxeter garlands and their growth functions

In this section we review a work [21] of T. Zehrt and C. Zehrt on growth
functions of Coxeter garlands. The Coxeter diagram of Figure 2 represents
a compact 4-dimensional hyperbolic Coxeter polytope with 2 orthogonal
facets named by a and b. They took 2 copies of it, pasted them along the

5

5

a b

Figure 2

facet of type a and got a new polytope P with 2 orthogonal facets of type
b. They calculated the growth function for the geometric Coxeter group G
corresponding to P as follows

[2]2[5][6](t5 + 1)
t16 − 4t15 + t14 + t12 + t11 + 2t9 + 2t7 + t5 + t4 + t2 − 4t + 1

.

Let Gn be the geometric Coxeter group corresponding to the Coxeter
polytope Pn constructed from n copies of P by (n-1)- gluings along orthog-
onal facets of type b.. They called Gn a Coxeter garland in H4. Then by
means of the gluing formula ([21] Corollary 2), they showed
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Theorem 4 ([21] Theorem 1). The growth function Gn(t) of Gn is equal to
[2][2][5][6](t5 + 1)/Zn(t) where the denominator is a palindromic polynomial
of degree 16 defined by

Dn(t) = t16 − 2(n + 1)t15 + t14 + (n − 1)t13 + t12 + nt11

+(n − 1)t10 + 2t9 + 2(n − 1)t8 + 2t7 + (n − 1)t6

+nt5 + t4 + (n − 1)t3 + t2 − 2(n + 1)t + 1.

About the pole distribution of Gn(t), they proved

Theorem 5 ([21] Theorem 2). Dn(t) has six reciprocal pairs of roots on the
unit circle, and two reciprocal pairs of roots on the positive real axis.

Therefore the growth rates of Coxeter garlands seem to be 2-Salem num-
bers, but it might be happened that Dn(t) is a product of Salem polynomials
and cyclotomic polynomials.

5. Irreducibility of the denominator polynomials Dn(t)

In this section we prove that the growth rates of Coxeter garlands are
2-Salem numbers. More precisely

Theorem 6. For any n ∈ N, the denominator polynomial Dn(t) of the
growth function Gn(t) of a Coxeter garland Gn is irreducible over Z, hence
Dn(t) is a 2-Salem polynomial.

Because of Theorem 5, if Dn(t) is reducible over Z, hence can be written as
a product of polynomials over Z, then each factor should be a palindromic
polynomial of even degree. The next observation will play a key role for
computations below:

Proposition 1. For any n ∈ N, Dn(i) = 2.

First we assume that Dn(t) has a palindromic polynomial of degree 2 as
its factor over Z:

Dn(t) = (t2 + pt + 1)(t14 + at13 + bt12 + ct11 + dt10 + et9 + ft8 + gt7

+ft6 + et5 + dt4 + ct3 + bt2 + at + 1).

Dn(i) = 2 implies p(2a − 2c + 2e − g) = −2, hence p = 2, 1,−1,−2.
Suppose that p = 2. Since the quadratic factor is t2 + 2t + 1, t = −1

should be a root of Dn(t) while Dn(−1) = 4(1 + n) ̸= 0, a contradiction.
Therefore p = 2 cannot be happened.

Suppose that p = −2. Since the quadratic factor is t2 − 2t + 1, t = 1
should be a root of Dn(t) while Dn(1) = 4n ̸= 0, a contradiction. Therefore
p = −2 cannot be happened.

Suppose that p = 1. Since the quadratic factor is t2 + t + 1, t = −1±
√

3i
2

should be a root of Dn(t) while Z(−1±
√

3i
2 ) = 2(−1 ∓

√
3)n ̸= 0, a contra-

diction. Therefore p = 1 cannot be happened.
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Suppose that p = −1. Since the quadratic factor is t2 − t + 1, t =
1±

√
3i

2 should be a root of Dn(t) while Z(1±
√

3i
2 ) = (1 ∓

√
3)(1 + n) ̸= 0, a

contradiction. Therefore p = −1 cannot be happened.
The above arguments conclude that Dn(t) cannot have a quadratic factor.
Next we assume that Dn(t) has a palindromic polynomial of degree 4 as

its factor over Z:

Dn(t) = (t4 + pt3 + qt2 + pt + 1)(t12 + at11 + bt10 + ct9 + dt8 + et7

+ft6 + et5 + dt4 + ct3 + bt2 + at + 1).

Dn(i) = 2 implies (2 − q)(2 − 2b + 2d − f) = 2, hence q = 0, 1, 3, 4.
Suppose that q = 0:

Dn(t) = (t4 + pt3 + pt + 1)(t12 + at11 + bt10 + ct9 + dt8 + et7

+ft6 + et5 + dt4 + ct3 + bt2 + at + 1).

Comparing coefficients of degrees from 1 to 6 of both sides, a, b, c, d, e and
f can be written as polynomials in p and n:

a = −2(1 + n) − p

b = 1 + 2(1 + n)p + p2

c = −1 + n − 2p − 2(1 + n)p2 − p3

d = (1 − n + 2(1 + n))p + 3p2 + 2(1 + n)p3 + p4

e = n + 2(1 + n) + (−1 + n − 4(1 + n))p2 − 4p3 − 2(1 + n)p4 − p5

f = −2 + n + (1 − 2n − 4(1 + n))p + p2 + (1 − n + 6(1 + n))p3

+5p4 + 2(1 + n)p5 + p6.

Substitute them in coefficients of degree 7 of both sides, we have

1 + 4p + 7p2 + p3 − 7p4 − 5p5 − 2p6 − p7(1)
+n(−4 − p + 10p2 − 5p4 − 2p6) = 0.

Also substitute them in coefficients of degree 8 of both sides, we have

−2 − 10p − 6p2 + 6p3 + 6p4 + 4p5 + 2p6(2)
+n(2 − 8p + 2p3 + 4p5) = 0.

Eliminating n from equations (1) and (2), we have the following equation
in p:

(−1 + p)(1 + p)(−3 − 21p − 19p2 + 12p3 + 14p4) = 0.

Drawing the graph of the factor of degree 4, integer solutions of this
equation are p = ±1. On the other hand substituting p = 1 in the equation
(1), we have −2(1 + n) ̸= 0, a contradiction. Also substituting p = −1 in
the equation (2), we have 4n ̸= 0, a contradiction. Therefore q = 0 cannot
be happened.

Since similar arguments also work for the remaining cases q = 1, 3, 4,
Dn(t) cannot have a quartic factor.



COXETER GARLANDS IN H4 AND 2-SALEM NUMBERS 7

Next we assume that Dn(t) has a palindromic polynomial of degree 6 as
its factor over Z:

Dn(t) = (t6 + pt5 + qt4 + rt3 + qt2 + pt + 1)(t10 + at9 + bt8 + ct7

+dt6 + et5 + dt4 + ct3 + bt2 + at + 1).

Dn(i) = 2 implies (2p − r)(2a − 2c + e) = −2, hence 2p − r = 2, 1,−1,−2.
Suppose that 2p − r = 2, then 2a − 2c + e = 1:

Dn[t] = (t6 + pt5 + qt4 + (2p − 2)t3 + qt2 + pt + 1)(t10 + at9 + bt8 + ct7

+dt6 + (2c − 2a + 1)t5 + dt4 + ct3 + bt2 + at + 1).

Comparing coefficients of degrees from 1 to 4 of both sides, a, b, c and d
can be written as polynomials in p, q and n:

a = −2(1 + n) − p

b = 1 + 2p + 2np + p2 − q

c = 1 + n − 3p − 2p2 − 2np2 − p3 + 2q + 2nq + 2pq

d = −3 − 4n + p + 3np + 5p2 + 2p3 + 2np3 + p4 − 2q − 4pq

−4npq − 3p2q + q2.

Substitute them in coefficients of degree 5 of both sides, we have

−3 + 8p + p2 − 5p3 − 2p4 − p5 − 5q + 4pq + 6p2q + 4p3q − 2q2 − 3pq2(3)
+n(−5 + 8p − 3p2 − 2p4 − 3q + 6p2q − 2q2) = 0.

Substitute them in coefficients of degree 6 of both sides, we have

3 − 12p + 2p2 + 4p3 + 3p4 + 8q − 3pq − 11p2q − 2p3q − p4q + 2q2 + 4pq2(4)
+3p2q2 − q3 + n(7 − 9p − 4p2 + 6p3 + 8q − 9pq − 2p3q + 4pq2) = 0.

Substitute them in coefficients of degree 7 of both sides, we have

−3 + 14p + 7p2 − 11p3 − 4p4 − 3p5 − 12q + 4pq + 12p2q + 12p3q − 4q2(5)
−9pq2 + n(−7 + 18p − 9p2 + 4p3 − 6p4 − 9q − 8pq + 18p2q − 6q2) = 0.

Eliminating n from equations (3) and (4), we have the following equation
in p and q:

−6 − p + 62p2 − 126p3 + 70p4 + p5 − 10q + 49pq − 57p2q + 38p3q(6)
−32p4q − 14q2 + 33pq2 − 9p2q2 + q3 − 12pq3 + 15p2q3 + q4 − 2q5 = 0.

Eliminating n from equations (3) and (5), we have the following equation
in p and q:

6 − 16p + 78p2 − 100p3 + 48p4 − 16p5 − 7q − 8pq − 21p2q + 64p3q(7)
+2p4q + 15q2 − 32pq2 − 36p2q2 + 12q3 + 4q4 = 0.
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Computing the resultant of equations (6) and (7) as Z[p]-polynomials,

−8(−1 + p)(−80 + 296p − 861p2 + 1162p3 − 713p4 − 268p5 + 468p6

+16p7 − 96p8 + 4p10)(−5475312 + 34083042p − 134485023p2

+707826723p3 − 2742855623p4 + 5867659300p5 − 6730355143p6

+3718368253p7 − 323615337p8 − 613351370p9 + 214464326p10

+22488900p11 − 17440236p12 + 106568p13 + 464888p14) = 0.

Also computing the resultant of equations (6) and (7) as Z[q]-polynomials,

−q(194820 − 63992q + 45985q2 − 166553q3 + 84898q4 − 45052q5

+52944q6 − 28976q7 + 7088q8 − 784q9 + 32q10)(−2738917152
+13492543248q − 36191712384q2 + 82537797960q3 − 142602958866q4

+137995520901q5 − 29199693741q6 − 82067358493q7 + 101493662948q8

−58969044416q9 + 20178685032q10 − 4201236128q11 + 516039832q12

−34091288q13 + 929776q14) = 0.

Drawing the graphs of the factors of 10 and 14 for these two equations,
we see that p = 1, q = 0 is the unique integer solution of them. On the other
hand substituting p = 1, q = 0 in the equation (3), we have −2(1 + n) ̸= 0,
a contradiction. Therefore 2p − r = 2 cannot be happened.

Since similar arguments also work for the remaining cases 2p−r = 1,−1, 2,
Dn(t) cannot have a factor of degree 6.

Finally we assume that Dn(t) has a palindromic polynomial of degree 8
as its factor over Z:

Dn(t) = (t8 + pt7 + qt6 + rt5 + st4 + rt3 + qt2 + pt + 1)
(t8 + at7 + bt6 + ct5 + dt4 + ct3 + bt2 + at + 1).

Dn(i) = 2 implies (s− 2q +2)(d− 2b+2) = 2, hence s− 2q = 0,−1,−3,−4.
Suppose that s = 2q, then d = 2b − 1:

Dn[t] = (t8 + pt7 + qt6 + rt5 + 2qt4 + rt3 + qt2 + pt + 1)
(t8 + at7 + bt6 + ct5 + (2b − 1)t4 + ct3 + bt2 + at + 1).

Comparing coefficients of degrees from 1 to 3 of both sides, a, b and c can
be written as polynomials in p, q, r and n:

a = −2(1 + n) − p

b = 1 − (−2(1 + n) − p)p − q

c = −1 + n − (1 − (−2(1 + n) − p)p − q)p − (−2(1 + n) − p)q − r.

Substitute them in coefficients of degree 4 of both sides, we have

−5p − 4p2 − p3 − q − pq − p2q + q2 + 2r + pr(8)
+n(−4p − 2p2 − 2pq + 2r) = 0.
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Substitute them in coefficients of degree 5 of both sides, we have

−1 − 3p − 5p2 − 2p3 + 4q + 2pq − p2q + q2 − 2r − 2pr − p2r + qr(9)
+n(1 − 2p − 4p2 + 4q − 2pq − 2pr) = 0.

Substitute them in coefficients of degree 6 of both sides, we have

−2 − 3p − 3p2 − p3 − 3q − 7pq − 4p2q + 4q2 + r − pr − p2r + qr(10)
+n(1 − 2p − 2p2 − 8pq + 2r − 2pr) = 0.

Eliminating n from equations (8) and (9), we have the following equation
in p, q and r:

(−5p − 4p2 − p3 − q − pq − p2q + q2 + 2r + pr)(1 − 2p − 4p2 + 4q(11)
−2pq − 2pr) − (−1 − 3p − 5p2 − 2p3 + 4q + 2pq − p2q + q2 − 2r − 2pr

−p2r + qr)(−4p − 2p2 − 2pq + 2r) = 0.

Eliminating n from equations (8) and (10), we have the following equation
in p, q and r:

(−5p − 4p2 − p3 − q − pq − p2q + q2 + 2r + pr)(1 − 2p − 2p2 − 8pq(12)
+2r − 2pr) − (−2 − 3p − 3p2 − p3 − 3q − 7pq − 4p2q + 4q2 + r − pr

−p2r + qr)(−4p − 2p2 − 2pq + 2r) = 0.

Computing the resultant of equations (11) and (12) as Z[p, q]-polynomials,

4(−1 + q)(p + q)(8 − 106p − 261p2 − 109p3 − 36p4 + 18p5 + 2p6

+117q + 17pq − 77p2q + 88p3q + 158p4q + 127q2 + 448pq2 + 796p2q2

+186p3q2 − 70p4q2 − 284q3 − 486pq3 − 618p2q3 − 124p3q3 − 44q4

+80pq4 + 128p2q4 + 144q5 + 40pq5 − 32q6) = 0.

Computing the resultant of equations (11) and (12) as Z[p, r]-polynomials,

−4(2p − r)(3p + p2 − r)(−9 + 1426p + 6429p2 + 13270p3 + 15364p4

+13804p5 + 2012p6 − 624r − 2058pr − 5740p2r − 14504p3r − 14780p4r

+528p5r − 49r2 − 458pr2 + 2394p2r2 − 4104p3r2 − 6380p4r2 + 342r3

+1074pr3 + 8660p2r3 + 4848p3r3 − 268r4 − 3016pr4 − 1024p2r4

+320r5 − 72pr5 + 32r6) = 0.

Computing the resultant of equations (11) and (12) as Z[q, r]-polynomials,

8(−1 + q)2(2q + r)(−184 − 3105q − 5779q2 + 7036q3

+11074q4 − 14200q5 + 4024q6 + 923r − 2539qr − 5778q2r

+8548q3r − 1376q4r − 816q5r + 2216r2 − 1193qr2 − 7152q2r2

+8210q3r2 − 2352q4r2 + 997r3 − 1116qr3 − 352q2r3 + 460q3r3

+444r4 − 742qr4 + 276q2r4 − 20qr5 − 4r6) = 0.

From these three equations, the possibilities of integer solutions (p, q, r)
are q = 1, r = 2p or q = 1, r = 3p + p2 or q = −p, r = 2p.
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Substituting q = 1, r = 2p in equations (9) and (10), we have

4 − 3p − 10p2 − 4p3 + n(5 − 4p − 8p2) = 0
−1 − 6p − 9p2 − 3p3 + n(1 − 6p − 6p2) = 0.

Eliminating n,
9 − p − 3p2 + 5p3 = 0

which has no integer solution, a contradiction.
Substituting q = 1, r = 3p + p2 in equations (9) and (10), we have

4 − 4p − 13p2 − 7p3 − p4 + n(5 − 4p − 10p2 − 2p3 = 0)
−1 − 4p − 8p2 − 5p3 − p4 + n(1 − 4p − 6p2 − 2p3) = 0.

Eliminating n,
9 − 4p − 7p2 + 12p3 + 10p4 + 2p5 = 0

which has no integer solution, a contradiction.
Substituting q = −p, r = 2p in equations (9) and (10), we have

−1 − 11p − 12p2 − 3p3 + n(1 − 6p − 6p2) = 0
−2 + 2p + 4p2 + p3 + n(1 + 2p + 2p2) = 0.

Eliminating n,
1 − 27p − 40p2 − 14p3 = 0

which has no integer solution, a contradiction. Therefore the case that
s = 2q cannot be happened.

Since similar arguments also work for the remaining cases s − 2q =
−1,−3,−4, Dn(t) cannot have a factor of degree 8.
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A RECIPE TO COMPUTE MAHLER MEASURES

WOLFGANG LÜCK

Abstract. We give an algorithm to compute the Mahler measure of a
polynomial which does only depend on the coe�cients, does not need
any informations about the roots, and comes with an explicit estimate
of the error term. We also prove the positivity of the Novikov-Shubin
invariants for matrices over the complex group ring of Zd.

0. Introduction

The main result of this paper is the following result, explanation will
follow.

Theorem 0.1. Let p be an element in C[Zd] = C[z±1
1 , . . . , z

±1
d�1] which is

not constant. Define positive constants which depend only on d, the width

wd(p), the leading coe�cient lead(p) and the L

1
-norm ||p||

L

1

C :=
12 ·

p
3p

47
·
�

d · wd(p)
�2 ·

✓ ||p||2
L

1

| lead(p)|

◆

1
d·wd(p)

+
3 · e
2

· d · wd(p);

� :=
1

3 · d · wd(p) .

Then there is a monotone decreasing sequence of positive real numbers

c(p, ||p||
L

1)
k

, called characteristic sequence, such that for all integers num-

bers L � 1 we get for the Mahler measure M(p)

0  ln
�

||p||
L

1

�

� ln(M(p))�
L

X

k=1

c(p, ||p||
L

1)
k

2k
 C · L��

.

The Mahler measure of p is defined to be

M(p) := exp

✓

Z

T

d
ln
�

|(p(z1, z2, . . . , z
d

)|
�

dµ

T

d

◆

,

where µ

T

d is the Haar measure of the d-dimensional torus T d.
For a survey on the Mahler measure and its intriguing connections to

number theory, topology and geometry, were refer for instance to [1, 2, 4,
13]. The width wd(p) and the leading coe�cient lead(p) are explained in

Date: October, 2013.
2010 Mathematics Subject Classification. primary: 11R06, secondary: 46L99, 58J52.
Key words and phrases. Mahler measure, spectral density function, Novikov-Shubin

invariants.
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Subsection 1.1, whereas the L

1-norm ||p||
L

1 and the characteristic sequence
are introduced in Section 3.

Here are some remarks on the algorithm.

Remark 0.2 (Dependency on the coe�cients). The width wd(p), the lead-
ing coe�cient lead(p), the L

1-norm ||p||
L

1 and the characteristic sequence
c(p, ||p||

L

1)
k

can be computed directly from the coe�cients of p, one does
not need any information about the roots of p.

Remark 0.3 (Estimate of the error term). Theorem 4.1 provides an al-
gorithm to compute the Mahler measure M(p) of a non-constant element
p 2 C[Zd] up to a given upper bound on the error term. Namely, fix ✏ > 0.
Choose a natural number L satisfying

L �

0

B

B

B

@

12·
p
3p

47
·
�

d · wd(p)
�2 ·

✓

||p||2
L1

| lead(p)|

◆

1
d·wd(p)

+ 3·e
2 · d · wd(p)

✏

1

C

C

C

A

3·d·wd(p)

,

where the right hand side depends only on d, the width wd(p), the L1-norm
||p||

L

1 and the upper bound on the error term ✏. Then we get

ln(||p||
L

1)�
L

X

k=1

c(p, ||p||
L

1)
k

2k
� ✏  ln(M(p))  ln(||p||

L

1)�
L

X

k=1

c(p, ||p||
L

1)
k

2k
.

Remark 0.4 (Continuity of the Mahler measure). Fix constantsK
w

,K1,K
l

>

0. Let P (K1,K2,K3) be the set of polynomials p(z1, z2, . . . , z
d

) with com-
plex coe�cients for which wd(p)  K

w

, ||p||
L

1  K1 and lead(p) � K

l

holds.
Then Remark 0.3 implies that the map

P (K
w

, k1,K
l

) ! [0,1), p 7! M(p)

is uniformly continuous in the coe�cients of p, where one gets in the ✏-�-
definition of uniform continuity explicit values for � in terms of ✏, K

w

, K1

and K

l

.
We mention the result due to Boyd [3], where continuity is proved for

the polynomials with a fixed bound on the width, but no condition on the
leading coe�cients is required.

Remark 0.5 (E↵ectiveness). We have not implemented the algorithm,
mainly since we lack the expertise to do so. The main and very serious
drawback is that the computation of c(p, ||p||

L

1)
k

requires to compute the
k-fold product pk of p which is an exponentially growing algorithm and that
the required lower bound for L growth very quickly with wd(p), see also
Example 4.11.
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At least it gives, by letting L run, a decreasing sequence of upper bounds
for ln(M(p) because of

0  ln(M(p))  ln
�

||p||
L

1

�

�
L

X

k=1

c(p, ||p||
L

1)
k

2k
.

Our estimates are sometimes very crude, we have not tried to give optimal
estimates.

Finally we mention the following direct consequence of Theorem 4.9

Corollary 0.6. Let A 2 M

m,n

(C[Zd]) be any matrix. Then the Novikov-

Shubin invariant of the bounded Zd

-equivariant operator r

(2)
A

: L2(Zd)m !
L

2(Zd)n given by right multiplication with A is positive.

In this context we mention the unpublished preprint [7], where examples
of groups G and matrices A 2 M

m,n

(ZG) are constructed for which the

Novikov-Shubin invariant of r(2)
A

: L2(A)m ! L

2(A)n is zero, disproving a
conjecture of Lott-Lück [11, Conjecture 7.2].

Acknowledgments. The author wants to thank the Mittag-Le✏er insti-
tute for its hospitality during and the organizers for running the workshop
Growth and Mahler measures in geometry and topology in July 2013. This
paper is financially supported by the Leibniz-Preis of the author granted by
the Deutsche Forschungsgemeinschaft DFG.
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1. Some basic notions

Consider a non-zero element p = p(z±1
1 , . . . , z

±1
d

) in C[Zd] = C[z±1
1 , . . . , z

±1
d

]
for some integer d � 1.
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1.1. The width and the leading coe�cient. There are integers n�
d

and
n

+
d

and elements q

n

(z±1
1 , . . . , z

±1
d�1) in C[Zd�1] = C[z±1

1 , . . . , z

±1
d�1] uniquely

determined by the properties that

n

�
d

 n

+
d

;

q

n

�
d
(z±1

1 , . . . , z

±1
d�1) 6= 0;

q

n

+
d
(z±1

1 , . . . , z

±1
d�1) 6= 0;

p(z±1
1 , . . . , z

±1
d

) =

n

+
d

X

n=n

�
d

q

n

(z±1
1 , . . . , z

±1
d�1) · z

n

d

.

Define inductively elements p
i

(z±1
1 , . . . , z

±1
d�i

) in C[Zd�i] = C[z±1
1 , . . . , z

±1
d�i

]
and integers w

i

(p) � 0 for i = 0, 1, 2, . . . , d by

p0(z
±1
1 , . . . , z

±1
d

) := p(z±1
1 , . . . , z

±1
d

);

p1(z
±1
1 , . . . , z

±1
d�1) := q

n

+
d
(z±1

1 , . . . , z

±1
d�1);

p

i

:= (p
i�1)1 for i = 1, 2 . . . , d;

w0(p) := n

+
d

� n

�
d

;

w

i

(p) := w0(pi) for i = 1, 2 . . . , d.

Define the width of p = p(z±1
1 , . . . , z

±1
d

) to be

wd(p) = max{w0(p), w1(p), . . . , w
d

(p)},(1.1)

and the leading coe�cient of p to be

lead(p) = p

d

.(1.2)

Obviously we have

wd(p) � wd(p1) � wd(p2) � · · · � wd(p
d

) = 0;

lead(p) = lead(p1) = . . . = lead(p0) 6= 0.

Remark 1.3 (Leading coe�cient). The name “leading coe�cient” comes
from the following alternative definition. Equip Zd with the lexicographical
order, i.e., we put (m1, . . . ,m

d

) < (n1, . . . , n
d

), if m
d

< n

d

, or if m
d

= n

d

and m

d�1 < n

d�1, or if md

= n

d

, m
d�1 = n

d�1 and m

d�2 < n

d�2, or if . . .,
or if m

i

= n

i

for i = d, (d � 1), . . . , 2 and m1 < n1. We can write p as a
finite sum with complex coe�cients a

n1,...,nd

p(z±1 , . . . , z
±
d

) =
X

(n1,...,nd)2Zd

a

n1,...,nd · z
n1
1 · zn2

2 · · · · · znd
d

.

Let (m1, . . .m
d

) 2 Zd be maximal with respect to the lexicographical order
among those elements (n1, . . . , n

d

) 2 Zd for which a

n1,...,nd 6= 0. Then the
leading coe�cient of p is a

m1,...,md .
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Example 1.4 (d = 1). In the special case d = 1, we can write

p(z±1) =
n

+
X

n=n�

a

n

· zn

for integers n� and n

+ with n

�  n

+ and complex numbers a
n

with a

n

� 6= 0
and a

n

+ 6= 0, and we get wd(p) = n

+ � n

� and lead(p) = a

n

+ .

Remark 1.5 (Dependence on the ordering of the variables). Notice that p
i

,
wd(p) and lead(p) do depend on the ordering of the variables z1, . . . , z

d

. For
instance we get for d = 2, p(z1, z2) = z

3
1 · z2 + 2 · z1 · z22 � 1 and the element

q(z1, z2) = z

3
2 · z1 +2 · z2 · z21 � 1 obtained from p by interchanging z1 and z2

wd(p) = 2;

p1(z1) = 2 · z1;
lead(p) = 2;

wd(q) = 3;

q1(z1) = z1;

lead(q) = 1.

The same remark applies to the passage to the inverse of each variables,
i.e., we get di↵erent values if we replace z

i

by z

�1
i

for some i or all i.
Notice that the Mahler measure does not change by these operations on

p.

1.2. The spectral density function. If we consider p as an element in
C[Zd], multiplication with p induces a bounded Zd-equivariant operator

r

(2)
p

: L2(Zd) ! L

2(Zd). We will denote by

F (p) : [0,1) ! [0,1)(1.6)

its spectral density function in the sense of [12, Definition 2.1 on page 73].
In the special situation considered here, it can be computed in terms of
volumes of subsets of the d-torus T d equipped with its Haar measure, see [12,
Example 2.6 on page 75]

F (p)(�) = vol
�

{(z1, . . . , z
d

) 2 T

d | |p(z1, . . . , z
d

)|  �}
�

.(1.7)

2. Mahler measures and Fuglede-Kadison determinants

The following theorem allows us to apply results about Fuglede-Kadison
determinants which appear for instance in [12, Chapter 3] to Mahler mea-
sures.

Theorem 2.1 (Mahler measure and Fuglede-Kadison determinants over
Zd). Consider a non-zero element p = p(z±1

1 , . . . , z

±1
d

) in C[Zd] = C[z±1
1 , . . . , z

±1
d

]
for some natural number d. It defines a bounded Zd

-equivariant operator

r

(2)
p

: L2(Zd) ! L

2(Zd) by multiplication with p.
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Then the Fuglede-Kadison determinant det(2)N (Z)(r
(2)
p

) of r

(2)
p

agrees with

the Mahler measure M(p) of p.

Proof. This follows from [12, Example 3.13 on page 128] since the volume
of the set {(z1, . . . , z

d

) 2 T

d | p(z1, . . . , z
d

) = 0} is zero. ⇤
The relation between the Fuglede-Kadison determinant and the Mahler

measures is also considered in [5] and [6].

3. The recipe

For d � 1 consider p = p(z±1
1 , . . . , z

±1
d

) 2 C[Zd] = C[z±1
1 , . . . , z

±1
d

]. We
can write

p(z±1
1 , . . . , z

±1
d

) =
X

(n1,...,nd)2Zd

a

n1,...,nd · z
n1
1 · · · · · znd

d

.

Define

p :=
X

(n1,...,nd)2Zd

a

n1,...,nd · z
�n1
1 · · · · · z�nd

d

;

||p||
L

1 :=
X

(n1,...,nd)2Zd

|a
n1,...,nd |;

trCZd(p) := a0,...,0.

Choose K � ||r(2)
p

||, where ||r(2)
p

|| is the operator norm of r(2)
p

: L2(Zd) !
L

2(Zd) which is the supremum of the set {|p(z1, . . . , z
d

)| | (z1, . . . , z
d

) 2 T

d}.
An example for K is ||p||

L

1 . Define

c(p,K)
k

:= trCZd

⇣

�

1�K

�2 · p · p
�

k

⌘

2 [0, 1).(3.1)

Then we get for the logarithm of the Mahler measure of p

ln(M(p)) = ln(K)�
P1

k=1
c(p,K)k

2k .(3.2)

Let ↵(p) be the Novikov-Shubin invariant of p which is a rational number
with 0 < ↵(p)  1 or is 1+, see Section 4.3. Then for any choice of real
number 0 < ↵ < ↵(p) there exists a constant C independent of k such that
for all k � 1 we have

0  ln(K)� ln(M(p))�
P1

k=1
c(p,K)k

2k  C

↵·L↵ .(3.3)

A possible choice for C is

C = sup{k↵ · c
k

(p,K) | k � 1},(3.4)

where the supremum is finite since one knows lim
k!1 k

↵ · c
k

(p,K) = 0. All
these claims above are proved in [12, Theorem 3.172 on page 195].

It remains to get a concrete estimate of the constant C in terms of p.
This requires some preparation.
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4. Uniform estimate on spectral density functions

The main result of this section is the following

Theorem 4.1 (Uniform spectral density estimate). Consider an element

p = p(z±1
1 , . . . , z

±1
d

) in C[Zd] = C[z±1
1 , . . . , z

±1
d

] with wd(p) � 1.
Then we get for its spectral density function

F (p)(�)  8 ·
p
3p

47
· d · wd(p) ·

✓

�

| lead(p)|

◆

1
d·wd(p)

for � 2 [0,1).

For the case d = 1 and p a monic polynomial, a similar estimate of the

shape F (p)(�)  C

k

·�
1

k�1 can be found in [8, Theorem 1], where k � 2 is the
number of non-zero coe�cients, and the sequence of real numbers (C

k

)
k�2

is recursively defined and satisfies C
k

� k � 1.

4.1. Degree one. In this subsection we deal with Theorem 4.1 in the case
d = 1.

We get from the Taylor expansion of cos(x) around 0 with the Lagrangian
remainder term that for any x 2 R there exists ✓(x) 2 [0, 1] such that

cos(x) = 1� x

2

2
+

cos(✓(x) · x)
4!

· x4.

This implies for x 6= 0 and |x|  1/2
�

�

�

�

2� 2 cos(x)

x

2
� 1

�

�

�

�

=

�

�

�

�

2 · cos(✓(x) · x)
4!

· x2
�

�

�

�


�

�

�

�

2 · cos(✓(x) · x)
4!

�

�

�

�

·|x|2  1

12
·1
4
=

1

48
.

Hence we get for x 2 [�1/2, 1/2]

47

48
· x2  2� 2 cos(x).(4.2)

Lemma 4.3. For any complex number a 2 Z we get for the spectral density

function of (z � a) 2 C[Z] = C[z, z�1]

F (z � a)(�)  8 ·
p
3p

47
· � for � 2 [0,1).

Proof. We compute using (1.7), where r := |a|.
F (z � a)(�) = vol{z 2 S

1 | |z � a|  �}
= vol{z 2 S

1 | |z � r|  �}
= vol{� 2 [�1/2, 1/2] | | cos(�) + i sin(�)� r|  �}
= vol{� 2 [�1/2, 1/2] | | cos(�) + i sin(�)� r|2  �

2}
= vol{� 2 [�1/2, 1/2] | (cos(�)� r)2 + sin(�)2  �

2}
= vol{� 2 [�1/2, 1/2] | r · (2� 2 cos(�) + (r � 1)2  �

2}.
We estimate using (4.2) for � 2 [�1/2, 1/2]

r · (2� 2 cos(�)) + (r � 1)2 � r · (2� 2 cos(�)) � 47

48
· �2

.
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This implies for � � 0

F (z � a)(�) = vol{� 2 [�1/2, 1/2] | r · (2� 2 cos(�) + (r � 1)2  �

2}

 vol{� 2 [�1/2, 1/2] | 47
48

· �2  �

2}

= vol

(

� 2 [�1/2, 1/2]

�

�

�

�

�

|�| 
r

48

47
· �

)

 2 ·
r

48

47
· �

=
8 ·

p
3p

47
· �.

⇤
Lemma 4.4. Let p(z) 2 C[Z] = C[z, z�1] be an element with wd(p) � 1.
Then we get for its spectral density function

F (p)(�)  8 ·
p
3p

47
· wd(p) ·

✓

�

| lead(p)|

◆

1
wd(p)

for � 2 [0,1).

Proof. We can write p(z) as a product

p(z) = lead(p) · zk ·
r

Y

i=1

(z � a

i

)

for an integer r � 0, non-zero complex numbers a1, . . . , ar and an integer k.
Since for any polynomial p and complex number c 6= 0 we have for all

� 2 [0,1)

F (c · p)(�) = F (p)

✓

�

|c|

◆

,

we can assume without loss of generality lead(p) = 1. Since the width, the
leading coe�cient and the spectral density functions of p(z) and z

�k · p(z)
agree, we can assume without loss of generality k = 0, or equivalently, that
p(z) has the form

p(z) =
r

Y

i=1

(z � a

i

).

We proceed by induction over r. The case r = wd(p) = 1 is taken care of
by Lemma 4.3. The induction step from r � 1 � 1 to r is done as follows.

Put q(z) =
Q

r�1
i=1 (z � a

i

). Then p(z) = q(z) · (z � a

r

). The following
inequality for elements q1, q2 2 C[z, z�1] and s 2 (0, 1) is a special case
of [12, Lemma 2.13 (3) on page 78]

F (q1 · q2)(�)  F (q1)(�
1�s) + F (q2)(�

s).(4.5)

We conclude from (4.5) applied to p(z) = q(z) · (z � a

r

) in the special case
s = 1/r

F (p)(�)  F (q)(�
r�1
r ) + F (z � a

r

)(�1/r).
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We conclude from the induction hypothesis for � 2 [0,1)

F (q)(�)  8 ·
p
3p

47
· (r � 1) · �

1
r�1 ;

F (z � a

r

)(�)  8 ·
p
3p

47
· �.

This implies for � 2 [0,1)

F (p)(�)  F (q)(�
r�1
r ) + F (z � a

r

)(�1/r)

 8 ·
p
3p

47
· (r � 1) ·

⇣

�

r�1
r

⌘

1
r�1

+
8 ·

p
3p

47
· �

1
r

 8 ·
p
3p

47
· (r � 1) · �

1
r +

8 ·
p
3p

47
· �

1
r

=
8 ·

p
3p

47
· r · �

1
r
.

⇤

4.2. The induction step. Now we finish the proof of Theorem 4.1 by
induction over d. The induction beginning d = 1 has been taken care of in
Subsection 4.1, the induction step from d� 1 to d � 2 is done as follows.

Since F (�)  1, the claim is obviously true for �

| lead(p)| � 1. Hence we

can assume in the sequel �

| lead(p)|  1.

We conclude from (1.7) and Fubini’s Theorem applied to T

d = T

d�1⇥S

1,
where �

A

denotes the characteristic function of a subsetA and p1(z
±
1 , . . . , z

±1
d�1)



10 WOLFGANG LÜCK

has been defined in Subsection 1.1

(4.6)

F (p)(�)

= vol
�

{(z1, . . . , z
d

) 2 T

d | |p(z1, . . . , z
d

)|  �}
�

=

Z

T

d
�{(z1,...,zd)2T d| |p(z1,...,zd)|�} dµT

n

=

Z

T

d�1

✓

Z

S

1
�{(z1,...,zd)2T d| |p(z1,...,zd)|�} dµS

1

◆

dµ

T

d�1

=

Z

T

d�1
�{(z1,...,zd�1)2T d�1| |p1(z1,...,zd�1)| lead(p)|1/d·�(d�1)1/d}

·
✓

Z

S

1
�{(z1,...,zd)2T d| |p(z1,...,zd)|�} dµS

1

◆

dµ

T

d�1

+

Z

T

d�1
�{(z1,...,zd�1)2T d�1| |p1(z1,...,zd�1)>| lead(p)|1/d·�(d�1))/d}

·
✓

Z

S

1
�{(z1,...,zd)2T d| |p(z1,...,zd)|�} dµS

1

◆

dµ

T

d�1


Z

T

d�1
�(z1,...,zd�1)| |p1(z1,...,zd�1)|| lead(p)|1/d·�(d�1)1/d} +

max

⇢

Z

S

1
�{(z1,...,zd)2T d| |p(z1,...,zd)|�} dµS

1

�

�

�

�

(z1, . . . , z
d�1) 2 T

d�1

with |p1(z1, . . . , z
d�1)| > | lead(p)|1/d · �(d�1)/d

�

.

We get from the induction hypothesis applied to p1(z1, . . . , z
d�1) and (1.7)

since �

| lead(p)|  1, wd(p1)  wd(p) and lead(p) = lead(p1)
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(4.7)
Z

T

d�1
�(z1,...,zd�1)| |p1(z1,...,zd�1)|| lead(p)|1/d·�(d�1)1/d}

=

Z

T

d�1
�(z1,...,zd�1)| |p1(z1,...,zd�1)|| lead(p1)|1/d·�(d�1)1/d}

= F (p1)
�

| lead(p1)|1/d| · �(d�1)/d
�

 8 ·
p
3p

47
· (d� 1) · wd(p1) ·

 

| lead(p1)|1/d · �(d�1)/d

| lead(p1)|

!

1
(d�1)·wd(p1)

=
8 ·

p
3p

47
· (d� 1) · wd(p1) ·

✓

�

| lead(p1)|

◆

1
d·wd(p1)

=
8 ·

p
3p

47
· (d� 1) · wd(p1) ·

✓

�

| lead(p)|

◆

1
d·wd(p1)

 8 ·
p
3p

47
· (d� 1) · wd(p) ·

✓

�

| lead(p)|

◆

1
d·wd(p1)

 8 ·
p
3p

47
· (d� 1) · wd(p) ·

✓

�

| lead(p)|

◆

1
d·wd(p)

.

Fix (z1, . . . , z
d�1) 2 T

d�1 with |p1(z1, . . . , z
d�1)| > lead(p)1/d · �(d�1)/d.

Consider the element f(z±1
d

) := p(z1, . . . z
d�1, z

±
d

) 2 C[z±
d

]. It has the shape

f(z±
d

) =
n

+
X

n=n

�

q

n

(z1, . . . , z
d�1) · zn

d

.

The leading coe�cient of f(z±1
d

) is p1(z1, . . . z
d�1) = q

n+(z1, . . . , zd�1). Hence
we get from Lemma 4.4 applied to f(z±1

d

) and (1.7) since �

| lead(p)|  1,
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wd(f)  wd(p) and | lead(f)| = |p1(z1, . . . z
d�1))| > | lead(p)|1/d · �(d�1)/d

(4.8)
Z

S

1
�{(z1,...,zd)2T d| |p(z1,...,zd)|�} dµS

1

=

Z

S

1
�{zd2S1| |f(zd)|�} dµS

1

=
8 ·

p
3p

47
· wd(f) ·

✓

�

lead(f)

◆

1
wd(f)

 8 ·
p
3p

47
· wd(f) ·

✓

�

lead(p)1/d · �(d�1)/d

◆

1
wd(f)

=
8 ·

p
3p

47
· wd(f) ·

✓

�

lead(p)

◆

1
d·wd(f)

 8 ·
p
3p

47
· wd(p) ·

✓

�

lead(p)

◆

1
d·wd(p)

.

Combining (4.6), (4.7) and (4.8) yields for � with �

| lead(p)|  1

F (p)(�)  8 ·
p
3p

47
· (d� 1) · wd(p) ·

✓

�

| lead(p)|

◆

1
d·wd(p)

+
8 ·

p
3p

47
· wd(p) ·

✓

�

| lead(p)|

◆

1
d·wd(p)

=
8 ·

p
3p

47
· d · wd(p) ·

✓

�

| lead(p)|

◆

1
d·wd(p)

.

This finishes the proof of Theorem 4.1.

4.3. Positivity of Novikov-Shubin invariants. For the definition and
basic properties about Novikov-Shubin invariants we refer to [12, Chapter 2].

Theorem 4.9 (Positivity of the Novikov-Shubin invariants over C[Zd]).
Consider any natural number d and any matrix A 2 M

m,n

(C[Zd]). Choose

I ✓ {1, 2, . . . ,m} and J ✓ {1, 2, . . . , n} of the same cardinality |I| = |J | such
that for the corresponding square submatrix A[I, J ] of A we have detC[Zd](A[I, J ]) 6=
0 and for any other choice of subsets I

0 ✓ {1, 2, . . . ,m} and J

0 ✓ {1, 2, . . . , n}
with |I 0| = |J 0| and detC[Zd](A[I 0, J 0]) 6= 0 we have |I 0|  |I|. (Such a choice

always exists.)

Then the Novikov-Shubin invariant of the bounded Zd

-equivariant operator

r

(2)
A

: L2(Zd)m ! L

2(Zd)n given by right multiplication with A satisfies

↵(r(2)
A

) � 1

d · wd
�

detC[Zd](A[I, J ])
�

,

and is in particular positive.
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Proof. We first treat the special case, where m = n and detC[Zd](A) 6= 0.
We get directly from Theorem 4.1

↵

�

r

(2)
detC[Zd](A) : L

2(Zd) ! L

2(Zd)
�

� 1

d · wd
�

detC[Zd](A)
�

.

We can find by Cramer’s rule a matrix B 2 M

m,n

(C[Zd]) with AB =

detC[Zd](A) · I
n

. The kernel of r

(2)
B

is trivial by [12, Lemma 1.34 (1) on
page 35]. We conclude from [12, Lemma 2.14 (2) on page 79 and Lemma 2.15 (1)

on page 80] for the Novikov-Shubin invariant of r(2)
A

: L2(Zd)n ! L

2(Zd)n

↵(r(2)
A

) � ↵(r(2)
B

� r(2)
A

)

= ↵(r(2)
AB

)

= ↵(rdetC[Zd](A)·In)

= ↵(rdetC[Zd](A)).

Hence the claim follows in the special case m = n and detC[Zd](A) 6= 0.

Next we deal with the general case of a matrix A 2 M

m,n

(C[Zd]). Recall
that we have chosen I ✓ {1, 2, . . . ,m} and J ✓ {1, 2, . . . , n} of the same
cardinality |I| = |J | such that for the corresponding square submatrixA[I, J ]
of A we have detC[Zd](A[I, J ]) 6= 0 and for any other choice of subsets I 0 ✓
{1, 2, . . .m} and J

0 ✓ {1, 2, . . . n} with |I 0| = |J 0| and detC[Zd](A[I 0, J 0]) 6= 0
we have |I 0|  |I|.

Put k = |I| = |J |. Let i

(2) : L2(Zd)k ! L

2(Zd)m be the inclusion corre-
sponding to I ✓ {1, 2, . . . ,m} and let pr(2) : L2(Zd)n ! L

2(Zd)k be the pro-

jection corresponding to J ✓ {1, 2, . . . , n}. Then r

(2)
A[I,J ] : L

2(Zd)k ! L

2(Zd)k

agrees with the composite

r

(2)
A[I,J ] : L

2(Zd)k
i

(2)

��! L

2(Zd)m
r

(2)
A��! L

2(Zd)n
pr(2)���! L

2(Zd)k.

Let p(2) : L2(G)m ! ker(r(2)
A

)? be the orthogonal projection onto ker(r(2)
A

)? ✓
L

2(G)m. Let j(2) : im(r(2)
A

) ! L

2(G)n be the inclusion of the closure im(r(2)
A

)

of the image of r(2)
A

. Let (r(2)
A

)? : ker(r(2)
A

)? ! im(r(2)
A

) be the Zd-equivariant
bounded operator uniquely determined by

r

(2)
A

= j

(2) � (r(2)
A

)? � p(2).

Let C[Zd](0) be the quotient field of C[Zd]. The C[Zd](0)-rank of the matrix

A 2 M

m,n

(C[Zd](0)) is equal to k. Therefore the dimension over C[Zd](0)
of the image of r

A

: C[Zd]m(0) ! C[Zd]n(0) is k. Hence the von Neumann

dimension of the closure of the image of r

(2)
A

: L2(Zd)m ! L

2(Zd)n is k

by [12, Lemma 1.34 (1) on page 35]. Again by [12, Lemma 1.34 (1) on
page 35] we conclude that the von Neumann dimension of the kernel of
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r

(2)
A[I,J ] = pr(2) �r(2)

A

� i

(2) : L2(Z)k ! L

2(Z)k is zero and the von Neumann

dimension of the closure of its image is k. In particular

r

(2)
A[I,J ] = pr(2) �r(2)

A

� i(2) = pr(2) �j(2) � (r(2)
A

)? � p(2) � i(2) : L2(Z)k ! L

2(Z)k

is injective and hence dense image. This implies that p

(2) � i(2) : L2(Z)k !
ker(r(2)

A

)? is injective and pr(2) �j(2) : im(r(2)
A

) ! L

2(Zd)k has dense image.

The morphism (r(2)
A

)? : ker(r(2)
A

)? ! im(r(2)
A

) is by construction a weak iso-
morphism, i.e., has dense image and is injective. We conclude from the ad-
ditivity of the von Neumann dimension, see [12, Theorem 1.12 (1) on page 21]

that all three morphisms p(2)�i(2) : L2(Z)k ! ker(r(2)
A

)?, (r(2)
A

)? : ker(r(2)
A

)? !
im(r(2)

A

) and pr(2) �j(2) ! im(r(2)
A

) : L2(Zd)k are weak isomorphisms. We
conclude from [12, Lemma 2.11 (9) on page 77] and [12, Lemma 2.14 (2) on
page 79]

↵(r(2)
A

) = ↵

�

(r(2)
A

)?
�

� ↵

�

pr(2) �j(2) � (r(2)
A

)? � p(2) � i(2)
�

= ↵

�

pr(2) �r(2)
A

� i(2)
�

= ↵

�

r

(2)
A[I,J ] : L

2(Zd)k ! L

2(Zd)k
�

.

We get from the already proved special case applied to A[I, J ]

↵

�

r

2)
A[I,J ]

�

� 1

d · wd
�

detC[Zd](A[I, J ])
�

.

This finishes the proof of Theorem 4.9. ⇤
It is known that the Novikov-Shubin invariants of a matrix over Z[Zd] is

a rational numbers larger than zero. This follows from [9, Proposition 39 on
page 494]. (The author of [9] informed us that his proof of this statement
is correct when d = 1 but has a gap when d > 1. The nature of the gap is
described in [10, page 16]. The proof in this case can be completed by the
same basic method used in [9].)

In the case d = 1 the Novikov-Shubin invariant ↵(p) is explicitly known.
Namely, we can write

p(z) = a0 · zr0 ·
s

Y

i=1

(z � a

i

)ri

for a0 2 C with a0 6= 0, r0 2 Z, s 2 Z with s � 0, a
i

2 C with a

i

6= 0 and
a

i

6= a

j

for i 6= j, and r

i

2 Z with r

i

� 1. Then we get from [12, Lemma 2.58
on page 100]

↵(p) :=

(

min
n

1
ri

�

�

�

i = 1, 2, . . . , s, |a
i

| = 1
o

if p has a root on S

1;

1+ otherwise.
(4.10)
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Example 4.11 (Irreducible polynomial). Let p 2 Q[z] be an irreducible
polynomial. Then all its roots have multiplicity 1. This implies

↵(p) :=

(

1 if p has a root on S

1;

1+ otherwise.

So one can choose ↵ in the recipe appearing in Section 3 to be any number
0 < ↵ < 1 if p has a root on S

1 or to be any number 0 < ↵ otherwise. This is
better than the choice of ↵ as 1

3·d·wd(p) appearing in Theorem 0.1. However,
in Theorem 0.1 we do have an a priori estimate on the constant C and not
only the expression (3.4).

5. Estimating the characteristic sequence

5.1. The basic estimate. Consider an element p = p(z±1
1 , . . . , z

±1
d

) in
C[Zd] = C[z±1

1 , . . . , z

±1
d

] with wd(p) � 1. Let � and � be real numbers
satisfying

0 < � · d · wd(p) < � < 1.(5.1)

Lemma 5.2. Let K be a real number greater or equal to ||r(2)
p

||, e.g., K =
||p||

L

1. Then we obtain for every natural number k with k � 1 the inequality

0  k

� · c(p,K)
k

 8 ·
p
3p

47
· d · wd(p) ·

✓

K

2

| lead(p)|

◆

1
d·wd(p)

· k��
�

d·wd(p) + k

� · (1� k

��)k.

Proof. Since F (p)(0) = 0, we conclude from [12, Lemma 3.179 on page 196]
for � 2 [0, 1].

0  c(p,K)
k

 F (p)(K2 · �) + (1� �)k.

If we put � = k

�� and multiply with k

� , we obtain for any integer k with
k � 1

0  k

� · c(p,K)
k

 k

� ·
⇣

F (p)(K2 · k��) + (1� k

��)k
⌘

.

Combining this with Theorem 4.1 yields for k � 1 the inequality

0  k

� · c(p,K)
k

 k

� · 8 ·
p
3p

47
· d · wd(p) ·

✓

K

2 · k��

| lead(p)|

◆

1
d·wd(p)

+ k

� · (1� k

��)k.

=
8 ·

p
3p

47
· d · wd(p) ·

✓

K

2

| lead(p)|

◆

1
d·wd(p)

· k��
�

d·wd(p) + k

� · (1� k

��)k.

⇤
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We get using l’Hospital’s rule

lim
x!1

x · ln(1� x

��) = �1;

lim
x!1

ln(x)

x · ln(1� x

��)
= 0;

lim
x!1

✓

� · ln(x)
x · ln(1� x

��)
+ 1

◆

= 1;

lim
x!1

� · ln(x) + x · ln(1� x

��) = �1;

lim
x!1

x

� · (1� x

��)x = 0.

Hence can choose a real number D(�, �) such that

k

� · (1� k

��)k  D(�, �) for k 2 Z, k � 1.(5.3)

Since � � �

d·wd(p) < 0, we have

k

�� �
d·wd(p)  1 for k � 1.(5.4)

We conclude from Lemma 5.2 together with (5.3) and (5.4)

Lemma 5.5. Let K be an real number greater or equal to ||r(2)
p

||, e.g.,

K = ||p||
L

1. Then we obtain for every natural number k with k � 1 the

inequality

0  k

� · c(p,K)
k

 8 ·
p
3p

47
· d · wd(p) ·

✓

K

2

| lead(p)|

◆

1
d·wd(p)

+D(�, �).

From now one we fix the choice

� =
1

2
;

� =
1

3 · d · wd(p) .

We leave it to the reader to verify that we can arrange

D

✓

1

3 · d · wd(p) ,
1

2

◆

 e.(5.6)

We conclude from Lemma 5.5 and (5.6)

Lemma 5.7. Let p be a non-zero element in C[Zd]. Let K be an real number

greater or equal to ||r(2)
p

||, e.g., K = ||p||
L

1. Then we obtain for every natural

number k with k � 1 the inequality

0  k

1
3·d·wd(p) · c(p,K)

k

 8 ·
p
3p

47
· d · wd(p) ·

✓

K

2

| lead(p)|

◆

1
d·wd(p)

+ e.
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5.2. Proof of Theorem 0.1.

Proof. We conclude from Theorem 4.9 that the Novikov-Shubin invariant of

r

(2)
p

satisfies

↵(r(2)
p

) � 1

d · wd(p) .

With our choice � = 1
3·d·wd(p) , this implies � < ↵(r(2)

p

). Put K = ||p||
L

1 . We

conclude from [12, Theorem 3.172 (5) on page 195] by inspecting its proof,
see [12, page 200], that for any real number D satisfying

k

� · c(p, ||p||
L

1)
k

 D for k � 1,

we get for all L � 1 the inequality

0  2 · ln(||p||
L

1)� 2 · ln(M(p))�
L

X

k=1

c(p, ||p||
L

1)
k

k

 D

�

· L��

,

and hence

0  ln(||p||
L

1)� ln(M(p))�
L

X

k=1

c(p, ||p||
L

1)
k

2k
 3 · d · wd(p) ·D

2
· L��

.

Because of Lemma 5.7 we can choose

D =
8 ·

p
3p

47
· d · wd(p) ·

✓ ||p||2
L

1

| lead(p)|

◆

1
d·wd(p)

+ e.

Since C = 3·d·wd(p)·D
2 , we conclude or all L � 1

0  ln(||p||
L

1)� ln(M(p))�
1
X

k=1

c(p, ||p||
L

1)
k

2k
 C · L��

.

This finishes the proof of Theorem 0.1. ⇤
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ARITHMETIC GROUPS AND LEHMER’S CONJECTURE

KATHLEEN L. PETERSEN

1. Introduction

Arithmetic groups are a rich class of groups where connections between topology
and number theory are showcased in a particularly striking way. One construction
of these groups is motivated by the modular group, PSL2(Z). The group of orien-
tation preserving isometries of the hyperbolic upper half plane, H2, is isomorphic
to PSL2(R). Since Z is a discrete subgroup of R it follows that PSL2(Z) is discrete
in PSL2(R). The modular group acts on H2 by linear fractional transformations,
and the quotient H2

/PSL2(Z) is a finite volume hyperbolic orbifold.
The modular group has deep connections to many branches of mathematics and

to number theory in particular. The modular group encodes the moduli space of
elliptic curves. Modular forms, which are analytic functions on H2 satisfying a
functional equation with respect to the modular group, have far-reaching connec-
tions between geometry, number theory, and analysis. In particular, Wiles’ proof
of the Taniyama Shimura conjecture (the modularity theorem) established a proof
of Fermat’s Last Theorem, one of the most famous conjectures of our time.

The geometry of the action of the modular group on H2 can also be used to
provide a proof of Roth’s theorem (the Thue-Siegel-Roth theorem). This theorem
essentially says that an algebraic integer (which is not in Z) does not have many
‘good’ rational approximations. Precisely, Roth’s theorem says that if ↵ is an
irrational algebraic integer, then for any ✏ > 0

����↵� p

q

���� <
1

q

2+✏

has only finitely many solutions where p, q 2 Z are co-prime.
Arithmetic groups are essentially subgroups of matrix groups defined over integer

rings. For example, the groups SLn(OK) are arithmetic, where OK is the ring of
integers of a number field K. The arithmetic groups we will concentrate on in the
manuscript are a class of arithmetic groups which generalize the modular group,
and act on (products of) hyperbolic spaces. There are many similarities between
these arithmetic groups and the modular group, but there are also many difference.
These differences showcase the dichotomy between lattices of low rank and higher-
rank lattices. Some of this behavior can be seen algebraically, for example by the
congruence subgroup property, and Kazhdan’s property (T ).

One interesting connection between the underlying number theory of these groups
and the topology of their quotients is that through the distance formula, lengths of
geodesics correspond traces of matrices. Because of the arithmeticity, these traces
correspond to special kinds of algebraic integers. As we discuss in § 9, in the case
of arithmetic Fuchsian groups, these algebraic integers are Salem numbers. We will
outline a proof of the equivalence of the Salem conjecture and the short geodesic

1



2 K.L. PETERSEN

conjecture for arithmetic hyperbolic surfaces. See [11] for this and other connections
between Salem numbers and geometry.

The purpose of this manuscript is to provide an introduction to this class of
arithmetic groups motivated by the modular group, and outline the proof of this
correspondence between the geodesic length and the Mahler measure.

2. The Modular Group

One way to deconstruct the modular group is as follows. From a geometric
viewpoint, we wish to construct a discrete subgroup of PSL2(R); such a group will
be discrete in Isom(H2

) and act on H2 by linear fractional transformations. The
quotient by this action will be an orbifold, a manifold with some well behaved
singularities. (If the subgroup is torsion free, it will be a manifold.) We also want
to ensure that the subgroup is large enough, so that the quotient has finite volume.

We begin with M2(Q), the 2 ⇥ 2 matrices with rational coefficients; the field Q
introduces the arithmeticity since it is the quotient field of Z. We then take M2(Z)
which is discrete in M2(Q). We require a subgroup of PSL2(R), so we take the norm
one elements, SL2(Z) and then projectivize. Happily, the resulting group PSL2(Z)
is a discrete subgroup of PSL2(R); this follows from the fact that M2(Z) is discrete
in M2(R), which is due to the discreteness of Z in R. As a result, the quotient
H2

/PSL2(Z) is a finite volume orbifold. We will generalize the construction

M2(Q) 99K M2(Z) 99K SL2(Z) 99K PSL2(Z)

to produce more discrete subgroups in PSL2(R), and then further generalize this
to produce discrete groups in PSL2(C) and products of PSL2(R) and PSL2(C).

3. Quaternion Algebras

Let K be a number field with r1 real places and r2 complex places, so [K :

Q] = r1 + 2r2. We will label the real embeddings as �1, . . . ,�r1 and the complex
embeddings as ⌧1, ⌧1, . . . , ⌧r2 , ⌧r2 . Let OK be the ring of integers in K, elements in
K which are roots of a monic polynomial in Z[x].

3.1. Hilbert Symbols. Let Q be a quaternion algebra over a field F . That is, Q is
a four dimensional central simple algebra over F . If F does not have characteristic
two, we can encode the data defining Q using a Hilbert symbol. We now assume
that char(F ) 6= 2. For non-zero elements a, b 2 F the Hilbert symbol

⇣
a,b
F

⌘
defines

the quaternion algebra
✓
a, b

F

◆
= {r1 + r2i+ r3j + r4k : i

2
= a, j

2
= b, ij = �ji = k}

where r1, r2, r3, and r4 are elements of F . It follows that k

2
= �ab. Using this

notation, Hamilton’s quaternions are

H =

✓
�1,�1

R

◆
.

The Hilbert symbol
⇣

1,1
F

⌘
defines a quaternion algebra isomorphic to M2(F ) as can

be seen by the map

1 7!
✓

1 0

0 1

◆
, i 7!

✓
1 0

0 �1

◆
, j 7!

✓
0 1

1 0

◆
, k 7!

✓
0 1

�1 0

◆
.
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The Hamiltonians and M2(R) are not isomorphic. In particular, the Hamiltonians
are a division algebra, but M2(R) has zero divisors; the non-zero elements of de-
terminant zero are all zero divisors. It is a consequence of the Wedderburn-Artin
theorem that a quaternion algebra over F is either isomorphic to M2(F ) or is a
division algebra. We say that Q is ramified if it is isomorphic to a division alge-
bra, and split if it is isomorphic to a matrix algebra. Frobenius showed that the
Hamiltonians are the only ramified quaternion algebra over R.

Different Hilbert symbols often define isomorphic quaternion algebras. In par-
ticular, for Q =

⇣
a,b
F

⌘
and any non-zero u 2 F ,

Q ⇠
=

✓
b, a

F

◆
⇠
=

✓
au

2
, b

F

◆
⇠
=

✓
a,�ab

F

◆
.

The isomorphisms between the last three algebras and Q can be seen by switching
the roles of i and j, by i 7! iu

�1 and j 7! j, and by the map i 7! i, j 7! k,
respectively. This shows that over R a quaternion algebra is isomorphic to H
exactly when a and b are negative, and that all quaternion algebras over C are
isomorphic to M2(C).

If [L : F ] = 2 one can often embed L as a quaternion algebra over F . For
example, if L = F (

p
a) then L ,!

⇣
a,b
F

⌘
identifying i with

p
a.

3.2. Norm and Trace. For q = r1 + r2i + r3j + r4k 2 Q =

⇣
a,b
F

⌘
, define the

conjugate of q to be q = r1 � r2i � r3j � r4k. This is well-defined independent of
the choice of basis since the center of Q is F . We define the reduced norm of q to
be

n(q) = q · q = r

2
1 � ar

2
2 � br

2
3 + abr

2
4.

Similarly, the reduced trace is t(q) = q+ q. Let the superscript one denote elements
of norm one. The norm is preserved by homomorphism, so if Q ⇠

=

M2(F ) then the
image of Q1 is SL2(F ).

We extend this discussion to the following classification lemma.

Lemma 3.1. For the quaternion algebra Q =

⇣
a,b
F

⌘
, the following are equivalent:

(1) Q ⇠
=

⇣
1,1
F

⌘
⇠
=

M2(F ).
(2) Q is not a division algebra.
(3) The quadratic form ax

2
+ by

2
= 1 has a solution (x, y) 2 F ⇥ F .

Proof. It suffices to show the equivalence of the third. An element q 2 Q is invertible
exactly when n(q) 6= 0. Consider q1 = r1 + r2i + r3j + r4k. If r1 6= 0 then letting
q2 = b2i+ b3j + b4k with

b2 = b(r1r4 + r2r3), b3 = a(r

2
2 � br

2
4), b4 = (r1r2 + br3r4)

we see that if n(q1) = 0 then n(q2) = 0 as well. The norm of q2 is

�ar

2
2 � br

2
3 + abr

2
4 = 0.

Therefore, Q is not a division algebra exactly when there is some non-zero element
0 6= q = b2i+ b3j + b4k with zero norm.

Assume that Q is not a division algebra. If any two of b2, b3, and b4 are zero then
q = 0. If b4 6= 0 then let x = b3/ab4, y = b2/ab4. If b4 = 0 then let x = (1 + a)/2a,
y = b3(1� a)/2ab2. Hence we have solutions to ax

2
+ by

2
= 1.
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Assume there is a solution to ax

2
+ by

2
= 1. If x = 0 then b = c

2 for some
c 2 F . Then (c + j)(c � j) = 0 and Q is not a division algebra. If x 6= 0 then
a + b(y/x)

2
= (1/x)

2, so a = (1/x)

2 � b(y � x)

2 and it follows that the norm of
(1/x) + i+ (y/x)j is zero, so Q is not a division algebra.

⇤

3.3. Extension of Scalars. In our construction, we begin with Q =

⇣
a,b
K

⌘
a

quaternion algebra over a number field K. To create a Fuchsian group, the goal
is to construct a discrete subgroup of SL2(R), so we need a well behaved map to
M2(R).

If F ⇢ F

0 we can extend the scalars of Q =

⇣
a,b
F

⌘
by

✓
a, b

F

◆
⌦F F

0 ⇠
=

✓
a, b

F

0

◆
.

Similarly, if ◆ : F ! F

0 is an injection then we define the quaternion algebra

Q◆
=

✓
◆(a), ◆(b)

◆(F )

◆

by
r1 + r2i+ r3j + r4k 7! ◆(r1) + ◆(r2)i

0
+ ◆(r3)j

0
+ ◆(r4)k

0

where 1, i, j, k are the the basis elements for Q and 1, i

0
, j

0
, k

0 are the basis elements
for Q◆. If ⌫ is a place of K with completion K⌫ then we can extend scalars to K⌫

as

Q⌫
=

✓
a, b

K

◆
⌦K K⌫

⇠
=

✓
a, b

K⌫

◆
.

We say that Q is split at ⌫ if Q⌫ is isomorphic to M2(K⌫) and ramified if it is
isomorphic to a division algebra. By the Hasse-Minkowski theorem a quaternion
algebra Q =

⇣
a,b
K

⌘
is isomorphic to M2(K) if and only if for all places ⌫ this

extension by scalars is split. When ⌫ is an infinite place, this extension of scalars is
isomorphic to either

⇣
a,b
R

⌘
or

⇣
a,b
C

⌘
. We will use split extensions to produce maps

from Q to M2(R) or M2(C). For discreteness, we need to be mindful of the other
infinite places of K. That is, if � is an embedding of K into R we need to understand
the ramification of Q� ⇠

=

⇣
a,b
R

⌘
. (If ⌧ is a complex embedding Q⌧ ⇠

=

⇣
a,b
C

⌘
is always

split.)
Let Q =

⇣
a,b
K

⌘
. In view of Lemma 3.1 if K ⇢ L and Q⌦K L is split then there

is an (x, y) 2 L⇥L such that ax

2
+ by

2
= 1. If y = 0 then a is a square, so we can

explicitly see the map to M2(K) defined by

1 7!
✓

1 0

0 1

◆
, i 7!

p
a

✓
0 1

1 0

◆
, j 7!

✓
1 b

0 �1

◆
.

For any Galois automorphism �, �(a) must also be a square. It follows that if
�(K) ⇢ L, then Q� ⌦�(K) L is also split and � acts on the image of Q in M2(L),
sending it to the image of Q� ⇢ M2(L). Otherwise, if y 6= 0 then a map from Q to
M2(L) can explicitly be given by

1 7!
✓

1 0

0 1

◆
, i 7!

✓
0 a

1 0

◆
, j 7!

✓
y

�1 �axy

�1

xy

�1 �y

�1

◆
.
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If Q�⌦�(K)L is also split then there are x0, y0 in L such that �(a)(x0
)

2
+�(b)(y

0
)

2
= 1

then the map between matrix groups can be seen by
✓

y

�1 �axy

�1

xy

�1 �y

�1

◆
7!

✓
(y

0
)

�1 ��(a)x

0
(y

0
)

�1

x

0
(y

0
)

�1 �(y

0
)

�1

◆

and extending the map on K by the Galois automorphism. We will use ⇢ to denote
such a map from Q to M2(K).

For a quaternion algebra Q over a number field K, the number of places (finite
and infinite) where Q is ramified is even. Moreover, for any even subset of places
of K there is a quaternion algebra that is ramified at this set. This quaternion
algebra is unique up to isomorphism.

3.4. Orders. In the construction of the modular group, we chose M2(Z) ⇢ M2(Q)

to ensure discreteness and to get a quotient of finite volume; we generalize this idea
using orders. Let Q be a quaternion algebra over the number field K. For any
vector space V over K an OK lattice L in V is a finitely generated OK module
contained in V . It is complete if L ⌦OK K

⇠
=

V . An order O in the quaternion
algebra Q is a complete OK lattice which is also a ring with unity. An order is
called maximal if it is maximal with respect to inclusion. If O is an order in Q
defined over K, then since it is a lattice if ↵ 2 O then both tr(↵) and n(↵) lie in
OK . (See [16] Lemma 2.2.4 page 83, for example.)

In the construction of the modular group K = Q, and OK = Z. If V = M2(Q)

then since M2(Z)⌦QQ ⇠
=

M2(Q) it is a complete lattice and we conclude that M2(Z)
is an order. Similarly, for any number field K, M2(OK) is an order in M2(K). The
order O0

= Z�Zi�Zj�Z
⇣

1+i+j+k
2

⌘
is contained in O = Z�Zi�Zj�Zk and so

O0 is not maximal. By the Skolem-Noether theorem two isomorphic orders in Q are
conjugate. The number of conjugacy classes of maximal orders is finite and called
the type number of Q. The type number of M2(K) is finite and equals |ClK/Cl(2)K |
where ClK is the class number of K and Cl(2)k is the subgroup generated by squares.
In the quaternion algebra Q =

⇣
�1,�11

Q

⌘
, define

⌧ =

�1 +

i+k
2

2

, z =

i+ j

2

so that ⌧

3
= 1 and z

2 � z + 3 = 0. The maximal orders

O⌧ = Z[⌧ ] + jZ[⌧ ] and Oz = Z[z] + iZ[z]

are not isomorphic. Regardless, the intersection of two maximal orders is an order,
so we often focus on the order Ok[1, i, j, k].

4. Construction of Arithmetic Fuchsian Groups

Let Q quaternion algebra over a number field K with a maximal order O. Assume
that Q is split at at least one real embedding of K. (In fact, for ease we often call
this the identity embedding.) Next, take the norm one elements of O, O1. The set
O1 is a maximal discrete group of norm one elements in our quaternion algebra,
and the split place produces a mapping from this group to SL2(R) as seen by the
extension of scalars. It remains to show that the image is discrete in SL2(R) and
has finite co-area.
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To ensure discreteness of the image, we impose the condition that all other
infinite places are real and Q is ramified at these places. Recall that the standard
isomorphism from Q to M2(R) is denoted as ⇢. We will use ⇢ to denote this map
restricted to O1 as well. We now sketch a proof that ⇢(O1

) is a discrete subgroup
of SL2(C). This will follow from the following two results.

Lemma 4.1. The norm one elements in the Hamiltonians, H1
=

��1�1
R

�1 are a
compact set.

Proof. The norm of q = (r1 + r2i+ r3j + r4k) 2 H is
n(q) = qq = r

2
1 + r

2
2 + r

2
3 + r

2
4.

It follows that H1 is isomorphic to S

3 and is compact. ⇤
Lemma 4.2. Let C ⇢ C be a compact set, and K a number field. Then there are
only finitely many algebraic integers ↵ 2 OK such that ↵ and all of its conjugates
lie in C.

Proof. If �1, . . . ,�r1 are all real places of K and ⌧1, . . . , ⌧r2 are all complex places
of K, then the injection � : OK ! Rr1 ⇥ Cr2 defined by

↵ 2 K 7! (�1(↵), . . . ,�r1(↵), ⌧1(↵), . . . , ⌧r2(↵))

sends OK to a lattice. Any compact subset of Rr1 ⇥ Cr2 can contain only finitely
many lattice points, and therefore its preimage under � contains only finitely many
integers ↵ such that ↵ and all of its conjugates are in the set.

⇤
The quaternion algebra Q is defined over the totally real number field K which

is split at the identity embedding. Therefore, Q⌦K R is isomorphic to M2(R). Call
this isomorphism ⇢. Consider a convergent sequence {qn} ⇢ O1 ⇢ Q. Under the
mapping ⇢ we can assume that

⇢(qn) !
✓

1 0

0 1

◆
.

To show discreteness, it suffices to show that for n large enough the qn are all equal.
Let qn = r1,n+ r2,ni+ r3,nj+ r4,nk. The images ⇢(qn) converge to the identity, and
since ⇢ is a homomorphism, qn ! 1, the identity in Q. Therefore

r1,n ! 1, r2,n ! 0, r3,n ! 0, r4,n ! 0,

and so there is an N0 such that for all n > N0 r2,n, r3,n, and r4,n are within ✏ of 0,
and r1,n is within ✏ of 1.

The number field K is totally real, and the quaternion algebra Q is ramified at
all non-identity places � of K. Therefore Q� ⌦K R ⇠

=

H for all of these places.
It follows that if � is a ramified real place the induced map takes O1 into H1,
the norm one elements of the Hamiltonians. Since H1 is compact by Lemma 4.1,
all of these conjugates of r1,n, r2,n, r3,n, and r4,n are all bounded. The numbers
r1,n, r2,n, r3,n, and r4,n are bounded by the above discussion of the identity place.
Therefore, discreteness follows by Lemma 4.2. For a general maximal order the
values r1,n, r2,n, r3,n, and r4,n may not be algebraic integers, but they are ‘almost’
algebraic integers and discreteness follows.

This construction yields what is called a Fuchsian group derived from a quater-
nion algebra. For a broader family of groups, we introduce the notion of commen-
surability.
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5. Commensurability

If A and B are both subgroups of a group G we say that A and B are commen-
surable if the intersection A \ B has finite index in both A and B. We say that A

and B are commensurable in the wide sense if a conjugate of A is commensurable
with B. This parallels the notion of commensurability of manifolds (or orbifolds).
Two manifolds M and N are commensurable if they share a finite sheeted cover.

Definition 5.1. A Fuchsian group derived from a quaternion algebra is a finite
index subgroup of P⇢(O1

) where O is a maximal order in a quaternion algebra over
a totally real number field which is unramified in exactly one place. An arithmetic
Fuchsian group is a subgroup of PSL2(R) which is commensurable (in the wide
sense) to a Fuchsian group derived from a quaternion algebra.

There is a precise relationship between arithmetic and derived groups. Define
�

(2) as h�2
: � 2 �i, so �

(2) is a (finite index) subgroup of �. The group � is
arithmetic if and only if �(2

) is derived (see [16] Corollary 8.3.5).
As we have seen, PSL2(Z) is an arithmetic Fuchsian group with torsion. For

example ±
✓

0 �1

1 0

◆
has order two. Therefore, the quotient is an orbifold. By

Selberg’s Lemma, such an orbifold has a finite sheeted (branched) cover which is
a manifold. That is, an arithmetic Fuchsian group with torsion has a finite index
subgroup which is torsion free.

Example 5.2. Let K be the splitting field of the biquadratic polynomial p(x) =
x

4 � 5x

2
+ 2. Then p(x) has four real roots,

±

s
5±

p
17

2

.

Consider the quaternion algebra

Q =

 p
5 +

p
17� 2,�1

K

!
.

The integer �1 is fixed by all elements of the Galois group of K. The other conju-
gates of

p
5 +

p
17�2 are �

p
5 +

p
17�2, �

p
5�

p
17�2 and

p
5�

p
17�2. All

four of these conjugates are real;
p

5 +

p
17�2 is positive, but the other conjugates

are negative. Therefore the quaternion algebra is split at the identity embedding,
but is ramified at all three non-identity embeddings. It follows that if O is a max-
imal order, P⇢(O1

) ⇢ PSL2(C) is a Fuchsian group derived from a quaternion
algebra. Specifically, P⇢(OK [1, i, j, k]) is such a group. In fact (see Theorem 2)
this is a co-compact group.

6. Arithmetic Kleinian Groups

The construction of arithmetic Kleinian groups is very similar to the construction
of the arithmetic Fuchsian groups. In this case, we begin with K, a number field
with exactly one complex place. If Q is a quaternion algebra over K then Q⌦KC ⇠

=

M2(C). Denote this map to M2(C) as ⇢ as above. If Q is unramified at all real
places, then for any (maximal) order O ⇢ Q the proof that ⇢(O1

) is a finite co-
volume discrete subgroup of SL2(C) is analogous to the Fuchsian case.
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Definition 6.1. A Kleinian group derived from a quaternion algebra is a finite
index subgroup of P⇢(O1

) where O is a maximal order in a quaternion algebra over
a number field with exactly one complex place which is ramified in all real places.
An arithmetic Kleinian group is a subgroup of PSL2(C) which is commensurable
(in the wide sense) to a Kleinian group derived from a quaternion algebra.

The Bianchi groups are natural analogs of the modular group in the Kleinian
setting. Let K be an imaginary quadratic number field. Then O = OK [1, i, j, k]

is an order in the quaternion algebra
⇣

1,1
K

⌘
. Under the map ⇢, ⇢(O) ⇢ M2(OK)

and the image of the norm one elements is contained in SL2(OK). As there is
just one (complex) place and M2(OK) is unramified at the identity place we see
that SL2(OK) is a discrete subgroup of SL2(C). (In fact, discreteness directly
follows from the fact that OK is discrete is C.) The groups PSL2(OK) are called
the Bianchi groups. The quotient QK = H3

/PSL2(OK) is a cusped hyperbolic
3-orbifold. Hurwitz showed that the number of cusps is equal to the class number
of OK . The figure-8 knot complement can be realized as H3

/� where � < PSL2(C)
is generated by ✓

1 1

0 1

◆
and

✓
1 �!

0 1

◆

with ! =

1
2 (�1+

p
�3). The group � is an index 12 subgroup of the Bianchi group

PSL2(OQ(
p�3)). Reid [22] proved that the figure-8 is the only arithmetic knot

complement (in S

3). Cuspidal cohomology computations show that any arithmetic
link complement in S

3 must be of the form H3
/� where � is commensurable with

the Bianchi group PSL2(OQ(
p�d)) for

d 2 {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.

The Whitehead link is arithmetic, and the fundamental group of the complement
is a finite index subgroup of PSL2(OQ(

p�1))). In fact, Baker [1] showed that all
links are sub links of arithmetic links.

7. Properties of Arithmetic Fuchsian and Kleinian groups

An alternate definition of arithmetic groups, due to Margulis, is that a Kleinian
group � is arithmetic if it has infinite index in its commensurator. The commen-
surator of � is

Comm(�) = {x 2 PSL2(C) : x�1
�x is commensurable with �}.

A similar statement is true for Fuchsian groups.
For any Fuchsian or Kleinian group �, the field Q(tr(�) : � 2 �) is a number

field. In the arithmetic case, if � = P⇢(O1
) where O is an order in a quaternion

algebra defined over K, then Q(tr(�)) = K. In the general setting the invariant
trace field Q(tr2(�)) is an invariant of the commensurability class. (For arithmetic
groups these fields coincide.) For any Fuchsian or Kleinian group, one can construct
a quaternion algebra as well. One distinguishing characteristic of the arithmetic
Fuchsian and Kleinian groups is that all traces are algebraic integers, since they
correspond to traces of elements in an order. In fact, a Kleinian group � is arith-
metic if and only if the invariant trace field is a number field with one complex
place, the traces are all algebraic integers, and the associated quaternion algebra is
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ramified at all real places. A similar statement is true in the Fuchsian case. (See
[16] for details.)

If O is a maximal order, the co-area of the derived Fuchsian group P⇢(O1
), the

area of H2
/P⇢(O1

), is given by

8⇡�

3
2
K⇣K(2)

(4⇡

2
)

[K:Q]

Y

P|�(Q)

(N(P)� 1)

where �K is the absolute discriminant of K, �(Q) is the (reduced) discriminant
of Q, and ⇣K is the Dedekind zeta function of K [5]. Similar to the Fuchsian case,
if O is a maximal order in the quaternion algebra Q over K, the co-volume of the
derived group P⇢(O1

) is

4⇡

2|�K | 32 ⇣K(2)

(4⇡

2
)

[K:Q]

Y

P|�(Q)

(N(P)� 1).

7.1. Co-compactness. The modular group and the Bianchi groups are non-co-
compact. That is, the quotients are non compact 2- and 3-orbifolds. One way to

see this is that each contains the parabolic element ±
✓

1 2

0 1

◆
, the image of the

norm one element 1 + i+ j. In fact, the commensurability classes containing these
groups are precisely the non-co-compact arithmetic Fuchsian and Kleinian groups.

It is not difficult to determine which arithmetic Fuchsian and Kleinian groups
are co-compact, and which are not. (See [16] Theorem 8.2.3.)

Theorem 1. Let � be an arithmetic Kleinian group commensurable with the de-
rived Kleinian group P⇢(O1

), where O is an order in the quaternion algebra Q

defined over K. Then the following are equivalent.
(1) � is non-cocompact.
(2) K = Q(

p
�d) and Q

⇠
=

M2(K)

(3) � is commensurable with a Bianchi group, PSL2(OQ(
p�d)).

Proof. Since � is a Kleinian group, G = P⇢(O1
) is as well, and we must have that

for Q =

⇣
a,b
K

⌘
that K has exactly one complex place, ⌧ , and if �1, . . . ,�r1 are the

real places, Q�` ⌦�`(K) R ⇠
=

H.
Co-compactness is a commensurability invariant, so � is non-cocompact exactly

when G = P⇢(O1
) is compact. Therefore, if � is not co-compact G contains a

parabolic element which is conjugate to some ±
✓

1 x

0 1

◆
for x 6= 0 and can be

written as

±
⇣✓

1 0

0 1

◆
+ x

✓
0 1

0 0

◆⌘
.

Since the identity is in the quaternions algebra Q, and maps to the identity matrix,

we see that up to an isomorphism, x
✓

0 1

0 0

◆
is in Q. This element has norm 0

and corresponds to a zero divisor. Therefore, Q is not a division algebra and must
be isomorphic to M2(K). It follows that K has no real places. Therefore, 1 implies
2.



10 K.L. PETERSEN

Assuming 2, notice that M2(OQ(
p�d)) is an order in Q = M2(Q(

p
�d)). The

intersection of a maximal order O with M2(OQ(
p�d)) is an order in Q and it follows

that the subgroups containing norm one elements are commensurable.

Assuming 3, notice that any Bianchi group contains the element ±
✓

1 1

0 1

◆

and therefore the quotient is not co-compact. Compactness is a commensurability
invariant. Therefore, 3 implies 1.

⇤

Similarly, we have the following for Fuchsian groups.

Theorem 2. Let � be an arithmetic Fuchsian group commensurable with the
derived Fuchsian group P⇢(O1

), where O is an order in the quaternion algebra Q

defined over K. Then the following are equivalent.
(1) � is non-cocompact.
(2) K = Q and Q

⇠
=

M2(K)

(3) � is commensurable with the Modular group, PSL2(Z).

Example 7.1. Consider the quaternion algebra

Q =

✓
�t, t

2 � 7

Q(t)

◆

where t is a root of x3 � 7. The field Q(t) has one real place, corresponding to the
real root 3

p
7 and one complex place corresponding to the conjugate roots ! 3

p
7, and

!

2 3
p
7 where ! = (�1 +

p
�3)/2 is a primitive third root of unity. Therefore Q is

split at the complex place, but is ramified at the real place since � 3
p
7 and 3

p
7� 7

are both negative. It follows that if O is a maximal order in Q, P⇢(O1
) is a finite

co-volume derived Kleinian group. By Theorem 1 this is a co-compact group.

8. General Construction

The construction of the derived Fuchsian and Kleinian groups are special cases
of a more general construction. Let a and b be non-negative integers, with at least
one positive. The product [H2

]

a ⇥ [H3
]

b carries a metric inherited from the metric
on H2 and H3. It follows that the group

[PSL2(R)]a ⇥ [PSL2(C)]b

is a subgroup of the group of orientation preserving isometries of [H2
]

a ⇥ [H3
]

b.
Let K be a number field with r1 real places and r2 complex places. Let Q be a

quaternion algebra over K. Let �1, . . . ,�l be the real places where Q is unramified,
and �l+1, . . . ,�r1 be the real places where Q is ramified. Let ⌧1, . . . ⌧r2 be the
complex places. Assume that there is some infinite place where Q is ramified. (This
is called the Eichler condition. The quaternion algebras

⇣
�1,�1

K

⌘
and

⇣p
2�4,�1
Q(

p
2)

⌘

do not satisfy the Eicher condition, for example.) Then for ` = 1 . . . l

Q�` ⌦�`(K) R ⇠
=

M2(R)

and for ` = l + 1 . . . r1

Q�` ⌦�`(K) R ⇠
=

H
and for ` = 1 . . . r2

Q�` ⌦⌧`(K) C ⇠
=

M2(C).
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Using the explicit maps in § 3.3 this gives a map ⇢ : Q ! M2(R)l ⇥ M2(C)r2 .
Choose a maximal order O in Q and take the norm one elements, O1 in O. The
restriction of ⇢ is the map (which we will also call ⇢)

⇢ : O1 ! [SL2(R)]l ⇥ [SL2(C)]r2

defined in each coordinate by q mapping to the image in M2(R) or M2(C) by the
above. The fact that the image is full rank (finite co-volume) follows from the fact
that the order O in Q was chosen to be full rank. It remains to address discreteness.
This is similar to the Fuchsian case.

Consider a convergent sequence {qn}1n=1 where qn = r1,n+r2,ni+r3,nj+r4,nk 2
O1 and ⇢(qn) = (Mn,1, . . . ,Mn,l+r2) 2 [SL2(R)]l ⇥ [SL2(C)]r2 . By composition,
we may assume that this sequence converges to the product of identity matrices.
Since the map to matrices is defined by sending each (O1

)

�` (1  `  l) to one
SL2(R) in the product, and each (O1

)

⌧` (1  `  r2) to one SL2(C) in the product,
we conclude that for each of these places, the image Mn,` 2 SL2(R) or SL2(C) is
converging to the identity matrix. That is, for all such embeddings  , we have

 (qn) =  (r1,n) +  (r2,n)i+  (r3,n)j +  (r4,n)k ! 1.

(These i, j, and k correspond to the basis elements for the quaternion algebra Q .)
We conclude that

 (r1,n) ! 1,  (r2,n), (r3,n), (r4,n) ! 0.

Therefore, for all split places, the conjugate of r1,n is a bounded distance from 1
and the conjugates of r2,n, r3,n and r4,n are a bounded distance from 0.

Now, consider a ramified (real) place �. The extension of scalars of Q� is isomor-
phic to H. Under this identification, the elements of norm one in Q

� map to H1,
the norm one elements of the Hamiltonians. This set is compact by Lemma 4.1.
We conclude that the group P⇢(O1

) is discrete by Lemma 4.2.

Example 8.1. Let K be the splitting field of the biquadratic polynomial p(x) =
x

4 � 5x

2
+ 4. Then the roots of p(x) can be determined by the quadratic formula

and are

±

s
5±

p
41

2

.

This has two real roots, ±
q

5+
p
41

2 and two complex conjugate roots, ±
q

5�p
41

2 .

Any quaternion algebra is split at the complex place.
The quaternion algebra Q1 =

⇣
1,1
K

⌘
⇠
=

M2(K) and order O = M2(OK) corre-
spond to PSL2(OK) embedded in [PSL2(R)]2 ⇥ [PSL2(C)].

Alternately, the quaternion algebra Q2 =

⇣
�1,�1

K

⌘
is ramified at both real places.

Therefore, if O is a maximal order, P⇢(O1
) is a discrete subgroup of PSL2(C). In

fact, since K is not a quadratic number field, we conclude that this group is co-
compact.

Now, Consider the quaternion algebra Q3 =

⇣p
41�7,

p
41

K

⌘
. At the identity em-

bedding, the extension of scalars gives
⇣p

41�7,
p
41

R

⌘
. The automorphism corre-

sponding to the other real place, �2, sends
p
41 to �

p
41. Therefore the extension
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of scalars corresponding to this place is
 
�(

p
41� 7),�(

p
41)

R

!
=

 
�
p
41� 7,�

p
41

R

!
.

The quaternion algebra is ramified at �2 and split at the identity, �1. As a result, if
O is a maximal order in Q3 then P⇢(O1

) is a co-compact, finite co-volume discrete
subgroup of PSL2(R)⇥ PSL2(C).

8.1. The groups PSL2(OK). The simplest examples of this construction are the
groups PSL2(OK) which correspond to the order M2(OK) in the quaternion algebra
M2(K). If K has r1 real places and r2 complex places then the extension by scalars
corresponding to each place is split. We obtain the mapping

✓
a b

c d

◆
!
Y

 

✓
 (a)  (b)

 (c)  (d)

◆

where the product is over all infinite places of K.
For any number field K with r1 real places and r2 complex places, the quotient

[PSL2(R)]r1 ⇥ [PSL2(C)]r2/PSL2(OK)

is not co-compact. This is evident as ±
✓

1 1

0 1

◆
2 PSL2(OK). The quotient has

a finite number of finite volume topological ends, called cusps. Each cusp cross
section is a Euclidean co-dimension one manifold. It is not difficult to show that
the number of cusps of PSL2(OK) equals the class number of OK .

To see this, first notice that the cusps are equivalence classes of elements of
(K [1) ⇢ C under the action of PSL2(OK). (Consider K [1 corresponding to
the identity place of K in the product.) Two elements p1 = ↵1/�1 and p2 = ↵2/�2

are equivalent if there is a M 2 SL2(OK) such that M(p1) = p2.
The ideals (↵1,�1) and (↵2,�2) are equivalent in the class group if there is a

� 2 K such that
(↵1,�1) = (�)(↵2,�2),

so (↵1,�1) = (�↵2, ��2) = I. The whole number ring is OK = II

�1, and so
1 = ↵iI

�1
+ �iI

�1. That is, there is are elements si and ti in I

�1 such that

↵isi � �iti = 1.

It follows that with
Mi =

✓
↵i ti

�i si

◆

Mi(1) = pi. The matrix ±M2M
�1
1 2 PSL2(OK) and takes p1 to p2. Conversely,

if the two ideals are in different elements of the class group no such matrix exists.
(See [27].)

There are some striking differences between the groups PSL2(OK) when K is
neither Q nor an imaginary quadratic number field and the modular group and
Bianchi groups. This is a specific manifestation of the difference between higher
rank arithmetic groups and lower rank groups. For these groups, this difference
can be tied to the existence of infinitely many units in OK ; by Dirichlet’s unit
Theorem, the rank of the unit group of OK is r1 + r2 � 1. One such difference
involves the subgroup structure of these groups. Let I be a non-zero ideal of OK .
The reduction modulo I map defines a map from PSL2(OK) to the finite group
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PSL2(OK/I). The kernel of this map is called the principal congruence subgroup
of level I, and is denoted �(I). These are finite index subgroups of PSL2(OK). A
finite index subgroup of PSL2(OK) is called a congruence subgroup if it contains
some principal congruence subgroup. The group PSL2(OK) is said to have the
congruence subgroup property (CSP) if all finite index subgroups are congruence
subgroups. Fricke [10] and Pick [21] showed that there are finite index subgroups
of the Modular group which are not congruence subgroups. Serre [25] showed that
PSL2(OK) has the CSP precisely when K is not Q or an imaginary quadratic. In
fact, this difference between the subgroup structure of PSL2(OK) depending on
whether K has positive unit rank can be seen topologically by looking at minimally
cusped quotients [20, 18, 19]

9. Lehmer’s Conjecture and Geodesics

9.1. Geodesics and Systoles. One natural way to measure a manifold is by the
lengths of its geodesics. The length spectrum of a manifold is the collection of
lengths of all closed geodesics, including multiplicities. For non-cocompact mani-
folds we consider only the lengths of non-boundary parallel curves as the length of a
boundary parallel curve is not well-defined. In some sense, this is akin to studying
a number field by its zeta function, which encodes the norms of all ideals. If M

is a hyperbolic 3-manifold one uses the set of complex lengths (complex numbers
encoding lengths and rotations for loxodromic elements). Surprisingly, there are
isospectral manifolds which are not isometric [28], similar to the existence of num-
ber fields with the same zeta function. For arithmetic hyperbolic 2- or 3- manifolds,
isospectrality is known to imply commensurability [23].

For a compact Riemannian manifold the spectrum of the Laplacian consists of
the eigenvalues of the Laplace operator. For hyperbolic surfaces, via the Selberg
trace formula (see [13, 14]), this spectrum and the length spectrum encode the same
data (see [9]). One conjecture in this direction is Selberg’s eigenvalue conjecture
which states that the first non-zero eigenvalue of a principal congruence subgroup
(the kernel of the modulo n map) of the modular group is bounded by 1/4 [24].

The smallest non-zero term in the length spectrum corresponds to the length
of the shortest geodesic, the systole. The length of the systole is connected to
the overall geometry of the manifold. Notably, Gromov [12] showed that in each
dimension n there is a universal constant Cn such that for any Riemannian n-
manifold M

length(systole(M))  Cnvolume(M).

For general hyperbolic 2-manifolds it is not difficult to see that there are hyper-
bolic surfaces where the length of the shortest geodesic gets arbitrarily small, by
constructing bar bell surfaces, for example. In fact, one can do this for any genus.
However, it is conjectured that this length is universally bounded away from zero
for the arithmetic Fuchsian and Kleinian groups.

Conjecture 9.1 (Short Geodesic Conjecture). The length of any geodesic in an
arithmetic hyperbolic 2- or 3-manifold is universally bounded away from zero.

It is not difficult to see that this is true for the non-cocompact groups. If �

is a non-compact arithmetic hyperbolic 2- or 3-manifold it is enough to bound
the length of the systole of �(2)

< � which is derived. Therefore �

(2) is either a
subgroup of the modular group or a Bianchi group. As outlined below, the length
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of a geodesic corresponds to the Mahler measure of the trace. In this case the
trace is an algebraic integer in Q or an imaginary quadratic number field. Using
Dobrowolski’s bound [8] (for example) these Mahler measures are bounded, and
so is the systole length. One can obtain sharper results (see [16] Theorem 12.3.6)
by direct computation and show, for example, that if H3

/� is a cusped hyperbolic
3-manifold with a systole of length less that 0.431277313 then � is not arithmetic.

9.2. Lehmer’s Conjecture. Let ↵ be an algebraic number with minimal polyno-
mial

p(x) = a(x� r1) . . . (x� rn).

The Mahler measure of ↵ is

M(↵) =

1

2⇡

Z 2⇡

0
log |p(ei✓)| d✓ = |a|

nY

i=1

max{1, |ri|}.

As the Mahler measure is an invariant of the polynomial, we often refer to the
Mahler measure of a polynomial in Z[x] as the Mahler measure of any of its roots
and we write M(p). It is elementary to see that the Mahler measure of any product
of cyclotomic polynomials is one. Conversely, Kronecker showed that any monic
polynomial in Z[x] all of whose roots lie on or inside the unit circle must be a
product of cyclotomics and factors of x.

In 1933 Lehmer [15] asked whether there was a universal bound µ > 1 such
that if p(x) 2 Z[x] is not a product of cyclotomics, then M(p) > µ. This is often
called Lehmer’s conjecture, or Lehmer’s question. The polynomial with the smallest
known Mahler measure bigger than one was discovered by Lehmer. It is known as
Lehmer’s polynomial and is

l(x) = x

10
+ x

9 � x

7 � x

6 � x

5 � x

4 � x

3
+ x+ 1.

The Mahler measure of Lehmer’s polynomial is

M(l) = 1.176280818 . . . .

(In fact, one can construct many polynomials with this Mahler measure.) A strong
version of Lehmer’s conjecture is that this is the smallest Mahler measure amongst
polynomials in Z[x] which are not products of cyclotomics and powers of x.

There are bounds for the Mahler measure which depend on the degree of the
polynomial (see the papers by Blanksby and Montgomery [4] and Dobrowolski [8]).
So, if Lehmer’s conjecture is not true, then the degrees of the polynomials with
small Mahler measure must increase. Additionally, Lehmer’s conjecture has been
proven for certain special types of polynomials. Smyth [26] showed that Lehmer’s
conjecture is true for non-reciprocal polynomials. Reciprocal polynomials are those
whose coefficients read the same forwards as backwards; a polynomial is reciprocal
when if r is a root then 1/r is also a root. Borwein, Dobrowolski, and Mossinghoff
[6] showed that the conjecture holds for a large class of polynomials which includes
the Littlewood polynomials (those with coefficients in {�1, 1}). (See also, [7], [3],
and [2].)

We say that a monic irreducible polynomial p(x) 2 Z[x] is a Salem polynomial
if all but two roots of p lie off the unit circle, and these roots are real numbers r

and 1/r. Additionally, if r > 1 is a root of a Salem polynomial, we call r a Salem
number. For the purposes of this note, we will call a monic irreducible polynomial
p(x) 2 Z[x] a complex Salem number if exactly four roots of p are off the unit circle
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and these roots are complex numbers of the form z, 1/z, z, and 1/z. We will call the
numbers z, 1/z, z, and 1/z complex Salem numbers. The Salem conjecture asserts
that the Mahler measure of any Salem polynomial is uniformly bounded away from
1. In some sense, this is the simplest case of Lehmer’s conjecture. A complex Salem
conjecture can be formulated similarly.

9.3. Lengths and Mahler Measure. A geodesic in M = H2
/� corresponds to

a hyperbolic element � 2 � since the axis of a hyperbolic element in � projects to
a geodesic in H2

/�, and every non-peripheral closed curve is freely homotopic to a
unique closed geodesic corresponding to one of these axes. Up to conjugation,

�

±1
= ±

✓
� 0

0 �

�1

◆

with � > 1 so that ±tr(�) = � + �

�1. It is a straightforward application of the
hyperbolic distance formula that the translation length of �, length(�) is related to
� by

length(�) = 2 log |�|
so that

cosh(

1
2 length(�)) = 1

2 |�+ �

�1|.
It follows that the length of the geodesic is bounded away from zero if and only if
the (absolute value of the) trace of � is bounded away from two. The 3-dimensional
case is similar, using complex length.

Now we establish a correspondence between short geodesics and the Salem con-
jecture, due to Neumann and Reid [17].

Theorem 3. The short geodesic conjecture for arithmetic hyperbolic 2-manifolds
is equivalent to Salem’s conjecture. The short geodesic conjecture for arithmetic
hyperbolic 3-manifolds is equivalent to the complex Salem conjecture.

We sketch a proof Theorem 3 in the Fuchsian case. We refer the reader to [16]
for a detailed treatment, especially in the Kleinian case.

We reduce to the case where M = H2
/� and � is derived, since if �1 is arithmetic

then �

(2)
1 is a finite index subgroup of a derived group. First we show that lengths

of geodesics correspond to Salem numbers.

Claim 9.2. Let � be a derived Fuchsian group, and let � 2 � be a hyperbolic
element. Then |tr(�)| = �+ �

�1 where � > 1 is a Salem number.

Proof. (sketch) By construction, � = P⇢(O1
) where O is an order in the quaternion

algebra Q =

⇣
a,b
K

⌘
and K is a totally real number field andQ is ramified at all non-

identity (real) places. Let � 2 � with tr(�) = �+ �

�1. Let

p(x) = x

2 � (�+ �

�1
)x+ 1.

The element (�+ �

�1
) 2 OK because |�+ �

�1| = ±tr(�) and corresponds to tr(↵)
for some element ↵ 2 O and therefore lies in OK as remarked on earlier. Moreover,
�

�1 is a conjugate of � since are both roots of the polynomial p(x) 2 OK [x]. Let
L denote the quadratic extension of K determined by p(x) so that �,��1 2 L.

Let  be a non-trivial Galois automorphism of K;  extends to automorphisms
of L. The automorphisms of L corresponding to the identity place are the identity
and the map that exchanges � and �

�1. Since K is real and � + �

�1 2 K we
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conclude that � is either real or on the unit circle. But � is hyperbolic and so
|tr(�+ �

�1
)| > 2, ensuring that � is real and not on the unit circle.

If  is a non-identity automorphism, then  induces a map from Q to H and by
restriction O1 maps into H1, so the trace of  (�+ �

�1
) must have absolute value

less than two. Extending  to L,
 (�+ �

�1
) = [ (�)] + [ (�)]

�1
.

Since K is totally real, this is in R so that either  (�) is real or  (�) is on the unit
circle. If  (�) were real, then | (�+ �

�1
)| = | (�) +  (�)

�1| < 2, is equivalent to�
 (�)� 1

�2
< 0, which is impossible. Therefore,  (�) is on the unit circle.

⇤
Consider the case when �n is a Salem number corresponding to the geodesic

�n. By the above discussion on lengths and traces, the following are equivalent: a
sequence of Salem numbers {�n} is bounded away from one, the Mahler measure of
each term in {�n} is bounded away from one, the sequence {�n + �

�1
n } is bounded

from two, the geodesic lengths {length(�n)} are all bounded away from zero.
It suffices to show that any Salem number � corresponds to a hyperbolic element

� in some arithmetic Fuchsian group.

Claim 9.3. Let � be a Salem number. Then there is a derived Fuchsian group �

and a hyperbolic element � 2 � so that |tr(�)| = �+ �

�1.

Proof. (sketch) The only conjugate of � which lies off the unit circle is ��1. It
follows that the field Q(� + �

�1
) = K is totally real and L = Q(�) is a quadratic

extension of K. We want to construct a quaternion algebra over K which is split
at exactly one place. Moreover, we need to ensure that �+ �

�1 appears as a trace
of a norm one element.

By controlling the ramification set, we can construct a quaternion algebra Q
over K, which is ramified at all non-identity real places of K, in which L embeds.
The element � 2 L is an algebraic integer since |� + �

�1| = |tr(�)| is an algebraic
integer and � satisfies x

2 � (�+ �

�1
)x+ 1. Moreover, the relative trace and norm

are trK/L(�) = � + �

�1 2 OK and NK/L = ��

�1
= 1. In the embedding L ,! Q

these correspond to the reduced norm and trace of an element q. It suffices to take
a maximal order O containing q.

⇤
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TORSION HOMOLOGY OF THREE–MANIFOLDS

JEAN RAIMBAULT

Abstract. We review various heuristics, questions and conjectures about the torsion part of the
homology of compact three–manifolds. We also present a theorem on growth of torsion homology
in congruence covers of arithmetic manifolds and give an informal introduction to it’s proof.

1. Introduction and overview

Let M be a compact three–manifold; one of the simplest topological invariants of M is given
by it’s homology groups H

p

(M ;Z) which can be computed using any cell structure for M , for
example from a Heegard decomposition or from a presentation of M as a Dehn surgery on a link
in the three–sphere. The groups H

p

(M ;Z) are finitely generated abelian groups and as such they
decompose as a direct sum

H
p

(M ;Z) = Zb

p

(M) � T
p

(M)

where T
p

(M) is the torsion subgroup, which is finite. Moreover, at least for closed manifolds and
manifolds whose boundary is a disjoint union of tori one can easily see that H

1

determines the
others. A basic question which will interest us here is the following: given a compact manifold M ,
what is the range of b

1

(M 0) and t
1

(M 0) = |T
1

(M 0)| for M 0 a finite cover of M? Related to this one
can ask what the behaviour of these numbers is in specific sequences of finite covers of M . This note
is a expanded version of the talk given by the author at the workshop “Growth and Mahler measure
in geometry and topology” which was held at the institute Mittag-Le✏er from July 1 to 5, 2013.
As its title indicates it is mainly focused on the torsion part of the homology; moreover, our main
concern will be with hyperbolic manifolds. Our main aim is to provide an informal introduction to
the contents of the author’s papers [25],[26] and (to a lesser extent, since these contain much more
than is talked about here) to the seminal paper of N. Bergeron and A. Venkatesh [4] and to the
joint work of the author with M. Abèrt, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov and I.
Samet [1].

Let us now describe in some detail what is to be found here. In the first part we will quickly
review various results and conjectures about general three–manifolds: first we talk about growth of
torsion in cyclic covers, then we explain how to relate homological torsion growth to `2-invariants
in the context of three–manifolds, and finally we present probabilistic results on the homology and
volume of random Heegard splittings. All of this motivates the belief that finite–volume hyperbolic
manifolds should often have a large torsion subgroup in their first homology, and more precisely
that its size should be (in “nice” situations) close to a certain exponent of the volume. The second
part is dedicated to put this vague heuristic statement in a more rigorous form, which is achieved
through stating various conjectures and some positive results in specific contexts; in particular
we conclude the section with a survey of the homology growth in congruence covers of arithmetic
manifolds, for which we can actually state some proven results. The last section explains informally
the analytic methods which are used to prove the results explained in the previous.

Acknowledgments. I am happy to thank the organizers of the workshop, Eriko Hironaka and
Ruth Kellerhals, for inviting me to Mittag Le✏er. I also wish to thank this institution for it’s
hospitality and Jenny Wiklund for organizing the practical aspects of my visit.
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2. Growth of torsion homology in finite covers

Let M be a compact three–manifold; then by trivial considerations, if M 0 is a finite cover of M
of degree d we have b

1

(M)  Cd where C is the smallest number of 1-simplices in a triangulation
of M . There is a similar bound for torsion: by Lemma 5 in [11] there is a constant C 0 depending
on the number of 1-simplices in a triangulation of M and the degree of its 2-simplices such that
log t

1

(M 0)  C 0d. The rough behaviour of the homology in a sequence of finite covers M
n

! M
can thus be studied through the behaviour of the numerical sequences

b
1

(M
n

)

[⇡
1

(M) : ⇡
1

(M
n

)]
and

log t
1

(M
n

)

[⇡
1

(M) : ⇡
1

(M
n

)]
.

2.1. Cyclic covers. The only case in which there are complete results on the exponential growth
rate of torsion is that of cyclic covers, which already provides some interesting examples.

2.1.1. Exponential growth of torsion. The setting in this section is as follows: we have a compact
three–manifold M with an epimorphism ⇡

1

(M) ! Z, and we study the sequence of cyclic covers M
n

corresponding to the surjections ⇡
1

(M) ! Z ! Z/n. Associated to the morphism ⇡
1

(M) ! Z (or to
the corresponding infinite cyclic cover) is a certain sequence of Laurent polynomials �

0

, . . . ,�
k

, . . .,
called the Alexander polynomials of the covering, such that �

i+1

divides �
i

and �
i

= 1 for large
i. The exponential growth rate of the sequence t

1

(M
n

) is completely understood in terms of the
�

k

; the following result has been proved independantly by T. Le in [15] and by the author in [27]
(see also [29], [13], [33] and [4, Section 7]).

Theorem 2.1. Notations as above, let r be the smallest index such that �
r

6= 0. Then we have

lim
n!+1

log t
1

(M)

n
= m(�

r

) :=

Z
1

0

log |�
r

(e2i⇡✓)|d✓.

It is a well-known result of L. Kronecker that the right-hand side above (which is the logarithmic
Mahler measure of �

r

) is zero if and only if �
r

is a cyclotomic polynomial; in general it equals the
sum of the log |↵| over the roots ↵ of �

r

with |↵| > 1. We will present various examples where �
r

is
explicitely computed in the sequel; for now let us indicate how to define the Alexander polynomials.

Let R = Z[t±1] and V be a finitely generated R-module; let A 2 M
l,m

(R) be a presentation
matrix for V , then the ith Alexander polynomial �

i

(V ) of V is a greatest common divisor for the

(l � i)-minors of A (it does not depend on A). If cM ! M is an infinite cyclic covering then the

homology group H
1

(cM ;Z) is a R-module (where t is a generator for the covering group) and we

put �
i

= �
i

(H
1

(cM ;Z)). It is defined up to multiplication by a unit ±tk, k 2 Z, and we see that
r = rk

R

(H
1

(M ;Z)).

2.1.2. Fibered manifolds. We suppose here that M fibers over the circle, i.e. there is a surface S
and an homeomorphism � of S such that

M ⇠= S ⇥ [0, 1]/ ⇠ where (x, 0) ⇠ (�(x), 1).

Then ⇡
1

(S) is a normal subgroup of ⇡
1

(M) with quotient ⇡
1

(M)/⇡
1

(S) = Z, the corresponding
infinite cyclic covering has �

r

= �
0

= det(1� t�⇤).
This example allows to exhibit fibered manifolds which have cyclic covers with exponential growth

of homology. For example let M be the fibered Sol-manifold given by the above construction with

S = T2 and � =

✓
2 1
1 1

◆
. Then �

0

= t2 � 3t + 1 and m(�
0

) = log
⇣
3+

p
5

2

⌘
. One can also give

hyperbolic examples with m(�
0

) > 0, although they are more complicated. Some were computed
by T. Koberda, and he made the following conjecture (which if true would imply that every finite–
volume hyperbolic manifold has a sequence of covers where t

1

grows exponentially with the volume).
2



Conjecture 2.2. Let S be an hyperbolic surface and � a pseudo-Anosov homeomorphism of S.
There exists a finite cover S0 of S and a lift �0 of � to S0 such that det(1� t�⇤) is not cyclotomic.

2.1.3. Knot complements. Let k be a knot in S3 and M = S3�k. Then H
1

(M) = Z and thus there
is a unique cyclic cover M

n

of degree n of M . The Alexander polynomial �
0

of the infinite cyclic
cover of M can be computed from a diagram of the knot (this is actually how it was originally
introduced), and it is always nonzero. In this setting Theorem 2.1 is due to D. Silver and S.
Williams. For the simplest knots we have:

• if k is the trefoil then �
0

= t2 + t� 1 is cyclotomic;
• if k is the figure-eight then �

0

= t2 � 3t+ 1.

Since the complement of the figure-eight is hyperbolic this gives examples of a sequence of covers
of a hyperbolic manifold with exponential growth of torsion.

2.1.4. More general results. Theorem 2.1 admits a generalization to non-cyclic abelian covers ([15],
see also [32] and [27]) which is less precise (although [15] gives the best possible result conditionnally
to a number–theoretical conjecture). There is no other, more general type of covers where such a
result is known to hold.

2.2. Relations with `2-invariants. Here we state without justification the more or less conjec-
tured relations between homology of covers and the so–called `2–invariants in the special case of
three–manifolds; we will recast them in analytic context in Section 4 below. The reader is refered
to [18] for the definition of `2-invariants; the original paper on approximation is [16].

2.2.1. Approximation and homology growth. Suppose that M is a three–manifold with a CW-
structure; there is then defined an invariant (which a priori depends on the chosen CW-structure)
called Reidemeister torsion and denoted ⌧(M). If M1 ! M is an infinite normal cover then
there is also defined an `2-Reidemeister torsion which we will denote ⌧ (2)(M1). The problem of
approximation is then the following: let � = ⇡

1

(M), ⇤ = ⇡
1

(M1); if �/⇤ is residually finite we
can choose a nested sequence of finite-index normal subgroups � = �

0

� . . . � �
n

� . . . such thatT
n�0

�
n

= ⇤; letting M
n

be the cover of M corresponding to �
n

with the lifted CW-structure, do
we have

(2.1) lim
n!+1

⌧(M
n

)
1

[�:�

n

] = ⌧ (2)(M1)?

This problem is linked to homology growth in the torsion as follows: we have ⌧(M) = t
1

(M)�1 ⇥
R(M) where R(M) comes from the characteristic 0 homology. In some sequences as above it is
hoped that R(M

n

) has subexponential growth rate with the index, so that if valid (2.1) would yield
the exponential growth rate of torsion in the sequence t

1

(M
n

). This is a way to prove the result
about homology growth in cyclic covers (Theorem 2.1).

2.2.2. Geometrized manifolds. When M1 = fM is the universal cover of M the `2-torsion is com-
putable in terms of the geometric JSJ-decomposition of M : if X

1

, . . . , X
m

are the hyperbolic pieces
then

(2.2) log ⌧ (2)(fM) =
1

6⇡

mX

i=1

volX
i

.

This does not depend on the choice of a CW-structure on M .
Finally, let us note that the conjectural picture above has been clarified by W. Lück in the case

of covers of Seifert fibered manifolds; we will cite the following result from [17] (see Corollary 1.13
there).
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Theorem 2.3. Let M be a compact Seifert fibered three–manifold, and M
n

a tower of finite normal
covers of M with

T
n

⇡
1

(M
n

) trivial. Then

lim
n!+1

log t
1

(M
n

)

[⇡
1

(M) : ⇡
1

(M
n

)]
= 0.

2.3. Random manifolds. Let S be a closed surface, Mod(S) the mapping class group of S. Let
g
k

be the kth step of a uniform random walk on Mod(S) (i.e. g
k+1

is given by g
k

g where g is
chosen in a finite symmetric generating set for Mod(S) with respect to the uniform distribution).
Then the manifold M

k

obtained by gluing two handlebodies according to X
k

(a “random Heegard
splitting”) is called a random Dunfield–Thurston manifold (after the paper [10] where they were
studied first), and the study of the statistical properties of the homology of M

k

as k ! +1 may
provide insight. The following theorem is a compilation of results by J. Maher [19], J. Brock–J.
Souto (mostly unwritten) and E. Kowalski ([14], which is the main source for this subsection).

Theorem 2.4. Suppose that the genus of S is at least two, then:

(i) M
k

is hyperbolic with asymptotic probability 1;
(ii) there are 0 < c

1

< c
2

such that c
1

k  volM
k

 c
2

k with asymptotic probability 1;

(iii) for any sequence u
k

such that u
k

! +1 we have t
1

(M
k

) > e
k

u

k with asymptotic probability
1; moreover, there are C,↵ > 0 such that the expectation of t

1

(M
k

) is � Ce↵k for large
enough k.

(iv) b
1

(M
k

) = 0 with asymptotic probability 1.

Combining (ii) and (iii) above we see that for this model of random manifold, the torsion ho-
mology is larger than a certain exponent of the volume for a positive proportion of manifolds when
the complexity k goes to infinity. This is another motivation to study further the relation between
log t

1

and vol for hyperbolic three–manifolds.

3. Hyperbolic manifolds

In this section M will always be a finite–volume hyperbolic manifold (which may vary from one
occurence to the other).

3.1. A conjecture. The behaviour of randommanifolds makes it clear that the torsion homology of
hyperbolic three–manifolds is an interesting object of study. It exhibits a wide variety of behaviours
in finite covers: as we saw in 2.1.3 and 2.1.2 there are sequences where t

1

(M) grows as fast as
possible, namely exponentially. On the other hand it has been proven by M. Baker, M. Boileau and
S. Wang [2] that there exists finite–volume hyperbolic manifolds which have towers of finite covers
which are homology spheres. Nevertheless, in view of the expected links between approximation
of `2–invariants and homology growth (2.1),(2.2) we can ask the following question which predicts
some kind of uniform behaviour for all hyperbolic manifolds.

Conjecture 3.1. For any finite-volume hyperbolic three–manifold M there is a tower of finite
covers . . . ! M

n

! . . . ! M
0

= M with
T

n

⇡
1

(M
n

) = {1} and

lim
n!+1

log t
1

(M
n

)

volM
n

=
1

6⇡
.

It is not expected (at least not by everybody) that for any tower satisfying the assumptions
of the question the growth of torsion homology will be as indicated; indeed there are numerical
computations suggesting that for certain sequences this might not be the case [5, Figure 4.5], [31] .
On the other hand, the same computations suggest that if a tower as in the conjecture satisfies the
additional assumption that H

1

(M
n

;Q) = 0 for all n then the conclusion holds for that sequence.
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3.2. Convergence of hyperbolic manifolds and homology. We will put the sequence of covers
for which the conjecture was made above in a more general geometric context. Note that if M is a
compact manifold, then the condition in Question 3.1 is equivalent to inj(M

n

) ! +1 for a tower.
It is thus natural to consider sequences of compact hyperbolic manifolds with inj(M

n

) ! +1; we
will be interested in sequence satisfying the following weaker condition, which was introduced in
[1, Definition 1.1] under the name of “Benjamini–Schramm”1 convergence to H3

2:

(3.1) 8R > 0, lim
n!+1

vol{x 2 M
n

: inj
x

(M
n

)  R}
volM

n

�����!
n!+1

0.

That this is a good setting in which to study the asymptotics of homology is illustrated by the
following result [1, Theorem 1.8], [25, Proposition C]:

Theorem 3.2. Let M
n

be a sequence of finite-volume hyperbolic three–manifolds which BS-converges
to H3; then we have

lim
n!+1

b
1

(M
n

)

volM
n

= 0.

Note that even for sequences of covers the convergence to 0 can be arbitrarily slow [12]. For
torsion the picture is less clear; it is known by work of J. Brock and N. Dunfield that BS-convergence
to H3 is far from implying exponential growth of torsion (in [5] they construct a sequence M

n

which
satisfies (3.1) but has H

1

(M
n

;Z) = 0 for all n). The following conjecture can nevertheless be made.

Conjecture 3.3. Let M
n

be BS-convergent to H3 and such that the Cheeger constants of the M
n

are bounded away from 0 and H
1

(M
n

;Q) = 0 for all n; then

lim
n!+1

log t
1

(M
n

)

volM
n

=
1

6⇡
.

3.3. Congruence manifolds.

3.3.1. Congruence groups. Let G be a Q–form of SL
2

(C) ⇥ G0 where G0 is a compact group. Let
A
f

be the ring of finite adèles of Q; then G(Q) is dense in G(A
f

), and a subgroup � ⇢ G(Q) is
said to be a congruence group in G(Q) if the closure K

f

of � in G(A
f

) is compact and open and
moreover � = G(Q) \ K

f

. The following theorem is a slight generalization of [1, Theorem 1.12]
and [26, Theorem B].

Theorem 3.4. Let G as above and �
n

be the images in SL
2

(C) of a sequence of pairwise distinct
congruence groups in G(Q); then the sequence of orbifolds M

n

= �
n

\H3 is BS-convergent to H3.

We will call a hyperbolic three–manifold a congruence manifold if its fundamental group is
conjugated in PSL

2

(C) to the image of a congruence group in some G(Q). The Cheeger constant of
congruence three–manifolds is known to be bounded below by a uniform constant [9], but the
rational homology of a congruence manifold can be nonzero, so that Conjecture 3.3 does not
necessarily apply to a sequence of congruence manifolds. The following conjecture is nevertheless
believed to be true.

Conjecture 3.5. Let G,�
n

,M
n

be as in Theorem 3.4. Then we have

lim
n!+1

log t
1

(M
n

)

volM
n

=
1

6⇡
.

1After the work [3] of these authors on a similar notion for regular graphs.
2It fits into a more general notion of convergence for finite–volume manifolds, which also incorporates the conver-

gence towards an infinite Galois cover; see[1, Definition 3.1 and Lemma 3.5]
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This is supported by the computations of M.H. Şengun [30] and of Brock–Dunfield [5, Figure
4.4]. It is also motivated by arithmetic considerations, see [4].

3.3.2. Example: the Bianchi groups. The simplest (to describe) example of congruence groups is
given by the Bianchi groups. Let F = Q(

p�d) be an imaginary quadratic field and O
F

its ring of
integers. We get a Q-form of PSL

2

(C) by taking the Weil restriction G of PSL
2

/F to Q. At finite
places we get:

(i) G(Q
p

) = PSL
2

(Q
p

)⇥ PSL
2

(Q
p

) if p is split in F/Q;
(ii) G(Q

p

) = PSL
2

(F
p

) where F
p

= Q
p

(
p�d) is a quadratic extension of Q

p

if p is inert or
ramified in F/Q.

Let � = PSL
2

(O
F

); then the closure of � in PSL
2

(Q
p

) is equal to PSL
2

(Z
p

) ⇥ PSL
2

(Z
p

) in case
(i) and to PSL

2

(O
p

) in case (ii) (where O
p

is the closure of O
F

in F
p

), and we see that � is a
congruence group in G(Q). We can define many other congruence subgroups inside �: for an ideal
I in O

F

let �(I) be the kernel of the reduction morphism PSL
2

(O
F

) ! PSL
2

(O
F

/I), then �(I)
is easily seen to be a congruence group, and it follows that the preimage in � of any subgroup in
PSL

2

(O
F

/I) is also a congruence groups; it is usual to denote by �
0

(I) the preimage of the upper
triangular matrices and by �

1

(I) the preimage of the subgroup of unipotent matrices.

3.3.3. Local coe�cients. Conjecture 3.5 is wide open at present; however there is a scheme of
proof which we will describe in the next section and allows to get a better understanding of what is
involved in the conjecture; moreover it actually succeeds in proving results similar to the conjecture,
by replacing the trivial local system Z by other ⇡

1

(M)-modules. We will describe here a generalized
version of Conjecture 3.5 and state the results obtained in [4], [1] and [26] in this direction.

We will consider here lattices in SL
2

(C) rather than in PSL
2

(C) for reasons that will soon be
apparent; in any case, torsion free lattices in PSL

2

(C) at least lift to isomorphic lattices in SL
2

(C)
so there is no loss of generality when considering manifolds. We let � ⇢ SL

2

(C) be a lattice and
⇢ a representation of � in SL(L) for some free, finitely generated Z-module L. There is then a
`2-torsion associated to the chain complex C⇤(M ;Z[�]⌦Z L) and a torsion homology H

1

(M ;L)
tors

and we can ask how the growth of the latter in covers of M relates to the former, in the spirit
of (2.1). We will formulate a conjecture in the case where � is arithmetic and ⇢ comes from a
representation of SL

2

(C). The real representations of SL
2

(C) are on the spaces

V
m,q

= Symm(C2)⌦ Symq(C2

)

where SL
2

(C) acts on C2

by conjugate matrices. For any lattice � the `2-torsion of C⇤(M ;Z[�]⌦ZV )
is given for V = V

m,q

by

log ⌧ (2)(fM ;V ) = vol(M)t(2)(V ),

where

(3.2) t(2)(V ) =
�1

48⇡

�
(m+ q + 2)3 � |m� q|3 + 3|m� q|(m+ q + 2)(m+ q + 2� |m� q|)�

has been computed in [4, 5.9.3, Example (3)].

Conjecture 3.6. Let � be a congruence groups and �
n

a sequence of pairwise distinct congruence
groups contained in �; let ⇢, V be a representation of SL

2

(C) and suppose3 that there is a lattice L
in V which is preserved by ⇢(�). Then we have

lim
n!+1

log t
1

(M
n

;L)

volM
n

= �t(2)(V ).

3This is always the case is � is defined over a quadratic imaginary field.
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As we promised, here are results proving this conjecture for a large portion of these coe�cients
systems. The first such result is due to N. Bergeron and A. Venkatesh [4] for cocompact lattices;
for congruence covers of the Bianchi orbifolds there were previous result on exponential growth of
homology in this context (due independantly to J. Pfa↵ [24] and the author [28, Section 6.5], both
relying in some way on [20]) but they are far less precise than the following statement (and their
proof cannot be expected to gice such a result).

Theorem 3.7. Let � be an arithmetic lattice, V = V
m,q

and suppose there is a lattice L in V
preserved by �. Let �

n

be a sequence of pairwise distinct, torsion–free congruence subgroups of �.
Suppose furthermore that m 6= q.

[1] If � is cocompact then

lim
n!+1

log t
1

(M
n

;L)

volM
n

= �t(2)(V ).

[26] If � is a Bianchi group and the sequence �
n

is moreover cusp-uniform then the same con-
clusion holds.

Being cusp-uniform means that the conformal structures on the boundary components do not
degenerate. We will give the proof of the first result in the next section (note that in this form
it is not explicitely stated in [1]) and explain how to deal with the second case, when � is not
cocompact.

4. Trace formula and analytic torsion

4.1. Analytic torsion and an attempt to prove Conjecture 3.3 in the compact case.
We suppose here that M is a compact hyperbolic manifold and let E be a flat bundle with a
Euclidean metric on M ; the Hodge-Laplace operators �p[M ] on p-forms on M then have a self-
adjoint extension to L2-forms and the space L2⌦p(M ;E) of these forms decomposes as a Hilbert
sum of finite-dimensional eigenspaces. Let 0 < �

1

 . . .  �
k

 . . . be the positive eigenvalues of
�p[M ]; then by Weyl’s law for the asymptotics of �

k

the series

⇣
p

(s) =
X

k�1

��s

k

defines a holomorphic function in the half-plane Re(s) > 3/2. The Minakshisundaram–Pleijel
expansion for the trace of the heat kernel allows, via (4.4) below, to prove that it in fact extends
to a meromorphic function on C which is regular at 0. One then defines the Ray–Singer analytic
torsion of M with coe�cients in E by the expression

(4.1) T (M ;E) =
3Y

p=1

exp(⇣ 0
p

(0)).

This is useful to study homological torsion in view of the Cheeger–Müller Theorem4, which amaz-
ingly relates this spectrally defines invariant to a topological one, in the spirit of Hodge–de Rham
theory. We will state it first for E = R the trivial line bundle; it then amounts to an equality

(4.2) T (M ;R) =
R1(M)

vol(M) · |H
1

(M ;Z)
tors

|
where R1(M) is defined to be the covolume of the lattice of non-torsion integral cohomology classes
inside the space of harmonic forms. Now for another case of interest to us: suppose E = E

⇢

as

4The original result by Cheeger [8] and Müller is proven by both for orthogonal bundles; Cheeger’s proof has been
extended by Müller [21] to cover also unimodular bundles, and an even more general result has been proven by J.M.
Bismut and W. Zhang.
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above, � is arithmetic and L is a lattice in V which is preserved by ⇢(�). Suppose in addition that
H⇤(M ;E

⇢

) = 0; then

(4.3) T (M ;E
⇢

) =
|H

2

(M ;L)| · |H
0

(M ;L)|
|H

1

(M ;L)| .

Thus the cocompact part of Theorem 3.7 follows from the following results:

Theorem 4.1. Notations as in Theorem 3.7, if � is cocompact we have

lim
n!+1

log T (M ;E
⇢

)

volM
n

= t(2)(V ).

Lemma 4.2. If �
n

is a sequence of congruence subgroups of � then for p = 0, 2

log |H
p

(M ;L)
tors

| = o(volM
n

).

Lemma 4.2 is proven in [4, Section 8.6] in a more general context; a very short proof for subgroups
of Bianchi groups is given in [26, Lemma 6.5].

4.1.1. Strong acyclicity and the proof of Theorem 4.1. To study analytic torsion it is convenient to
use an expression for ⇣ 0

p

(0) in terms of the trace of the heat kernel e�t�

p

[M ] of M (with coe�cients
in some bundle E); it is defined to be

Tr e�t�

p

[M ] := dimker�p[M ] +
X

k�1

e�t�

k

A formal computation shows that we have

(4.4) ⇣
p

(s) =
1

�(s)

Z
+1

0

Tr e�t�

p

[M ]ts
dt

t

where �(s) =
R
+1
0

e�tts�1dt is Euler’s function. In particular, for any t
0

> 0 it follows that:

(4.5) ⇣ 0
p

(0) =
d

ds

✓
1

�(s)

Z
t

0

0

Tr e�t�

p

[M ]ts
dt

t

◆

s=0

+

Z
+1

t

0

Tr e�t�

p

[M ]

dt

t
.

There is also an heat operator e�t�

p

[H3

] on the hyperbolic space, and it has a “L2-trace” Tr e�t�

p

[H3

]

which we will define below; one defines the L2–analytic torsion for H3 with coe�cients in E using
(4.5) with the heat operator e�t�

p

[M ] replaced by e�t�

p

[H3

], and a computation using the Harish-
Chandra Plancherel formula yields (3.2) for its logarithm t(2)(V ). The first part of the proof of
Theorem 4.1 is thus the following result, the proof of which we will sketch in 4.1.3 below.

Lemma 4.3. Let M
n

be a sequence of compact hyperbolic three–manifolds which is BS-convergent
to H3 and such that there exists a � > 0 for which inj(M

n

) � � for all n. Then for any t
0

> 0 we
have

1

volM
n

d

ds

✓
1

�(s)

Z
t

0

0

⇣
Tr e�t�

p

[M

n

] � (volM
n

) Tr e�t�

p

[H3

]

⌘
ts
dt

t

◆

s=0

�����!
n!+1

0.

To conclude the proof of Theorem 4.1 one needs to show that

(4.6) lim sup
t

0

!+1

✓
sup
n

Z
+1

t

0

Tr e�t�

p

[M

n

]

dt

t

◆
= 0.

To prove this one needs to estimate in a uniform manner in n the exponential decay as t ! +1 of
Tr e�t�

p

[M

n

]. Taking for granted that the trace at a given time (say t = 1) Tr e��

p

[M

n

] is bounded,
this follows from the following result [4, Lemma 4.1].
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Lemma 4.4. If m 6= q, then there is a �
0

> 0 such that for any discrete subgroup � ⇢ SL
2

(C) and
M = �\H3, the Laplace operators �p[M ] do not have eigenvalues beneath �

0

.

4.1.2. A Selberg-type conjecture. The existence of a uniform spectral gap is not a necessary condition
for (4.6) to hold. Indeed, one hopes that it stays true in the case of trivial coe�cients, where is is
known that there has to appear eigenvalues very close to zero on 1-forms. We propose the following
conjecture, which if true implies that Theorem 4.1 extends to trivial coe�cients. For � > 0 let
m(�;M

n

) = dimker(�p[M
n

] � � Id) and let m
p

([0, �];M
n

) = (
P

�2[0,�
1

]

m
p

(�;M
n

) be the number
of eigenvalues of �p[M

n

] below �
1

.

Question 4.5. Does there exists �
0

> 0 such that for any " > 0 there is a C
"

> 0 such that for all
n and �

1

 �
0

we have P
�2[0,�

1

]

m
1

(�;M)

volM
 C

"

�1+" volM ?

(Or less precisely, does this hold for some exponent c > 0 in place of 1+ " on the right-hand side?)

Of course, the conjecture is that the answer is positive when M
n

is a sequence of congruence
covers of an arithmetic manifold.

4.1.3. The trace formula and the proof of the Main Lemma, compact case. If M is a compact
hyperbolic three–manifolds the “trace formula” for M is in its crudest form the equality

Tr e�t�

p

[M ] =

Z

M

trKp

t

[M ](x, x)dx

where Kp

t

[M ] is a kernel on M ⇥M with coeficients in the right bundle5, such that the operator
e�t�

p

[M ] is given by convolution with Kp

t

. There is a similar kernel kp
t

on H3, and we will show
unsing the formula above that for any t

0

> 0 there is a C > 0 such that for all t 2]0, t
0

]

(4.7) trKp

t

[M ](x, x)� tr kp
t

(x, x)  C inj
x

(M)�3t�
3

2 e�
inj

x

(M)

2

10t

for all x 2 M . Now since the L2-trace is given by

(4.8) Tr e�t�

p

[H3

] = tr kp
t

(x
0

, x
0

)

for any x
0

2 H3, the proof of Lemma 4.3 follows without di�culties from (4.7).
The proof of (4.7) follows [4, (4.5.1)], [1, Lemma 8.23]; the principle is as follows: there is an

expansion

Kp

t

[M ](x, x) =
X

�2�
kp
t

(x, �x)

so we have to show that the sum over nontrivial elements is bounded by the right-hand side of (4.7);

this is an immediate consequence of the estimate |kp
t

(x, y)|  Ct�
3

2 e�
d(x,y)

2

5t and of the well-known
bound

|{� 2 � : d(x, �x)  r}|  C inj
x

(M)�3ecr.

4.2. The trace formula and analytic torsion in the non-compact case. In the non-compact
case the Laplace operator has continuous spectrum, the heat kernel is not trace–class and we cannot
define the analytic torsion immediately as in the compact case. What is to be done is to define the
trace using the Selberg trace formula and analyse it to get the analytic continuation and regularity
at 0 as in the compact case. This is done in [23], [22] and [25], we will follow the approach of the
latter paper which is better suited to the problems at hand.

5So that Kp

t

[M ](x, y) is a linear map from ^p

T

⇤
y

M ⌦ E

y

to ^p

T

⇤
x

M ⌦ E

x

.
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4.2.1. Selberg trace formula. Let us try first to explain the Selberg Trace formula in our case
(i.e. cusped hyperbolic three–manifolds) in some detail. Let M be a finite-volume, non-compact
hyperbolic three–manifold; as in the compact case there is on M a kernel Kp

t

[M ] the convolution
with which is the heat operator on p-forms. The non-compactness of M implies that the function
trKp

t

[M ] is not integrable on M , and the trace formula results from an asymptotic estimate of the
integral of it on certain compact subsets which exhaust M .

More precisely, there exists a compact subset M1 ⇢ M which is a submanifold with smooth
boundary consisting of h flat (with the induced metric) tori T

1

, . . . , T
h

and such that M �M1 is

the disjoint union of T
j

⇥ [1,+1[ with the metric
dx

2

+dy

2

j

y

2

j

where dx2 is the flat metric on T
j

and

y
j

= log d(·, T
j

) (d being the hyperbolic distance on M). Now putting MY = {x 2 M max
j

y
j

(x) 
Y } for Y 2 [1,+1[, one can express the integral of trKp

t

[M ] on MY in two ways, using either
the geometric expansion of the heat kernel or the spectral expansion; this yield two expansions as
Y ! 1 which are of the form A log Y +B + o(1), A0 log Y +B0 + o(1) for some A,B,A0, B0 which
we will describe presentely, and the trace formula is the equality B = B0.

4.2.2. Geometric side. Here we quickly explain [25, Proposition 3.4]. The heat kernel of M is
written as

Kp

t

[M ](x, y) =
X

�2�
kp
t

(x, �y);

the sum over � 2 � can be separated into three summands: the one corresponding to � = 1, the
sum over elements in � with trace in ]2,+1[ (usually called loxodromic elements, so we’ll denote
the set of them by �

lox

) and the sum over nontrivial unipotents elements. The two first sums yield
integrable functions on �: the integral of tr kp

t

(x, x) over M equals Tr e�t�

p

[H3

] · volM (where x
0

is
any point in H3). We have an inequality similar to (4.7) for the sum over loxodromics:

X

�2�
lox

tr kp
t

(x, �x)  Ct�
3

2 `(x)�3e�
`

x

(M)

2

10t

where C depends on � and is uniform for t in a compact set, and `(x) is the smallest length of a
closed curve through x which is (freely) homotopic to a losed geodeic (in particular it is bounded
below for x 2 M). It follows that this summand is bounded on M and thus integrable; we will
denote its integral by Gp

t

(x):

(4.9) Gp

t

(x) =

Z

M

X

�2�
lox

tr kp
t

(x, �x)dx.

The sum over unipotent terms is not integrable over M , because the displacement of a unipotent
element goes to 0 as one gets closer to its fixed point; however it is not hard to quantify the
divergence: there is a smooth function hp

t

on [0,+1) such that tr kp
t

(x, nx) = hp
t

(d(x, nx)) for
any x 2 H3 and any unipotent n 2 SL

2

(C); moreover d(x, nx) is given by `(|n|) where |n| is the
Euclidean norm of n in an horosphere passing through x. Now if {⇤} is the conjugacy class of a
unipotent subgroup of � then we have when min

j

Y
j

! +1 the following asymptotic expansion

Z

M

Y

X

�2{⇤},� 6=1

tr kp
t

(x, �x) =
hX

j=1

log(Y
j

)

Z
+1

0

r log(r)hp
t

(`(r))+
hX

j=1


j

vol⇤
j

Z
+1

0

rhp
t

(`(r))dr+o(1)

where 
j

is a constant which depends only on the geometry of T
j

. More precisely, we have


j

vol⇤
j

= 0
j

+ log↵
1

(T
j

)
10



where 0
j

depends only on the conformal structure of T
j

, thus only on M and not on the choice

of M1, and ↵
1

(T
j

) is the (Euclidean) systole of T
j

(and thus does depend on M1). The geometric
expression for the “trace” of the heat kernel is finally given by

(4.10) Tr
R

Kp

t

[M ] = Tr e�t�

p

[H3

] · volM +

Z

M

Gp

t

(x)dx+
hX

j=1


j

vol⇤
j

Z
+1

0

rhp
t

(`(r))dr

(the index R in Tr
R

stands for “regularized” since this is not a bona fide trace).

4.2.3. Spectral side. The spectral decomposition for the space L2⌦p(M ;E) can be written in its
roughest form as

L2⌦p(M ;E) = L2

disc

⌦p(M ;E)� L2

cont

⌦p(M ;E)

where L2

disc

⌦p(M ;E) is the closure of the space generated by eigenforms of�p[M ] and L2

cont

⌦p(M ;E)
its orthogonal complement. If �

1

 . . .  �
k

 . . . are the positive eigenvalues of �p[M ] in
L2

disc

⌦p(M ;E) it is known that the sum
P

k�1

e�t�

k is convergent for t > 0. On the other hand
there is an exact description of the continuous part in terms of the so-called Eisenstein series, and
it yields an expansion

(4.11)

Z

M

Y

trKp

t

[M ](x, x)dx = T ·
hX

j=1

log Y
j

+ dimker�p[M ] +
X

k�1

e�t�

k + Sp

t

+ o(1)

where Sp

t

, T are computed in terms of the heat kernel and certain “intertwining” operators on V
(see [25, (3.15)] for p = 0). Thus the spectral expression for the regularized trace is given by

(4.12) Tr
R

e�t�

p

[M ] � dimker�p[M ] =
X

k�1

e�t�

k + Sp

t

.

4.2.4. Regularized analytic torsion. Using the geometric side of the trace formula one can study the
asymptotics of Tr

R

e�t�

p

[M ] as t ! 0, and this yields an expension similar to Minakshisundaram-

Pleijel with additional terms in t
k

2 log t for k � �1 [26, Proposition 5.4]; it allows to deduce that
the zeta function defined as in (4.4) with traces repaced by regularized traces is a meromorphic
function which is regular at 0, and one then defines regularized analytic torsion as in (4.1); see [26,
5.3.1] for details. The following result then replaces Theorem 4.1 in the non-compact case.

Theorem 4.6. Let ⇢ be a strongly acyclic representation of SL
2

(C), � a Bianchi group and �
n

a sequence of pairwise distinct torsion-free congruence subgroups of �. Suppose in addition that
M

n

= �
n

\H3 is cusp-uniform. Then we have

lim
n!+1

log T
R

(M
n

;E
⇢

)

volM
n

= t(2)(V ).

The proof goes as in the compact case, with some additional di�culties: for the small–time part
of the proof one has to deal with the terms coming from unipotent elements on the geometric side;
this part of the proof applies to any sequence of hyperbolic manifolds which is BS convergent to
H3 and cusp-uniform (the cusp-uniformity allows to control the 0

j

, see the proof of Theorem 4.5
in [25]). For the large-time part one has to control the term Sp

t

: this is more technical and this
is where we use the fact that the manifolds M

n

are congruence (which allows to compute more or
less explicitely the “intertwining operators” from which this term comes). The proof of this limit
is given in loc. cit, Section 5.4 under an assumption on the intertwining operators, and the latter
is shown to hold for sequence of congruence lattices in [26, 3.3].

11



4.3. Asymptotic Cheeger–Müller and homology growth. This is actually the hardest part
in the proof of Theorem 3.7: there is currently no extension of the Cheeger–Müller theorem to
the non-compact case. The result which is proven in these two papers is that one can define a
“Reidemeister” torsion ⌧(M ;L) such that asymptotic equality with analytic torsion holds: the
statement of Theorem 5.1 in [26] is that we have

(4.13) lim
n!+1

log T (M
n

;E)� log ⌧(M
n

;L)

volM
n

= 0

for a sequence of (manifold) congruence covers of a Bianchi orbifold. We will not detail the proof
here: the main ingredients are an asymptotic equality of regularized torsion with an analytic torsion
defined for the compact truncated manifoldsMY

n

n

for an explicit sequence Y n (Theorem 6.1 in [25]),
a Cheeger–Müller equality for the latter proven in the generality we need by J. Brüning and X. Ma
([6], see [25, (6.3)]), and ideas originating in [7] (Proposition 5.4 in [26]) to conclude.

The torsion ⌧ appearing in (4.13) is given by

(4.14) ⌧(M ;VZ) =
|H1(M ;L)

tors

|
volH1(M ;L)

free

⇥ volH2(M ;L)
free

|H2(M ;L)
tors

|
where the covolume are taken for the metric on H⇤(M ;E) coming from the embedding i⇤ :
H⇤(M ;E) ! L

j

H⇤(T
j

;L) (that this is a sensible choice is justified by (4.13)); the last part

of the proof of Theorem 3.7 is to show that all terms but |H2(M ;L)
tors

| are subexponential in the
volume, and again we will not give any detail about the proof here, referring the reader to [26,
Section 6] instead.
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1. Introduction

These are the extended notes of a talk I gave at the Mittag-Le✏er Institute
workshop “Growth and Mahler measures in geometry and topology” in July 2013.
I thank the organizers and the Mittag-Le✏er Institute for this most stimulating
workshop and the wonderful environment.

In these notes, I will start with some background on arithmetic Kleinian group,
their associated modular forms and their cohomology groups as Hecke modules.
Afterwards, I will consider the torsion in the integral homology and its importance
for number theory. Finally, I will briefly sketch some recent work on the asymptotic
behaviour of torsion, including my recent work with N.Bergeron and A. Venkatesh.

2. Background

2.1. Quaternion Algebras. The definition of arithmetic hyperbolic 3-manifold
relies on the notion of quaternion algebra. In this section we collect results about
quaternion algebras that we will need.

1



2 MEHMET HALUK ŞENGÜN

A quaternion algebra D over a field K (denoted D/K) is a necessarily non-
commutative ring with an injective ring map K ! D such that

(1) the image of K is the centre of D,
(2) the dimension of D, considered as a K-vector space, is 4,
(3) D has no non-trivial two-sided ideals.

It is well-known that if the characteristic of K is not 2, then every quaternion
algebra is isomorphic to one given in the following form:

✓
a, b

K

◆
:= {1K � iK � jK � ijK | i2 = a1, j2 = b1, ij = �ji}.

Here the multiplication rules are extended via linearity to the whole vector space.
The canonical example of a quaternion algebra is the 2⇥2 matrix algebra M

2

(K) '
(1,1
K

). A well-known example is the so called Hamiltonians H ' (�1,�1

R ).
In fact, every quaternion algebra over a field K is either a skew-field (a.k.a. di-

vision ring) or isomorphic to M
2

(K). If K is algebraically closed, then the only
quaternion algebra D/K is, up to isomorphism, M

2

(K). This implies that when we
base change a quaternion algebra D/K to the algebraic closure K of K, it will nec-
essarily become isomorphic to M

2

(K). Hence, we may regard D/K as a subalgebra
of the matrix algebra M

2

(K). In particular, we can define trace and norm maps on
D/K using the trace and determinant maps on M

2

(K). In fact, one does not need
to go to the algebraic closure to get to the matrix algebra, it is known that there is
always a degree two extension L/K such that D ⌦

K

L ' M
2

(L).
When K = R, there are, up to isomorphism, two quaternion algebras D/K,

namely H and M
2

(R). Similarly, when K is a finite extension of Q
p

, there are again,
up to isomorphism, only two, namelyM

2

(K) and a skew-field which can be explicitly
given (but we will not here) using the unique unramified degree 2 extension of K.

Given a quaternion algebra D over a number field K, we say that D ramifies
over a place v of K, if the base-change quaternion algebra D ⌦

K

K
v

, where K
v

is
the completion of K at the place v, is a skew-field. Note that if v : K ,! K

v

is a
place of K and D/K ' (a,b

K

), then

D ⌦
K

K
v

'
✓
v(a), v(b)

K
v

◆
.

Observe that D/K cannot ramify over a complex place v since then K
v

' C and
there is only one quaternion algebra over C. On the contrary, ramification behaviour
may vary among the real places. The discriminant �(D) of D/K is the product of
all prime ideals of O

K

corresponding to the finite places of K over which D ramifies.
Let us call the set of places of K over which D/K ramifies S(D). It turns out that
S(D) provides all the information one needs about D/K. It is well known that

(1) S(D) has finite even cardinality,
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(2) if S(D) = S(E), then D/K ' E/K,
(3) for any set S of places of K of even cardinality that contains no complex

place, there is a quaternion algebra D/K such that S(D) = S.

Hence there is a bijection between quaternion algebras D/K and finite sets S of
places of K of even size which do not contain complex places.

An order O in a quaternion algebra D over a number field K with ring of integers
O

K

is a finitely generated O
K

-module in D such that O ⌦OK K = D which is
also a ring with 1. The number of conjugacy classes of maximal (with respect to
inclusion) order of D/K is finite. In particular, if D/K is a skew-field, the elements
of integral norm form a maximal order of D and it is the unique maximal order up
to conjugation.

2.2. Hyperbolic 3-space. Hyperbolic 3-space H
3

is the unique connected, simply
connected Riemannian manifold of dimension 3 with constant sectional curvature
�1. A standard model for H

3

is the upper half space model

{(x, y) 2 C⇥ R | y > 0} = {(x
1

, x
2

, y) 2 R3 | y > 0}
with the metric coming from the line element

ds2 =
dx2

1

+ dx2

2

+ dy2

y2

under which the distance d(P, P 0) between two points P = (x
1

, x
2

, y),P 0 = (x0
1

, x0
2

, y0)
is given by

cosh d(P, P 0) = 1 +
(x

1

� x0
1

)2 + (x
2

� x0
2

)2 + (y � y0)2

2yy0
.

The orientation-preserving isometries of H
3

can be identified with the group
PSL

2

(C) ' PGL
2

(C). The action on H
3

is given as
✓
a b
c d

◆
· z =

 
(ax+ b)(cx+ d) + ac̄y2

|cx+ d|2 + |c|2y2 ,
y

|cx+ d|2 + |c|2y2

!

where z = (x, y) 2 H
3

.
It is computationally convenient to regard H

3

inside the Hamiltonians H. We
embed H

3

into H via (x
1

, x
2

, y) 7! (x
1

, x
2

, y, 0). In other words, (x, y) 7! x + yj.
In particular, the element j 2 H corresponds to (0, 0, 1) 2 R3. Then the action of
PSL

2

(C) on H
3

takes the familiar form
✓
a b
c d

◆
· z = (az + b)(cz + d)�1

where the inverse of cz + d is taken inside the skew-field H.



4 MEHMET HALUK ŞENGÜN

To see this transition, consider H as a subalgebra of H⌦R C ' M
2

(C) as follows

H ,! M
2

(C), x+ yj 7!
✓
x �y
ȳ x̄

◆
.

In particular, if x 2 C, we have x 7! ( x 0

0 x̄

). This embedding respects the ring oper-
ations of H. It is now trivial to verify the equivalence between the two descriptions
of the action of PSL

2

(C) on H
3

that we gave above when we consider this matrix
representation of H

3

⇢ H.

2.3. Arithmetic Kleinian Groups. Consider a quaternion algebra D/K over a
number field K with n � 0 real places and a unique complex place. Assume that D
ramifies at all the real places of K. We will need the groups PGL

1

(D) and PSL
1

(D),
the group of invertibles elements of D modulo its center and the goup of norm one
elements modulo its center, respectively. For example, we have PSL

1

(M
2

(K)) '
PSL

2

(K) and PSL
1

(H) ' SU(2)/{±1} ' SO(3), a compact Lie group. Let O be
an order in D. Then PSL

1

(O) is discrete when considered as a subgroup

PSL
1

(O) ,!
Y

v infinite

PSL
1

(D ⌦
K

K
v

) = PSL
2

(C)⇥ SO(3)n.

As the other factors are compact, the image of PSL
1

(O) under the projection map
onto the factor PSL

2

(C) is a discrete subgroup of PSL
2

(C). The map from PSL
1

(O)
onto its discrete image in PSL

2

(C) has finite kernel. We will, for convenience, denote
this image with PSL

1

(O) as well.
A discrete subgroup � of PSL

2

(C) is called a Kleinian group. If the associated
orbifold (manifold if � is torsion-free) �\H

3

has finite volume, we say that � has
finite covolume. Two discrete subgroups �

1

,�
2

are commensurable (denoted �
1

⌘ �
2

)
if their intersection �

1

\ �
2

is finite index in both �
1

and �
2

. We say that they are
widely commensurable if they are commensurable after possibly conjugation. We
define the commensurator Comm(�) of a discrete subgroup � as

Comm(�) = {� 2 PSL
2

(C) | ����1 ⌘ �}.
This is a group that clearly contains �.

A Kleinian group � is called arithmetic if it is widely commensurable with some
discrete subgroup PSL

1

(O) that arises in the above way from some order O in
some suitable quaternion algebra D/K over a suitable number field K. In this
case, we call K the field of definition of � and call D/K the defining quaternion
algebra. It follows from a general result in the theory of arithmetic groups that every
arithmetic Kleinian group has finite covolume. Moreover, the associated orbifold is
non-compact if and only if S(D) = ;. Thus � is non-cocompact if and only if K is
imaginary quadratic and D/K ' M

2

(K).
The simplest examples of arithmetic Kleinian groups are the so called Bianchi

groups. Take K to be imaginary quadratic and D/K ' M
2

(K). Then M
2

(O
K

) is a
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maximal order and PSL
1

(M
2

(O
K

)) ' PSL
2

(O
K

) is the Bianchi group associated to
K. As mentioned above, any non-cocompact arithmetic lattice in PSL

2

(C) is widely
commensurable with a Bianchi group.

Another well-known example of an arithmetic lattice is the complement of the
figure eight knot. In fact, Alan Reid proved in [11] that this is the only arithmetic
knot complement. Its fundamental group is isomorphic to an index 12 subgroup of
the Bianchi group PSL

2

(O
K

) associated to K = Q(
p
�3).

Other well-known examples of arithmetic lattices are provided by the hyperbolic
tetrahedral groups. A hyperbolic tetrahedral group is the index 2 subgroup consisting
of orientation-preserving isometries in the discrete group generated by reflections in
the faces of a hyperbolic tetrahedron (with possible ideal vertices) whose dihedral
angles are submultiples of ⇡. Lannér proved in 1950 [8] that there are 32 such
hyperbolic tetrahedra. It is known that 23 of these groups are arithmetic. They are
discussed in detail in [9, 4].

2.4. Automorphic Forms on H
3

. Let us introduce the automorphic forms that
are associated to arithmetic Kleinian groups. These are vector valued real analytic
functions on H

3

with certain transformation properties satisfying certain di↵erential
equations and growth properties.

Given � = ( a b

c d

) 2 PSL
2

(C) and z = x+ yj 2 H
3

, let us introduce the multiplier
system

J(�, z) :=

✓
cx+ d �cy
c̄y cx+ d

◆

Given a function F : H
3

! Ck+1 and � 2 PSL
2

(C), we define the slash operator

(F |
k

�)(z) := �k(J(�, z)�1)F (�z)

where �k is the symmetric kth power of the standard representation of PSL
2

(C) on
C2.

The case k = 2 will be especially important for us. In this case we have F : H
3

!
C3 and

(F |
2

�)(z) =
1

|r|2 + |s|2

0

@
r̄2 2r̄s s2

�r̄s̄ |r|2 � |s|2 rs
s̄2 �2rs̄ r2

1

AF (�z)

where � = ( a b

c d

) and r = cx+ d and s = cy.
The center of the universal enveloping algebra of the Lie algebra associated to

the real Lie group PSL
2

(C) is generated by two elements  , 0. These act on real
analytic functions F : H

3

! Ck+1 as di↵erential operators.
Let � be an arithmetic lattice in PSL

2

(C) with defining field K and defining
quaternion algebra D/K. An automorphic form for � with weight k and eigen-
values (�,�0) is a real analytic function F : H

3

! Ck+1 with the following properties.

(1) F |
k

� = F for every � 2 �,



6 MEHMET HALUK ŞENGÜN

(2)  F = �F and  0F = �0F ,
(3) if � is non-cocompact, then F has at worst polynomial growth at each cusp.

The set M(�, k,�,�0) of automorphic forms for � with weight k and eigenvalues
(�,�0) is a finite dimensional complex vector space.

Let �
1

:= �dx

y

, �
2

:= dy

y

, �
3

:= dx̄

y

be a basis of di↵erential 1-forms on H
3

. A
di↵erential form ! is harmonic if �! = 0 where � = d � � + � � d is the usual
Laplacian with d being the exterior derivative and � the codi↵erential operator.
Then PSL

2

(C) acts on the space of di↵erential 1-forms as

� · t(�
1

, �
2

, �
3

)
(z)

= �2(J(�, z))t(�
1

, �
2

, �
3

)
(z)

.

A weight 2 cuspidal modular form for � is a real analytic function F =
(F

1

, F
2

, F
3

) : H
3

! C3 with the following properties.

(1) F
1

�
1

+F
2

�
2

+F
3

�
3

is a harmonic di↵erential 1-form onH
3

that is �-invariant,
(2) If � is non-cocompact, then

R
C/OK

(F |
2

�)(x, y)dx = 0 for every � 2 PSL
2

(O
K

).

The last condition, in which case K is necessarily an imaginary quadratic field, is
equivalent to saying that the constant coe�cient in the Fourier-Bessel expansion of
F |� is equal to zero for every � 2 PSL

2

(O
K

). Let us explain this. As � is non-
cocompact, it contains parabolic elements. The �-invariance of F , which is implicit
in condition (1), implies that F is a periodic function in the x = (x

1

, x
2

)-variable.
It follows that the F has a Fourier-Bessel expansion of the form

F (x, y) =
X

0 6=↵2OK

c(↵)y2K

 
4⇡|↵|yp

|4|

!
 

✓
↵xp
4

◆

where

 (x) = e2⇡(x+x̄)

and

K(t) =

✓
� i

2
K

1

(y), K
0

(y),
i

2
K

1

(y)

◆

with K
0

, K
1

are the hyperbolic Bessel functions satisfying the di↵erential equation

dK
j

dy2
+

1

y

dK
j

dy
�
✓
1 +

1

y2j

◆
K

j

= 0, j = 0, 1

and decreases rapidly at infinity.
The space of weight 2 cuspidal modular forms for a fixed � form a finite dimen-

sional complex vector space which we will denote with S
2

(�). As automorphic forms
for �, we have S

2

(�) ⇢ M(�, 2, 0, 0).
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2.5. Hecke Operators on the Cohomology. In this section we will consider the
cohomology groups H1(�\H

3

,Z) for Kleinian groups �. When � is arithmetic, there
is a very special infinite family of operators, called Hecke operators, that act on these
cohomology groups. We will study these operators.

Let � be any cofinite Kleinian group and L a field. Given g 2 Comm(�), let us
consider the 3-folds M,M

g

,M g associated to the lattices �,�
g

:= � \ g�g�1,�g :=
�\g�1�g respectively. We have finite coverings, induced by inclusion of fundamental
groups,

r
g

: M
g

! M, rg : M g ! M

and an isometry
⌧ : M

g

! M g

induced by conjugation by g isomorphism between �
g

and �g. The composition
s
g

:= rg � ⌧ gives us a second finite covering from M
g

to M . The coverings r
g

induce
linear maps between the homology groups

ri
g

: H i(M,L) ! H i(M
g

, L).

The process of summing the finitely many preimages in M
g

of a point of M under
s
g

leads to
s⇤
g

: H i(M
g

, L) ! H i(M,L).

Note that s⇤
g

is equivalent to the composition

H i(M
g

, L) ! H i(M g, L) ! H i(M,L)

where the first arrow is induced by ⌧ , and the second arrow is simply the corestriction
map (which corresponds to the transfer map of group cohomology). We define the
Hecke operator T

g

associated to g 2 Comm(�) as the composition

T
g

:= s⇤
g

� r⇤
g

: H i(M,L) ! H i(M,L).

There is a notion of isomorphism of Hecke operators that we shall not present. It
turns out that up to isomorphism, T

g

depends only on the double coset �g�.
One can define Hecke operators using the above process for homology groups as

well.
It is a classical result of Margulis that the commensurator of � is dense in PSL

2

(C)
if and only if � is arithmetic. The commensurator of a Bianchi group PSL

2

(O
K

) is
PGL

2

(K). More generally, the commensurator of an arithmetic lattice � in PSL
2

(C)
with defining quaternion algebra D/K is PGL

1

(D) ⇢ PSL
2

(C).
Especially important is the subfamily T of Hecke operators associated to the prime

elements of the ring of integers O
K

of the definition field K. More precisely, let ⇡ be
a prime element of O

K

. Then we have ( ⇡ 0

0 1

) 2 Comm(�) (note that here we regard
D/K ⇢ M

2

(K)). If T
⇡

is the Hecke operator associated to ( ⇡ 0

0 1

), then we set

T = {T
⇡

| ⇡ 2 O
K

}.
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2.6. Cohomology and Automorphic Forms. Let � be an arithmetic lattice in
PSL

2

(C) with associated 3-fold Y .
Assume that Y is non-compact. Without loss of generality, we assume that �

is finite index subgroup of a Bianchi group. Borel and Serre constructed in [3] a
compact 3-fold X with boundary (known as the Borel-Serre compactification of Y ),
such that the interior of X is homeomorphic to Y and the embedding Y ,! X is a
homotopy equivalence. This implies that H i(X,C) ' H i(Y,C) for every i � 0. The
boundary @X of X is a disjoint union of 2-tori1, each one corresponding to a cusp of
Y . In fact, topologically, we can think of X as the manifold obtained by attaching a
2-torus at infinity to each cusp of Y . It is a classical result that the number of cusps
of Y when � is the Bianchi group associated to K is equal to the class number of
K.

Consider the map res : H i(X,C) ! H i(@X,C) given by the restriction to the
boundary. The kernel of this map gives a subspace of H i(Y,C) which is called
the cuspidal cohomology, denoted H i

cusp

(Y,C). Harder constructed in [6] a certain
section of the above restriction map which gives a subspace of H i(Y,C) which is
called the Eisenstein cohomology such that the decomposition

H i(Y,C) = H i

cusp

(Y,C)�H i

Eis

(Y,C)

is invariant under the action of the special family T of Hecke operators. Observe
that when Y is compact, we do not have the Eisenstein cohomology anymore, that is
H i(Y,C) = H i

cusp

(Y,C). In a natural sense, while the Eisenstein cohomology comes
from the contribution of the boundary of the Borel-Serre compactification X, the
cuspidal cohomology belongs to the interior of X.

While one has a good control over the Eisenstein cohomology, the cuspidal part is
very mysterious. The importance of cuspidal cohomology comes from the fact that
it can be identified with certain types of automorphic forms called “cohomological”.

Now let us get back to the general case where Y is not necessarily non-compact.
Let S

2

(�) denote the space of weight 2 cuspidal modular forms for an arithmetic
lattice � as discussed above. Then there is an isomorphism, called generalized
Eichler-Shimura Isomorphism

S
2

(�) ' H1

cusp

(�,C) ' H2

cusp

(�,C)

which respects the Hecke action on S
2

(�) and the action of T on H i

cusp

(�,C). The
fact that this is not just an isomorphism of vector spaces but of Hecke modules is
crucial for number theory.

1Except when K = Q(
p
�1),Q(

p
�3) where one has units other than ±1 in OK .
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Roughly speaking, the above isomorphism comes from the facts that weight 2
cuspidal modular forms are essentially harmonic di↵erential 1-forms and every co-
homology class in the de Rahm cohomology

H1

dR

(�\H,R) ,! H1(�\H,R) ' H1(�,R)
can be represented by a harmonic di↵erential 1-form. The general connection be-
tween (vector valued) harmonic di↵erential k-forms and cohomological automorphic
forms was studied by Matsushima and Murakami, see [10], in the cocompact setting.

All of the above was studied more generally by Harder in [6, 7] for the algebraic
group Res

K/Q(PGL
2

) for any number field K. In [5] Franke generalized this sort of
connection to the fullest, that is, to the case of arithmetic lattices in general real Lie
groups and their associated modular forms. Today most of the popular methods for
computing with modular forms, such as the modular symbols method, is based on
this passage to the (co)homology.

3. Torsion

In the rest of this note, we will focus on the torsion in the homology groups
H

1

(�,Z). First, let us motivate this shift of focus from the complex cohomology to
integral cohomology.

Let � be a arithmetic Kleinian group. ThenH
1

(�,Z) is a finitely generated abelian
group which is isomorphic to Tor � Z� where Tor ' H

1

(�,Z)
tors

is a finite abelian
group and � is the Betti number of the associated 3-fold. Consider the diagram

H
1

(�,Z) ⌦C //

⌦Fp
✏✏✏✏

H
1

(�,C)

H
1

(�,F
p

)

Notice that F
p

-vector space H
1

(�,F
p

) admits an action of the Hecke operators
T as well. It has been believed since the first computations of Fritz Grunewald,
and later work of Avner Ash in the setting of GL

3

(Z) that the Hecke eigenvalue
systems captured in these F

p

-vector spaces are intimately related to mod p Galois
representations. Indeed, a recently announced result [12] of Peter Scholze proves
this to be the case more generally for GL

n

over CM fields.

Theorem 3.1. (Scholze) Let  = { (p)} be a Hecke eigenvalue system captured in
some H

1

(�,F
p

). Then there is a continuous representation

⇢ : Gal(Q/K) ! GL
2

(F
p

)

such that except for finitely many prime ideals, one has

Tr(⇢(Frobp)) =  (p).
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The issue with the torsion is that the very possible existence of p-torsion in
H

1

(�,Z) can give rise to situations where a Hecke eigenvalue system captured in
H

1

(�,F
p

) does not arise from a mod p reduction of a Hecke eigenvalue system cap-
tured in H

1

(�,C). In a slogan form,

“torsion in the homology gives rise to genuine mod p arithmetic data.”

Thus we are interested in understanding the nature of torsion, starting with its mere
size.

3.1. Asymptotics of Torsion. How much torsion is there? The short answer
is “A lot!”. Explicit computations show that the size of torsion is supported by
sporadic primes of astronomical sizes. Here is a sample. Let K = Q(

p
�11). Then

4999 · O
K

= pp̄ and a machine computation shows that

3527 . . . 5847| {z }
a 53 digit prime

| #H
1

(�
0

(p),Z)
tors

.

In recent work [2], Bergeron and Venkatesh spell out a conjectural picture that
describes the behaviour of torsion asymptotically. In fact, in our case they prove
the following.

Theorem 3.2. (Bergeron-Venkatesh) Let {�
n

}
n�1

be a decreasing tower of cocom-
pact congruence type arithmetic Kleinian groups such that

T
n

�
n

= {1}. Let E be a

�
0

-invariant lattice in one of the standard representations Symk ⌦ Sym
`

of the real
Lie group PSL

2

(C) with k 6= `. Then

lim
n!1

log |H
1

(�
n

, E)
tors

|
vol(�

n

\H
3

)
= c

k,`

,

where

c
k,`

:=
1

6⇡
· 1

23
·
⇣
(k + `+ 2)3 � |k � `|3 + 3(k + `+ 2)(k � `)(k + `+ 2� |k � `|)

⌘
.

In a nutshell, the theorem says that

“Torsion grows exponentially with the volume.”

Experiments carried out in strongly suggested that the above theorem should stay
valid in the setting of non-compact arithmetic Kleinian groups with E = Z (note

that this lattice lives in the representation C ' Sym0 ⌦ Sym
0

which violates the
above hypothesis k 6= `).

In recent work [1] with Bergeron and Venkatesh, we formulated a conjecture on the
topological complexity of arithmetic hyperbolic 3-manifolds (these are hyperbolic 3-
manifolds whose fundamental groups are arithmetic Kleinian groups) which implies
an asymptotic growth result like the above for E = Z (note that in this case we
have c

0,0

= 1/(6⇡)).
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Conjecture 3.3. There is a constant C = C(M
0

) such that, for any arithmetic con-
gruence hyperbolic 3-manifold M ! M

0

of volume V , there exist immersed surfaces
S
i

of genus  V C such that the [S
i

] span H
2

(M,R).

Theorem 3.4. Let (M
i

! M
0

)
i2N be a sequence of arithmetic congruence hyperbolic

3-manifolds s.t. M
0

is compact and V
i

= vol(M
i

) goes to infinity. Assume the
following two conditions are satisfied:

(i) ‘Few small eigenvalues’: For every " > 0 there exists some positive real
number c such that

lim sup
i!1

1

V
i

X

0<�c

| log �|  ".

Here � ranges over eigenvalues of the first Laplacian � on M
i

.
(ii) ‘Small Betti numbers’: �(M

i

,Q) = o( Vi
log Vi

).

Then, if Conjecture 3.3 holds, as i ! 1, we have:

lim
n!1

log#H
1

(M
i

,Z)
tors

V
i

=
1

6⇡
.

We prove Conjecture 3.3 in two cases.

Theorem 3.5. Conjecture 3.3 is true in the two following cases:

(i) When M
0

arises from a division algebra D ⌦ F where D is a quaternion
algebra over Q and F is an imaginary quadratic field, ⇡

1

M is a principal
congruence subgroup such that all of S

2

(⇡
1

M) arise from classical elliptic
modular forms over Q via the “Base-Change” functoriality of Langlands;

(ii) When M
0

is a Bianchi manifold, and S
2

(⇡
1

M) is 1-dimensional, associated
with a non-CM elliptic curve, for which we assume the equivariant B-SD
conjecture and the Frey–Szpiro conjecture.

Furthermore, we carry out explicit machine computations which reveal that the
above two cases in fact occur very often.
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SPLITTINGS OF KNOT GROUPS

STEFAN FRIEDL, DANIEL S. SILVER, AND SUSAN G. WILLIAMS

Abstract. Let K be a knot of genus g. If K is fibered, then it is well known
that the knot group π(K) splits only over a free group of rank 2g. We show that
if K is not fibered, then π(K) splits over non-free groups of arbitrarily large rank.
Furthermore, if K is not fibered, then π(K) splits over every free group of rank at
least 2g. However, π(K) cannot split over a group of rank less than 2g. The last
statement is proved using the recent results of Agol, Przytycki–Wise and Wise.

1. Introduction

We start out with a few definitions from group theory. Let π be a group. We say
that π splits over the subgroup B if π admits an HNN decomposition with base group
A and amalgamating subgroup B. More precisely, π splits over the subgroup B if
there exists an isomorphism

π
∼=−→ ⟨A, t |ϕ(b) = tbt−1 for all b ∈ B⟩,

where B ⊂ A are subgroups of π and ϕ : B → A is a monomorphism. In this notation,
relations of A are implicit. We will write such a presentation more compactly as
⟨A, t |ϕ(B) = tBt−1⟩.

In this paper we are interested in splittings of knot groups. Given a knot K ⊂ S3

we denote the knot group π1(S3 \ K) by π(K). We denote by g(K) the genus of
the knot, the minimal genus of a Seifert surface Σ for K. It follows from the Loop
Theorem and the Seifert-van Kampen theorem that we can split the knot group π(K)
over the free group π1(Σ) of rank 2g(K). The rank rk(G) of a group G is the minimal
size of a set of generators for G.

It is well known that if K is a fibered knot, that is, the knot complement S3 \K
fibers over S1, then the group π(K) splits only over free groups of rank 2g(K). (See,
for example, Lemma 3.1.) We show that this property characterizes fibered knots. In
fact, we can say much more.

Theorem 1.1. Let K be a non-fibered knot. Then π(K) splits over non-free groups
of arbitrarily large rank.

Date: August 29, 2013.
The second and third authors were partially supported by grants #245671 and #245615 from the

Simons Foundation.
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Neuwirth [Ne65, Problem L] asked whether there exists a knot K such that π(K)
splits over a free group of rank other than 2g(K). By the above, such a knot would
necessarily have to be non-fibered. Lyon [Ly71, Theorem 2] showed that there does
in fact exist a non-fibered genus-one knot K with incompressible Seifert surfaces of
arbitrarily large genus. This implies in particular that there exists a knot K for which
π(K) splits over free groups of arbitrarily large rank. We give a strong generalization
of this result.

Theorem 1.2. Let K be a non-fibered knot. Then for any integer k ≥ 2g(K) there
exists a splitting of π(K) over a free group of rank k.

Note that an incompressible Seifert surface gives rise to a splitting over a free group
of even rank. The splittings over free groups of odd rank in the theorem are therefore
not induced by incompressible Seifert surfaces.

Feustel and Gregorac [FG73] showed that if N is an aspherical, orientable 3-
manifold such that π = π1(N) splits over the fundamental group of a closed surface
Σ ̸= S2, then this splitting can be realized topologically by a properly embedded
surface. (More splitting results can be found in [CS83, Proposition 2.3.1].) The fact
that fundamental groups of non-fibered knots can be split over free groups of odd
rank shows that the result of Feustel and Gregorac does not hold for splittings over
fundamental groups of surfaces with boundary.

Theorems 1.1 and 1.2 can be viewed as strengthenings of Stallings’s fibering crite-
rion. We refer to Section 7 for a precise statement.

Our third main theorem shows that Theorem 1.2 is optimal.

Theorem 1.3. If K is a knot, then π(K) does not split over a group of rank less
than 2g(K).

The case g(K) = 1 follows from the Kneser Conjecture and work of Waldhausen
[Wal68b], as we show in Section 8.1. However, to the best of our knowledge, the
classical methods of 3-manifold topology do not suffice to prove Theorem 1.3 in the
general case. We use the recent result [FV12a] that Wada’s invariant detects the genus
of any knot. This result in turn relies on the seminal work of Agol [Ag08, Ag12], Wise
[Wi09, Wi12a, Wi12b], Przytycki–Wise [PW11, PW12a] and Liu [Liu11].

Theorem 1.3 is of interest for several reasons:

(1) It gives a completely group-theoretic chararcterization of the genus of a knot,
namely

g(K) =
1

2
min{rk(B) | π(K) splits over the group B}.

A different group-theoretic characterization was given by Calegari (see the
proof of Proposition 4.4 in [Ca09]) in terms of the ‘stable commutator length’
of the longitude.
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(2) Theorem 1.3 fits into a long sequence of results showing that minimal-genus
Seifert surfaces ‘stay minimal’ even if one relaxes some conditions. For exam-
ple, Gabai [Ga83] showed that the genus of an immersed surface cobounding a
longitude of K is at least g(K). Furthermore, minimal-genus Seifert surfaces
give rise to surfaces of minimal complexity in the 0-framed surgery NK (see
[Ga87]) and in most S1-bundles over NK (see [Kr99, FV12b]).

(3) Given a closed 3-manifold N it is obvious that rk(π1(N)) is a lower bound for
the Heegaard genus g(N) of N . In light of Theorem 1.3 one might hope that
this is in an equality; that is, that rk(π1(N)) = g(N). This is not the case,
though, as was shown by various authors (see [BZ84, ScW07] and [Li13]).

The paper is organized as follows. In Section 2 we discuss several basic facts
about HNN decompositions of groups. In Section 3 we recall that incompressible
Seifert surfaces give rise to HNN decompositions of knot groups and we characterize
in Lemma 3.1 the splittings of fundamental groups of fibered knots. In Section 4
we consider the genus-one non-fibered knot K = 52. We give explicit examples of
splittings of the knot group over a non-free group and over the free group F3 of rank
3, and inequivalent splittings of the knot group over F2.

Section 5 contains the proof of Theorem 1.1, and in Section 6 we give the proof of
Theorem 1.2. In Section 7 we show that these two theorems strengthen Stallings’s
fibering criterion. In Section 8.1 we give a proof of Theorem 1.3 for genus-one knots.
The proof relies mostly on the Kneser Conjecture and a theorem of Waldhausen. In
Section 8.2 we review the definition of Wada’s invariant of a group. Finally, in Section
8.3 we prove Theorem 8.5, which combined with the main result of [FV12a] provides
a proof of Theorem 1.3 for all genera.

We conclude this introduction with two questions. The precise notions are ex-
plained in Section 2.

(1) Let π be a word hyperbolic group and let ϵ : π → Z be an epimorphism
such that Ker(ϵ) is not finitely generated. Does (π, ϵ) admit splittings over
(infinitely many) pairwise non-isomorphic groups? (The group π = π(K)
satisfies these conditions if K is a non-fibered knot.)

(2) Let K be a non-fibered knot of genus g. Does π(K) admit (infinitely many)
inequivalent splittings over the free group F2g on 2g generators?

Conventions and notations. All groups are assumed to be finitely presented unless
we say specifically otherwise. All 3-manifolds are assumed to be connected, compact
and orientable. Given a submanifold X of a 3-manifold N , we denote by νX ⊂ N an
open tubular neighborhood of X in N . Given k ∈ N we denote by Fk the free group
on k generators.

Acknowledgments. The first author wishes to thank the University of Sydney for
its hospitality. We are also very grateful to Eduardo Martinez-Pedroza, Saul Schleimer
and Henry Wilton for very helpful conversations.
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2. Hnn-decompositions and splittings of groups

2.1. Splittings of groups. An HNN decomposition of a group π is a 4-tuple (A,B, t,ϕ)
consisting of subgroups B ≤ A of π, a stable letter t ∈ π, and an injective homomor-
phism ϕ : B → A, such that the natural inclusion maps induce an isomorphism from
⟨A, t |ϕ(B) = tBt−1⟩ to π. Alternatively, a HNN-decomposition of π can be viewed
as an isomorphism

f : π
∼=−→ ⟨A, t |ϕ(B) = tBt−1⟩

where ϕ : B → A is an injective map. We will frequently go back and forth between
these two points of view.

We need a few more definitions:

(1) Given an HNN-decomposition (A,B, t,ϕ) we refer to the homomorphism ϵ : π →
Z that is given by ϵ(t) = 1 and ϵ(a) = 0 for a ∈ A as the canonical epimor-
phism.

(2) Let π be a group and let ϵ ∈ Hom(π,Z) be an epimorphism. A splitting of (π, ϵ)
over a subgroup B (with base group A) is an HNN decomposition (A,B, t,ϕ)
of π such that ϵ equals the canonical epimorphism. With the alternative point
of view explained above, a splitting of (π, ϵ) is an isomorphism

f : π
∼=−→ ⟨A, t |ϕ(B) = tBt−1⟩

such that the following diagram commutes:

π

ϵ
!!❂

❂❂
❂❂

❂❂
❂

f
"" ⟨A, t |ϕ(B) = tBt−1⟩

ψ
##♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥

Z

where ψ denotes the canonical epimorphism.
(3) Two splittings (A,B, t,ϕ) and (A′, B′, t′,ϕ′) of (π, ϵ) are called weakly equiv-

alent if there exists an automorphism Φ of π with Φ(B) = B′. If Φ can be
chosen to be an inner automorphism of π, then the two HNN decompositions
are said to be strongly equivalent.

We conclude this section with the following well-known lemma of [BS78]. It appears
as Theorem B* in [Str84] where an elementary proof can be found.

Lemma 2.1. Let π be a finitely presented group and let ϵ ∈ Hom(π,Z) be an epimor-
phism. Then there exists a splitting

f : π
∼=−→ ⟨A, t |ϕ(B) = tBt−1⟩

of (π, ϵ) where A and B are finitely generated.
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2.2. Splittings of pairs (π, ϵ) with finitely generated kernel. The following
lemma characterizes splittings of pairs (π, ϵ) for which Ker(ϵ) is finitely generated.

Lemma 2.2. Let π be a finitely presented group, ϵ : π → Z an epimorphism, and
t an element of π with ϵ(t) = 1. If Ker(ϵ) is finitely generated, then there exists a
canonical isomorphism

π = ⟨B, t |ϕ(B) = tBt−1⟩
where B := Ker(ϵ) and where ϕ : B → B is given by conjugation by t. Furthermore,
any other splitting of (π, ϵ) is strongly equivalent to this splitting.

Proof. Let π be a finitely presented group and let ϵ : π → Z be an epimorphism such
that B = Ker(ϵ) is finitely generated. We have an exact sequence

1 → B → π
ϵ−→ Z → 0.

Let t ∈ π with ϵ(t) = 1. The map n &→ tn defines a right-inverse of ϵ, and we see that
B is canonically isomorphic to the semi-direct product ⟨t⟩!B where tn acts on B by
conjugation by tn. That is, we have a canonical isomorphism

π = ⟨B, t |ϕ(B) = tBt−1⟩.
We now suppose that we have another splitting π = ⟨C, s |ψ(D) = sDs−1⟩ of (π, ϵ).

By our hypothesis the group B = Ker(ϵ) is finitely generated. On the other hand, it
follows from standard results in the theory of graphs of groups (see [Se80]) that

Ker(ϵ) ∼= · · ·Ck ∗Dk
Ck+1 ∗Dk+1

Ck+2 · · · ,
where Ci = C and Di = D for all i ∈ Z and each map Di → Ci+1 is given by ψ.

As in [Ne65], the fact that the infinite free product with amalgamation is finitely
generated implies that Ci = Di = ψ(Di−1) for all i ∈ Z. This, in turn, implies that
each Ci and Di is isomorphic to D = Ker(ϵ). It is now clear that the identity on π
already has the desired property relating the two splittings of (π, ϵ). !
2.3. Induced splittings of groups. Let

π = ⟨A, t |ϕ(B) = tBt−1⟩
be an HNN-extension. Given n ≤ m ∈ N we denote by A[n,m] the result of amalga-
mating the groups tiAt−i, i = n, . . . ,m along the subgroups tiϕ(B)t−i = ti+1Bt−i−1,
i = n, . . . ,m− 1. In our notation,

A[n,m] = ⟨∗ni=mt
iAt−i | tjϕ(B)t−j = tj+1Bt−j−1 (j = n, . . . ,m− 1)⟩.

Given any k ≤ m ≤ n ≤ l, we have a canonical map A[m,n] → A[k,l] which is a
monomorphism (see, for example, [Se80] for details). If ϵ : π → Z is the canonical
epimorphism, then it is well known that Ker(ϵ) is given by the direct limit of the
groups A[−m,m], m ∈ N; that is,

Ker(ϵ) = lim
m→∞

A[−m,m].
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The following well-known lemma shows that a splitting of a pair (π, ϵ) gives rise to a
sequence of splittings.

Lemma 2.3. Let
π = ⟨A, t |ϕ(B) = tBt−1⟩

be an HNN-extension. For any integer n ≥ 0, let

ϕn : π1(A[0,n]) → A[1,n+1]

be the map that is given by conjugation by t. Then the obvious inclusion maps induce
an isomorphism

⟨A[0,n+1], t |ϕn(A[0,n]) = tA[0,n]t
−1⟩ ι−→ π = ⟨A, t |ϕ(B) = tBt−1⟩.

Proof. We write
Γ = ⟨A[0,n+1], t |ϕn(A[0,n]) = tA[0,n]t

−1⟩.
We denote by π′ (respectively Γ′) the kernel of the canonical map from π (respectively
Γ) to Z. It is clear that it suffices to show that the restriction of ι : Γ → π to π′ → Γ′

is an isomorphism.
For i ∈ Z, we write Ai := tiAt−i and Bi := ϕ(ti+1Bt−i−1). Note that Γ′ is canoni-

cally isomorphic to

· · · (A0 ∗B0 · · · ∗Bn An+1) ∗A1∗B1 ···∗BnAn+1

(
A1 ∗B1 · · · ∗Bn+1 An+2

)
∗A2∗B2 ···∗Bn+1An+2 · · · ,

and π′ is canonically isomorphic to

· · · ∗B0 A−1 ∗B−1 A0 ∗B0 A1 ∗B1 ∗ · · ·
It is now straightforward to see that ι does indeed restrict to an isomorphism Γ′ →
π′. !

Note that the isomorphism in Lemma 2.3 is canonical. Throughout the paper we
will therefore make the identification

π = ⟨A[0,n+1], t |ϕn(A[0,n]) = tA[0,n]t
−1⟩.

In the paper we will also write A = A[0,0].

3. Splittings of knot groups and incompressible surfaces

Now let K ⊂ S3 be a knot, that is, an oriented embedded simple closed curve in
S3. We write X(K) := S3 \ νK and

π(K) := π1(X(K)) = π1(S
3 \ νK).

The orientation of K gives rise to a canonical epimorphism ϵK : π(K) → Z sending
the oriented meridian to 1.

Let Σ be a Seifert surface of genus g forK; that is, a connected, orientable, properly
embedded surface Σ of genus g in X(K) such that ∂Σ is an oriented longitude for K.
Note that Σ is dual to the canonical epimorphism ϵ.
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Suppose that Σ is incompressible. (Recall that a surface Σ in a 3-manifold N is
called incompressible if the inclusion-induced map π1(Σ) → π1(N) is injective.) We
pick a tubular neighborhood Σ × [−1, 1]. The manifold X(K) \ Σ × (−1, 1)) is the
result of cutting along Σ. The Seifert–van Kampen theorem gives us a splitting

π1(X(K)) = ⟨π1(X(K) \ Σ× (−1, 1)), t | ϕ(π1(Σ×−1) = tπ1(Σ× 1)t−1⟩

of (π(K), ϵK), where ϕ is induced by the canonical homeomorphism Σ×−1 → Σ×1.
We thus see that π(K) splits over the free group π1(Σ) of rank 2g.

Given a knot K ⊂ S3, we denote by g = g(K) the minimal genus of a Seifert
surface. It follows from the Loop Theorem (see, for example, [He76, Chapter 4]) that
a Seifert surface of minimal genus is incompressible. Hence π(K) splits over a free
group of rank 2g(K).

If two incompressible Seifert surfaces of a knot K are isotopic, then it is clear
that the corresponding splittings of π(K) are strongly equivalent. There are many
examples of knots that admit non-isotopic minimal genus Seifert surfaces; see e.g.
[Ly74b, Ei77a, Ei77b, Al12, HJS13]. We expect that these surfaces give rise to split-
tings that are not strongly equivalent.

On the other hand, if a knot is fibered, then it admits a unique minimal genus
Seifert surface up to isotopy (see e.g. [EL83, Lemma 5.1]). It is therefore perhaps
not entirely surprising that π(K) admits a unique splitting up to strong equivalence.
More precisely, we have the following well-known lemma, which is originally due to
Neuwirth [Ne65].

Lemma 3.1. Let K be a fibered knot of genus g with fiber Σ. Then any splitting of
π(K) is strongly equivalent to

⟨π1(X(K) \ Σ× (−1, 1)), t |ϕ(π1(Σ×−1) = tπ1(Σ× 1)t−1⟩.

In particular π(K) only splits over the free group of rank 2g.

Proof. If Σ is a fiber surface for X(K), then the infinite cyclic cover of X(K) is
diffeomorphic to Σ×R. Put differently, Ker(ϵK) ∼= π1(Σ) which implies in particular
that Ker(ϵK) is finitely generated. The lemma is now a straightforward consequence
of Lemma 2.2. !

4. Splitting of the knot group for K = 52

In this section we give several explicit splittings of the knot group π(K) where
K = 52, the first non-fibered knot in the Alexander-Briggs table. We construct:

(1) three splittings of π(52) over the free group F2, no two being weakly equivalent;
(2) a splitting of π(52) over the free group F3 on three generators;
(3) a splitting of π(52) over a non-free group.
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Note that neither the second nor the third splitting is induced by an incompressible
surface. We will also see that at least two of the three splittings over F2 are not
induced by an incompressible surface.

Since K is a knot of genus one, a minimal-genus Seifert surface gives rise to a
splitting of π(K) over a free group of rank 2. In the following we will consider an
explicit splitting that comes from a Wirtinger presentation of the knot group:

π(K) = ⟨a, b, t | tat−1 = b, tb−1ab−1t−1 = (b−1a)2⟩.
Here the knot group has an HNN decomposition (A,B, t,ϕ), where A is the free group
on a, b while B is the subgroup freely generated by a and b−1ab−1. The isomorphism
ϕ sends a #→ b and b−1ab−1 #→ (b−1a)2. For the remainder of this section we identify
π(K) with ⟨A, t |ϕ(B) = tBt−1⟩.
Proposition 4.1. Consider the splittings:

π(K) = ⟨A, t |ϕ(B) = tBt−1⟩,
π(K) = ⟨A[0,1], t |ϕ1(A) = tAt−1⟩,
π(K) = ⟨A[0,2], t |ϕ2(A[0,1]) = tA[0,1]t−1⟩

where the latter two splittings are provided by Lemma 2.3. Then the following hold.

(i) Each is a splitting over a free group of rank two.
(ii) No two of the splittings of (π(K), ϵK) are weakly equivalent.
(iii) At least two of the splittings are not induced by an incompressible Seifert surface.

In the proof of Proposition 4.1 we will make use of the following lemma which is
perhaps also of independent interest.

Lemma 4.2. Let M be a hyperbolic 3-manifold with empty or toroidal boundary, and
let G be a subgroup of π := π1(M). If f : π → π is an automorphism with f(G) ⊂ G,
then f(G) = G.

We do not know whether the conclusion of the lemma holds for any 3-manifold.

Proof. Let f : π → π be an automorphism with f(G) ⊂ G. Since M is hyperbolic, it
is a consequence of the Mostow Rigidity Theorem that the group of outer automor-
phisms of π is finite. (See, for example, [BP92, Theorem C.5.6] and [Jo79, p. 213]
for details.) Consequently, there exists a positive integer n and an element x ∈ π
such that fn(G) = xGx−1. It follows from [Bu07, Theorem 4.1] that fn(G) = G.
The assumption that f(G) ⊂ G implies inductively that fn(G) ⊂ f(G). Hence
f(G) = G. !

We can now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. It is clear that the first and the second splitting are over a
free group of rank two. It remains to show that A[0,1] is a free group of rank two.
First note that

A[0,1]
∼= ⟨a0, b0, a1, b1 | a1 = b0, b

−1
1 a1b

−1
1 = (b−1

0 a0)
2⟩,
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where ai and bi denote tiat−i and tibt−i, respectively. Using the first relation to elim-
inate the generator b0, we obtain A[0,1]

∼= ⟨a0, a1, b1 | r⟩, where r = (a−1
1 a0)2b1a

−1
1 b1.

We let c = a−1
1 a0 and d = b1a

−1
1 . Clearly {c, d, r} is a basis for the free group on

a0, a1, b1. Hence A[0,1]
∼= ⟨c, d, r | r⟩ ∼= ⟨c, d | ⟩ is indeed a free group of rank 2. This

concludes the proof of (i).
We turn to the proof of (ii). Since K is not fibered it follows from Stallings’s

theorem (see Theorem 7.1) that Ker(ϵK) = limk→∞ A[−k,k] is not finitely generated.
It follows that easily that for any l ≥ k the map A[0,k] → A[0,l] is a proper inclusion. In
particular, we have proper inclusions A ! A[0,1] ! A[0,2]. Since S3 \ νK is hyperbolic,
the desired statement now follows from Lemma 4.2.

We prove (iii). It is well known (see, for example, [Ka05]) that any two minimal-
genus Seifert surfaces of 52 are isotopic. This implies, in particular, that any two
splittings of π(K) induced by minimal-genus Seifert surfaces are strongly equivalent.
It follows from (ii) that at least two of the three splittings are not induced by a
minimal genus Seifert surface. !

a a

a

a a

b

b b

b b

Figure 1. Covering graph.

We show that π(K) admits a splitting over a free group of rank 3. In order to do
so we note that there exists a canonical isomorphism

(1)
⟨a, b, t | tat−1 = b, tb−1ab−1t−1 = (b−1a)2⟩

∼= ⟨a, b, c, t | tat−1 = b, tb−1ab−1t−1 = (b−1a)2, tb−2ab−2t−1 = c⟩.
Let A′ be the free group generated by a, b, c. Let B′ be the subgroup of A′ generated
by a, b−1ab−1, b−2ab−2. The fundamental group of the covering graph in Figure 1
is free on a, b−1ab−1, b−1a2b, b−2ab−2, and b4, and so B′ is a free rank-3 subgroup of
A′. The elements b, b−1ab−1a, c of A′ also generate a free group of rank 3, since they
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are free in the abelianization of A′. There exists therefore a unique homomorphism
ϕ′ : B′ → A′ such that ϕ′(a) = b, ϕ′(b−1ab−1) = b−1ab−1a and ϕ′(b−2ab−2) = c. It
follows that ϕ′ is in fact a monomorphism. Hence from (1),

⟨A′, t | tB′t−1 = ϕ(B′)⟩

defines a splitting of π(K) over the free group B′ of rank three.
Finally we give an explicit splitting of π(K) over a subgroup that is not free. Recall

that by Lemma 2.3 the group π(K) admits an HNN decomposition with the HNN
base A[0,2] defined as the amalgamated product of A, tAt−1 and t2At−2. It suffices to
prove the following claim.

Claim. The group A[0,2] is not free.

Note that A[0,2] has the presentation

⟨a0, b0, a1, b1, a2, b2 | a1 = b0, b
−1
1 a1b

−1
1 = (b−1

0 a0)
2, a2 = b1, b

−1
2 a2b

−1
2 = (b−1

1 a1)
2⟩.

Using the first and third relations, we eliminate the generators b0 and b1. Thus

A[0,2]
∼= ⟨a0, a1, a2, b2 | r1, r2⟩,

where r1 = (a−1
1 a0)2a2a

−1
1 a2 and r2 = (a−1

2 a1)2b2a
−1
2 b2.

Let ϵ = a−1
1 a0 and f = a2a

−1
1 . One checks that {ϵ, f, r1, b2} is a basis for the free

group ⟨a0, a1, a2, b2 | ⟩. Using the substitutions

a0 = f−2ϵ−2r1ϵ, a1 = f−2ϵ−2r1 and a2 = f−1ϵ−2r1,

we see

A[0,2]
∼= ⟨ϵ, f, b2 | r2⟩ ∼= ⟨ϵ, f, b2 | f−2ϵ−2(b2ϵ

2)f(b2ϵ
2)⟩.

We perform two more changes of variables. First we let g = b2ϵ2 and eliminate b2 to
obtain

A[0,2]
∼= ⟨ϵ, f, g | ϵ−2(gf)2f−3⟩, .

Second, we let h = gf and we eliminate g:

A[0,2]
∼= ⟨ϵ, f, h | ϵ−2h2 = f 3⟩.

We thus see that A[0,2] is a free product of two free groups amalgamated over an
infinite cyclic group. By Lemma 4.1 of [BF94] (see Example 4.2), if the group A[0,2] is
free, then either ϵ−2h2 or f 3 is a basis element in its respective factor. Since neither
element is a basis element (seen for example by abelianizing), the group A[0,2] is not
free. This concludes the proof of the claim.
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5. Splittings of fundamental groups of non-fibered knots over
non-free groups

In Section 4 we saw that we can split the knot group π(52) over a group that is
not free. We will now see that this example can be greatly generalized. We recall the
statement of our first main theorem.

Theorem 5.1. If K is a non-fibered knot, then π(K) admits splittings over non-free
subgroups of arbitrarily large rank.

Proof. Let Σ ⊂ X(K) be a Seifert surface of minimal genus. We write A = π1(X(K)\
Σ× (−1, 1) and B = π1(Σ×−1), and we consider the corresponding splitting

π(K) = ⟨A, t |ϕ(B) = tBt−1⟩
of (π(K), ϵK) over π1(Σ). Given n ≤ m we consider, as in Section 2.3, the group

A[n,m] = ⟨∗ni=mt
iAt−i | tjϕ(B)t−1 = tj+1Bt−j−1 (j = n, . . . ,m− 1)⟩.

By Lemma 2.3 the group π(K) splits over the group A[0,n] for any non-negative integer
n.

Claim. There exists an integer m such that A[0,n] is not a free group for any n ≥ m.

As we pointed out in Section 2.3, we have an isomorphism

Ker(ϵK : π(K) → Z) ∼= lim
k→∞

A[−k,k]

where the maps A[−l,l] → A[−k,k] for l ≤ k are monomorphisms. It follows from [FF98,
Theorem 3] that Ker(ϵK) is not locally free; that is, there exists a finitely generated
subgroup of Ker(ϵK) which is not a free group. But this implies that there exists k ∈ N
such thatA[−k,k] is not a free group. We have a canonical isomorphismA[−k,k]

∼= A[0,2k],
and for any n ≥ 2k we have a canonical monomorphism A[0,2k] → A[0,n]. It now follows
that A[0,n] is not a free group for any n ≥ 2k. This concludes the proof of the claim.

To complete the proof of Theorem 5.1 it remains to prove the following claim:

Claim. Writing Hn := A[0,n] we have

lim
n→∞

rk(Hn) = ∞.

Since Σ ⊂ X(K) is not a fiber it follows from [He76, Theorem 10.5] that there exists
an element g ∈ A! B. By work of Przytycki–Wise (see [PW12b, Theorem 1.1]) the
subgroup B = π1(Σ×−1) ⊂ π(K) is separable. This implies, in particular, that there
exists an epimorphism α : π(K) → G onto a finite group G such that α(g) ̸∈ α(B).
Then

D := α(B) " C := α(A).

Given n ∈ N we denote by αn the restriction of α to Hn ⊂ π(K) and we write
Gn := α(Hn).
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Note that in
Hn = A0 ∗B0 · · · ∗Bn−1 An

the groups Ai, viewed as subgroups of π(K), are conjugate. It follows that the groups
αn(Ai) are conjugate in G. In particular, each of the groups αn(Ai) has order |C|.
The same argument shows that each of the groups αn(Bi) has order |D|. Standard
arguments about fundamental groups of graphs of groups (see, for example, [Se80])
imply that Ker(αn : Hn → Gn) is the fundamental group of a graph of groups,
where the underlying graph G̃ is a connected graph with (n + 1) · |Gn|/|C| vertices
and n · |Gn|/|D| edges. From the Reidemeister-Schreier theorem (see, for example,
[MKS76, Theorem 2.8] and from the fact that Ker(αn : Hn → Gn) surjects onto π1(G̃)
it then follows that

rk(Hn) ≥ 1
|Gn| rk(Ker(αn : Hn → Gn))

≥ 1
|Gn| rk(π1(G̃))

= 1
|Gn|

(
n · |Gn|/|D|− (n+ 1) · |Gn|/|C|+ 1

)

≥ (n+ 1)
(

1
|D| −

1
|C|

)
.

But this sequence diverges to ∞ since |D| < |C|. !

6. Splittings of fundamental groups of non-fibered knots over free
groups

6.1. Statement of the theorem. Lyon [Ly71, Theorem 2] showed that there exists
a non-fibered knot K of genus one that admits incompressible Seifert surfaces of
arbitrarily large genus (see also [Sce67, Gu81, Ts04] for related examples). By the
discussion in Section 3, this implies that π(K) splits over free groups of arbitrarily
large rank.

Splitting along incompressible Seifert surfaces is a convenient way to produce knot
group splittings. Yet there are many non-fibered knots that have unique incompress-
ible Seifert surfaces (see, for example, [Wh73, Ly74a, Ka05]). For such a knot, Seifert
surfaces gives rise to only one type of knot group splitting.

In Section 4 we saw an example of a splitting of a knot group over a free group
that is not induced by an embedded surface. We generalize the example in our second
main theorem. We recall the statement.

Theorem 6.1. Let K be a non-fibered knot. Then for any integer k ≥ 2g(K) there
exists a splitting of π(K) over a free group of rank k.

The key to extending the result in Section 4 is the following theorem, which we
will prove in the next subsection.

Theorem 6.2. Let K be a non-fibered knot. Then there exists a Seifert surface Σ
of minimal genus such that for a given base point p ∈ Σ = Σ × 0 there exists a
nontrivial element g ∈ π1(S3 \Σ× (0, 1), p) such that the subgroup of π(K) generated
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by π1(Σ× 0, p) and g is the free product of π1(Σ× 0, p) and the infinite cyclic group
⟨g⟩.

Theorem 6.1 is now a consequence of Theorem 6.2 and the following proposition
about HNN decompositions.

Proposition 6.3. Assume that (π, ϵ) splits over a free group F of rank n with base
group A. If there exists an element g ∈ A such that the subgroup of π generated by
F and g is the free product F ∗ ⟨g⟩, then (π, ϵ) splits over free groups of every rank
greater than n.

Proof. By hypothesis we can identify π with

⟨A, t | ϕ(xi) = txit
−1 (1 ≤ i ≤ n)⟩,

where x1, . . . , xn generate the group F and where ϵ is given by ϵ(t) = 1 and ϵ(A) = 0.
The kernel of the second-factor projection F ∗ ⟨g⟩ → ⟨g⟩ = Z is an infinite free

product ∗{giFg−i | i ∈ Z}. Let l be any positive integer. Choose a nontrivial element
z ∈ F and define zi = gizg−i, for 1 ≤ i ≤ l. Then F ′ = ⟨F, z1, . . . , zl⟩ is a free
subgroup of F ∗ ⟨g⟩ with rank n+ l. By hypothesis F ′ is then also a free subgroup of
A of rank n+ l.

Note that π is canonically isomorphic to

⟨A, c1, . . . , cl, t | ϕ(xi) = txit
−1, cj = tzjt

−1(1 ≤ i ≤ n, 1 ≤ j ≤ l)⟩.
We denote by A′ the free product of A and ⟨c1, . . . , cl⟩, and we denote by ϕ′ the
unique homomorphism

ϕ′ : F ′ = F ∗ ⟨z1, . . . , zl⟩ → A′ = A ∗ ⟨c1, . . . , cl⟩
that extends ϕ and that maps each zj to cj. Since ϕ′ is the free product of two
isomorphisms, it is also an isomorphism. We then have a canonical isomorphism

π ∼= ⟨A′, t | ϕ′(F ′) = tF ′t−1⟩.
We have thus shown that (π, ϵ) splits over the free group F ′ of rank n+ l. !
6.2. Proof of Theorem 6.2. To prove Theorem 6.2 we will need to discuss the JSJ
pieces of knot complements. (See [AFW12] for exposition about JSJ decompositions.)
It is therefore convenient to generalize a few notions for knots to more general 3-
manifolds.

Given a 3-manifold N , we can associate to each class ϵ ∈ H1(N ;Z) its Thurston
norm xN(ϵ), which is defined as the minimal ‘complexity’ of a surface dual to ϵ. We say
that a class ϵ ∈ H1(N ;Z) is fibered if there exists a fibration p : N → S1 such that the
induced map p∗ : π1(N) → π1(S1) = Z agrees with ϵ ∈ H1(N ;Z) = Hom(π1(N),Z).
It is well known that given a non-zero d ∈ Z, the class ϵ is fibered if and only if dϵ is
fibered. Note that given a non-trivial knot K ⊂ S3 we have xX(K)(ϵK) = 2g(K)− 1,
and ϵK is fibered if and only if K is fibered. We refer to [Th86] for background and
more information.
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We will need the following theorem, which in particular implies Theorem 6.2 in the
case that S3 \ νK is hyperbolic.

Theorem 6.4. Let N be a hyperbolic 3-manifold and let Σ be a properly embedded,
connected Thurston norm-minimizing surface that is not a fiber surface. We write
M = N \ Σ × (0, 1) and we pick a base point p on Σ × 0 = Σ. Then there exists
a nontrivial element g ∈ π1(M, p) such that the subgroup of π1(M, p) generated by
π1(Σ, p) and g is the free product of π1(Σ, p) and ⟨g⟩.

Proof. Let N be a hyperbolic 3-manifold. We denote by T1, . . . , Tk the boundary com-
ponents of N . Let Σ be a properly embedded, connected Thurston norm-minimizing
surface that is not a fiber surface. We write M = N \ Σ× (0, 1) and we pick a base
point p on Σ× 0 = Σ. We now take all fundamental groups with respect to this base
point. It follows again from the Loop Theorem and the fact that Σ is Thurston norm-
minimizing that the inclusion-induced map Γ := π1(Σ) → π1(M) is a monomorphism.
We will henceforth view Γ = π1(Σ) as a subgroup of π1(M).

We first suppose that Σ hits all boundary components of N . Since Σ is not a fiber
surface, it follows from the Tameness Theorem of Agol [Ag04] and Calegari–Gabai
[CG06] that π1(M) is word-hyperbolic and that Γ = π1(Σ) is a quasi-convex subgroup
of π1(M). (We refer to [Wi12a, Sections 14 and 16] for more details.) It then follows
from work of Gromov [Gr87, 5.3.C] (see also [Ar01, Theorem 1]) that there exists an
element g ∈ π1(M) such that the subgroup of π1(M) generated by Γ and g is in fact
the free product of Γ and ⟨g⟩.

We now suppose that there exists a boundary component Ti that is not hit by
Σ. We pick a path in M connecting Ti to the chosen base point and we henceforth
view π1(Ti) as a subgroup of π1(M). Note that π1(N) is hyperbolic relative to the
subgroups π1(T1), . . . , π1(Tk). Since Σ is not a fiber surface, it follows from the Tame-
ness Theorem and from work of Hruska [Hr10, Corollary 1.3] that Γ is a relatively
quasi-convex subgroup of π1(N). Since Γ is a non-abelian surface group we can find
an element g ∈ Γ such that ⟨g⟩ ∩ π1(Ti) is trivial. We see again from the Tameness
Theorem that ⟨g⟩ is a relatively quasi-convex subgroup of π1(N).

Summarizing, we have shown that π1(Σ) and ⟨g⟩ are two relatively quasi-convex
subgroups of π1(N) which have trivial intersection with the parabolic subgroup π1(Ti).
It now follows from Martinez-Pedroza [MP09, Theorem 1.2] that there exists a h ∈
π1(Ti) such that the subgroup of π1(N) generated by Γ and hgh−1 is the free product
of Γ and ⟨hgh−1⟩. The proposition now follows from the observation that according
to our choices, both Γ and ⟨hgh−1⟩ lie in π1(M). !

We can now prove Theorem 6.2. For the reader’s convenience we recall the state-
ment.

Theorem 6.5. Let K be a non-fibered knot. Then there exists a Seifert surface Σ of
minimal genus and a nontrivial element g ∈ π1(S3 \Σ× (0, 1)) such that the subgroup
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generated by π1(Σ × 0) and g is the free product of π1(Σ × 0) and the infinite cyclic
group ⟨g⟩.
Proof. Let K be a non-fibered knot. We write X = S3 \ νK. We denote by Xv, v ∈
V , the JSJ components, and we denote by Tϵ, ϵ ∈ E, the JSJ tori of X. We let
ϵ ∈ H1(X;Z) = Hom(H1(X);Z),Z) ∼= Z be the generator that corresponds to the
canonical homomorphism ϵK : H1(X;Z) → Z. For each v ∈ V , we denote by ϵv ∈
H1(Xv;Z) the restriction of ϵ to Xv.

The pair (V,E) has a natural graph structure, since each JSJ torus cobounds two
JSJ components. Since X is a knot complement, this graph is a based tree, where the
base is the vertex b ∈ V for which Xb contains the boundary torus. We now denote
by Tb the boundary torus of X, and for each v ̸= b we denote by Tv the unique JSJ
torus which is a boundary component of Xv and which separates Xv from Xb.

Claim. There exists an element w ∈ V such that Xw is hyperbolic and such that
ϵw ∈ H1(Xw;Z) is not a fibered class.

We say that a vertex v ∈ V is non-fibered if ϵv ∈ H1(Xv;Z) is not a fibered class.
Since ϵ = ϵK is by assumption not fibered, it follows from [EN85, Theorem 4.2] that
some vertex is not fibered. Let w ∈ V be a non-fibered vertex of minimal distance to
b.

Note that if v ∈ V is fibered and if ϵv is non-trivial, then the restriction of ϵv to
any boundary torus is also non-trivial. Since ϵb is non-trivial and since w ∈ V is a
non-fibered vertex of minimal distance to b, we conclude that the restriction of ϵw to
Tw is non-trivial.

It follows from the Geometrization Theorem and from [JS79, Lemma VI.3.4] that
Xw is one of the following:

(1) the exterior of a torus knot;
(2) a ‘composing space’, that is, a product S1 × Wn, where Wn is the result of

removing n open disjoint disks from D2;
(3) a ‘cable space’, that is, a manifold obtained from a solid torus S1 × D2 by

removing an open regular neighborhood in S1 × Int(D2) of a simple closed
curve c that lies in a torus S1 × s, where s ⊂ Int(D2) is a simple closed curve
and c is non-contractible in S1 ×D2;

(4) a hyperbolic manifold.

As we argued above, the restriction of ϵw ∈ H1(Xw;Z) to one of the boundary tori,
namely Tw, is non-trivial. It is well known that in each of the first three cases, this
would imply that ϵw is a fibered class. Hence Xw must be hyperbolic. This concludes
the proof of the claim.

In the following, given a vertex v with ϵv non-zero, we denote by dv ∈ N the
divisibility of ϵv ∈ H1(Xv;Z). For all other vertices we write dv = 0.

Claim. There exists a minimal genus Seifert surface Σ for K with the following prop-
erties:
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(1) Σ intersects each Te transversally;
(2) each intersection Σ ∩ Te consists of a possibly empty union of parallel, non-

null-homologous curves;
(3) for each v with dv ̸= 0 the surface Σv := Σ ∩ Xv is the union of dv parallel

copies of a surface Σ′
v.

For each v with dv ̸= 0 we pick a properly embedded Thurston norm-minimizing
surface Σ′

v that represents 1
dv
ϵv. After possibly gluing in annuli and disks, we may

assume that at each boundary torus T of Nv, all the components of Σ′
v∩T are parallel

as oriented curves and no component of Σ′
v ∩ T is null-homologous. We now pick a

tubular neighborhood Σ′
v × [−1, 2] of Σ′

v and we denote by Σv the union of Σ′
v × ri

where ri =
i
dv

with i = 0, . . . , dv − 1. For each v with dv = 0 we denote by Σ′
v = Σv

the empty set.
The surfaces Σv are chosen such that at each JSJ torus the boundary curves are

parallel. Since at a JSJ edge the adjacent surfaces have to represent the same homol-
ogy class, at each JSJ torus the adjacent surfaces have exactly the same number of
boundary components which furthermore represent the same homology class in the
JSJ torus. After an isotopy in the neighborhood of the tori we can therefore glue the
surfaces Σv together to obtain a properly embedded surface Σ. Since the Thurston
norm is linear on rays, it follows from [EN85, Proposition 3.5] that Σ is a connected
Thurston norm-minimizing surface representing ϵ. By construction, the intersection
of Σ with ∂X consists of one curve, which is necessarily a longitude for K. We thus
see that Σ is indeed a genus-minimizing Seifert surface for K. It is now clear that Σ
has the desired properties. This concludes the proof of the claim.

Recall that ϵw ∈ H1(Xw;Z) is not a fibered class. By the discussion at the beginning
of this section, this implies that 1

dw
ϵw is also not a fibered class, and so Σ′

w is not a
fiber surface.

We pick a base point pw on Σ′
w = Σ′

w × 0, which is then also a base point for Xw.
It follows from Theorem 6.4 that there exists an element g ∈ π1(Xw \Σ′

w × (0, 1), pw)
such that the subgroup of π1(Xw \ Σ′

w × (0, 2], pw) generated by π1(Σ′
w, pw) and g is

in fact the free product of π1(Σ′
w, pw) and ⟨g⟩. It now remains to prove the following

claim.

Claim. The subgroup of π1(X, pw) generated by π1(Σ, pw) and g is the free product
of π1(Σ, pw) and ⟨g⟩.

We may pick an oriented simple closed curve c in Xw \ Σ′
w × (0, 2] that intersects

Σ′
w = Σ′

w × 0 in precisely the base point pw and that represents g ∈ π1(Xw \ Σ′
w ×

(0, 2], pw). Note that π1(Σ ∪ c, pw) is precisely the free product of π1(Σ, pw) and ⟨g⟩.
It thus suffices to show that the inclusion-induced map

π1(Σ ∪ c, pw) → π1(X, pw)

is injective.
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JSJ tori Te

JSJ torus Tu

JSJ component Xu

Seifert surface Σ

JSJ components Xv

hyperbolic non-fibered
JSJ component Xw

knot K

curve c

Figure 2. Schematic picture for the Seifert surface Σ and the curve c.

Let h be an element in the kernel of this map. We pick a representative curve d
which intersects the JSJ tori transversally. We will show that h represents the trivial
element in π1(Σ ∪ c, pw) by induction on

n(d) :=
∑

v∈V

#components of d ∩Xv.

If n(d) = 1, then d lies in the component of (Σ∪w)∩Xw = Σw∪c that contains pw.
Then c lies completely in Σ′

w ∪ c. But the map π1(Σ′
w ∪ c, pw) = π1(Σ′

w, pw) ∗ ⟨g⟩ →
π1(Xw) is injective, and the map π1(Xw) → π1(X) is also injective. It thus follows
that h is the trivial element.

We now consider the case that n := n(d) > 1. We then think of π1(X) as the
fundamental group of the graph of groups π1(Xv). We can view the curve d as a
concatenation of curves d1, . . . , dn such that each curve di lies completely in some Xu.
Recall that we assume that d represents the trivial element. A standard argument in
the theory of fundamental groups of graph of groups (see e.g. [He87]) implies that
there exists a di with the following two properties:

(1) the two endpoints of di lie on the same boundary torus T of some Xu,
(2) di is homotopic in Xu rel endpoints to a curve si that lies completely in T .
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Note that the two endpoints of di lie on T ∩ Σu. In fact we can prove a stronger
statement.

Claim. The two endpoints of di lie on the same component of T ∩ Σu.

We first make the following observation. Let S be a properly oriented embedded
surface S in an oriented 3-manifold M and let a be an oriented embedded arc that
does not intersect S at the endpoints. We can then associate to S and a the algebraic
intersection number S · a ∈ Z, which has in particular the following two properties:

(1) for any properly oriented embedded arc b homotopic to a rel base points we
have S · a = S · b,

(2) if a lies completely in a boundary component B of M , then S · a equals the
algebraic intersection number of the oriented curve ∂S with the oriented arc
a in B.

We now turn to the proof of the claim. We first note that there exists a home-
omorphism r : Xu → Xu which is the identity on Xu \ Σ′

u × (−1, 2), which has the
property that for any x× t with x ∈ Σ′

u and t ∈ [0, 1] we have

f(x× t) = x× (t− 1

2dv
)

and which is isotopic to the identity on Xu. More informally, r is a map that pushes
everything on Σ× [0, 1] slightly to the left. Note that r pushes everything on Σu off
Σu. Furthermore, if u = w, then the intersection of r(Σw ∪ c) with Σw is also empty.

Since si and di are homotopic rel base points and since r is homotopic to the
identity, the curves r(si) and r(di) are homotopic rel base points. It follows from the
above that Σu · r(si) = Σu · r(di). But the latter is clearly zero, since r(di) does not
intersect Σu. We now conclude that ∂Σu · r(si) = Σu · r(si) = 0. Since the curves
∂Σu ∩T are all parallel it now follows that r(si) does not intersect Σu ∩T at all. But
this means that the two endpoints of si, and thus also the two endpoints of di, have
to lie on the same component of T ∩ Σu. This concludes the proof of the claim.

We then make the following claim.

Claim. The curve di is homotopic inXu rel end points to a curve d′i that lies completely
in T ∩ Σu.

By the previous claim we know that the two endpoints of di lie on the same com-
ponent of T ∩ Σu. We denote the initial point of di by P , and the terminal point
by Q. We denote by r the component of ∂Σu that contains P . We endow r with an
orientation. Note that r is homologically essential on T . The curve r thus defines a
subsummand ⟨r⟩ of π1(T, P ) ∼= Z2.

We also pick a curve ti in T ∩ Xu from P to Q. The concatenation sit
−1
i lies

in T , and also lies in (Σ ∪ c) ∩ Xu. The curve sit
−1
i thus represents an element in

π1((Σ ∪ c) ∩Xu, P ) ∩ π1(T, P ). But the group π1((Σ ∪ c) ∩Xu, P ) is free (regardless
of whether c lies on the P -component of (Σ ∪ c) ∩ Xu or not) whereas π1(T, P ) ∼=
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Z2. The two groups thus intersect in an infinite cyclic subgroup. Furthermore, the
intersection contains the subsummand ⟨r⟩. It follows that the intersection equals ⟨r⟩.
In particular, s−1

i ti is homotopic rel P to rk for some k. It now follows that relative
to the end points we have the following homotopies:

di ∼ dis
−1
i si ∼ si ∼ sit

−1
i ti ∼ rkti.

But the curve d′i := rkti lies completely in T ∩ Σu. This concludes the proof of the
claim.

We can thus replace d = d1 . . . di−1didi+1 . . . dl by d1 . . . di−1d′idi+1 . . . dl and push d′i
slightly into the adjacent JSJ component of X. We have found a representative of h
of smaller length than d. The claim that h represents the trivial element now follows
by induction.

This concludes the proof that the subgroup of π1(X \ Σ × (0, 2], pw) generated by
π1(Σ, pw) and g is the free product of π1(Σ, pw) and ⟨g⟩. We are therefore done with
the proof of Theorem 6.5. !

7. Comparison with Stallings’s fibering criterion

Let K be a knot. Recall that we denote by ϵK : π(K) → Z the unique epimorphism
that sends the oriented meridian to 1. Stallings [St62] proved the following theorem.

Theorem 7.1. If K is not fibered, then Ker(ϵK) is not finitely generated.

It follows from Lemma 2.2 that if Ker(ϵK) is finitely generated, then there exists
precisely one group B such that π(K) splits over B. Thus Stalling’s theorem follows
as a consequence of either Theroem 5.1 or Theorem 6.1.

On the other hand, a group π with an epimorphism ϵ : π → Z such that Ker(ϵ) is not
finitely generated may still split over a unique group. The Baumslag-Solitar group,
the semidirect product Z!Z[12 ] where n ∈ Z acts on Z[12 ] by multiplication by 2n, has
abelianization Z. The kernel of the abelianization ϵ : π → Z is the infinitely generated
subgroup Z[12 ]. Since every finitely generated subgroup of Z[12 ] is isomorphic to Z,
Z! Z[12 ] splits only over subgroups isomorphic to Z. (In fact, any two splittings are
easily seen to be strongly equivalent.) This shows that the conclusions of Theorems
5.1 and 6.1 are indeed stronger than the conclusion of Theorem 7.1.

Stallings’s fibering criterion has been generalized in several other ways. For exam-
ple, if K is not fibered, then Ker(ϵ) can be written neither as a descending nor as
an ascending HNN-extension [BNS87], Ker(ϵ) admits uncountably many subgroups
of finite index (see [FV12c, Theorem 5.2], [SW09a] and [SW09b, Theorem 3.4]), the
pair (π(K), ϵK) has ‘positive rank gradient’ (see [DFV12, Theorem 1.1]) and Ker(ϵK)
admits a finite index subgroup which is not normally generated by finitely many
elements (see [DFV12, Theorem 5.1]).
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8. Proof of Theorem 1.3

In this section we will prove Theorem 1.3, i.e. we will show that if K is a knot,
then π(K) does not split over a group of rank less than 2g(K). We will first give a
‘classical’ proof for genus-one knots before we provide the proof for all genera.

8.1. Genus-one knots. In this subsection we prove:

Theorem 8.1. If K is a genus-one knot, then π(K) does not split over a free group
of rank less than two.

The main ingredients in the proof are two classical results from 3-manifold topology.
First, we recall the statement of the Kneser Conjecture, which was first proved by
Stallings [St59] in the closed case, and by Heil [Hei72, p. 244] in the bounded case.

Theorem 8.2. (Kneser Conjecture) Let N be a 3-manifold with incompressible
boundary. If there exists an isomorphism π1(N) ∼= Γ1 ∗ Γ2, then there exist compact,
orientable 3-manifolds N1 and N2 with π1(Ni) ∼= Γi, i = 1, 2 and N ∼= N1#N2.

In the following, we say that a properly embedded 2-sided annulus A in a 3-manifold
N is essential if the inclusion map A ↪→ N induces a π1-injection and if A is not
properly homotopic into ∂N . The second classical result we will use is the following,
which is a direct consequence of a theorem of Waldhausen [Wal68b] (see Corollary
1.2(i) of [Sco80]).

Theorem 8.3. Let N be an irreducible 3-manifold with incompressible boundary. If
π1(N) splits over Z, then N contains an essential, properly embedded 2-sided annulus.

We turn to the proof of Theorem 8.1.

Proof of Theorem 8.1. Let K be a genus-one knot. Since K is non-trivial, the Loop
Theorem implies that ∂X(K) is incompressible. Since knot complements are prime
3-manifolds, it now follows from the Kneser Conjecture that π(K) can not split over
the trivial group, i.e. π(K) cannot split over a free group of rank zero.

Now suppose that J is a non-trivial knot such that π(J) splits over a free group
of rank one, that is, over a group isomorphic to Z. From Theorem 8.3 we deduce
that X(J) contains an essential, properly embedded, 2-sided annulus A. Lemma 2 of
[Ly74a] (an immediate consequence of [Wal68a]) implies that the knot J is either a
composite or a nontrivial cable knot. If J is a composite knot, then it follows from
the additivity of the knot genus (see, for example, [Ro90, p. 124]) that the genus of
J is at least two. Moreover, a well-known result of Schubert [Sct53] (see Proposition
2.10 of [BZ85]) implies that the genus of any cable knot is greater than one. Thus in
both cases we see that g(J) ≥ 2.

We now see that for the genus-one knot K the group π(K) cannot split over a free
group of rank one. !
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8.2. Wada’s invariant. For the proof of Theorem 1.3 we will need Wada’s invariant,
which is also known as the twisted Alexander polynomial or the twisted Reidemeister
torsion of a knot.

We introduce the following convention. If π is a group and γ : π → GL(k,R) a
representation over a ring, then we denote by γ also the Z-linear extension of γ to
a map Z[π] → M(k,R). Furthermore, if A is a matrix over Z[π] then we denote by
γ(A) the matrix given by applying γ to each entry of A.

Let π be a group, ϵ : π → Z an epimorphism, and α : π → GL(k,C) a representa-
tion. First note that α and ϵ give rise to a tensor representation

α⊗ ϵ : π → GL(k,C[t±1])
g #→ tϵ(g) · α(g).

Now let
π = ⟨g1, . . . , gk | r1, . . . , rl⟩

be a presentation of π. By adding trivial relations if necessary, we may assume
that l ≥ k − 1. We denote by Fk the free group with generators g1, . . . , gk. Given
j ∈ {1, . . . , k} we denote by ∂

∂gj
: Z[Fk] → Z[Fk] the Fox derivative with respect to gj,

i.e. the unique Z-linear map such that

∂gi
∂gj

= δij,

∂uv

∂gj
=

∂u

∂gj
+ u

∂v

∂gj

for all i, j ∈ {1, . . . , k} and u, v ∈ Fk. We denote by

M :=

(
∂ri
∂gj

)

the l × k-matrix over Z[π] of all the Fox derivatives of the relators. Given subsets
I = {i1, . . . , ir} ⊂ {1, . . . , k} and J = {j1, . . . , js} ⊂ {1, . . . , l} we denote by MJ,I the
matrix formed by deleting the columns i1, . . . , ir and by deleting the rows j1, . . . , js
of M .

Note that there exists at least one i ∈ {1, . . . , k} such that ϵ(gi) ̸= 0. It follows
that

det((α⊗ ϵ)(1− gi)) = det
(
idk − tϵ(gi)α(gi)

)
̸= 0.

We define

Qi := gcd{det((α⊗ ϵ)(MJ,{i})) | J ⊂ {1, . . . , l} with |J | = l + 1− k}.
(Note that each MJ,{i} is a (k − 1) × (k − 1)-matrix.) It is worth considering the
special case that l = k− 1; that is, the case of a presentation of deficiency one. Then
the only choice for J is the empty set, and hence

Qi = det((α⊗ ϵ)(M∅,{i})).
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Wada [Wad94] introduced the following invariant of the triple (π, ϵ,α).

∆α
π,ϵ := Qi · det((α⊗ ϵ)(1− gi))

−1 ∈ C(t).

A priori, Wada’s invariant depends on the various choices we made. The following
theorem proved by Wada [Wad94, Theorem 1] shows that the indeterminacy is well
controlled.

Theorem 8.4. Let π be a group, let ϵ : π → Z be an epimorphism, and let α : π →
GL(k,C) be a representation. Then ∆α

π,ϵ is well-defined up to multiplication by a
factor of the form ±tkr, where k ∈ Z and r ∈ C∗.

Finally, let K ⊂ S3 be a knot and let α : π(K) → GL(k,C) be a representation. As
before, we denote by ϵ : π(K) → Z the epimorphism that sends the oriented meridian
of K to 1. We write

∆α
K = ∆α

π,ϵ.

If α : π(K) → GL(1,C) is the trivial one-dimensional representation, then Wada’s
invariant is determined by the classical Alexander polynomial ∆K . More precisely,
we have

∆α
K =

∆K

1− t
.

Wada’s invariant equals the twisted Reidemeister torsion of a knot, and is closely
related to the twisted Alexander polynomial of a knot, which was first introduced by
Lin [Lin01]. We refer to [Ki96, FV10] for more details about Wada’s invariant, its in-
terpretation as twisted Reidemeister torsion and its relationship to twisted Alexander
polynomials.

8.3. Proof of Theorem 1.3. Before we provide the proof of Theorem 1.3 we need to
introduce two more definitions. First, given a non-zero polynomial p(t) =

∑s
i=r ait

i ∈
C[t±1] with ar ̸= 0 and as ̸= 0, we write

deg(p(t)) = s− r.

If f(t) = p(t)/q(t) ∈ C(t) is a non-zero rational function, we write

deg(f(t)) = deg(p(t))− deg(q(t)).

Note that if Wada’s invariant of a triple (π, ϵ,α) is non-zero, then the degree of Wada’s
invariant ∆α

π,ϵ is well defined.

We can now formulate the following theorem.

Theorem 8.5. Let π be a group and let

f : π → ⟨A, t | f(B) = tBt−1⟩
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be a splitting. We denote by ϵ : ⟨A, t | f(B) = tBt−1⟩ → Z the canonical epimorphism
which is given by ϵ(t) = 1 and ϵ(a) = 0 for a ∈ A. If α : π → GL(k,C) is a
representation such that ∆α

π,ϵ ̸= 0, then

deg∆α
π,ϵ ≤ k(rk(B)− 1).

In [FKm06] (see also [Fr12]) it was shown that if K is a knot and α : π(K) →
GL(k,C) is a representation such that ∆α

K ̸= 0, then

(2) deg∆α
K ≤ k(2 genus(K)− 1).

In light of the discussion in Section 3, we can view Theorem 8.5 as a generalization
of (2).

Proof. Let π be a group and let

π = ⟨g1, . . . , gk, t | r1, . . . , rl,ϕ(b) = tbt−1 for all b ∈ B⟩
be a splitting, where ϕ : B → A is a monomorphism and B is a rank-d subgroup of
A = ⟨g1, . . . , gk, t | r1, . . . , rl⟩. We pick generators x1, . . . , xd for B. Note that

⟨g1, . . . , gk, t | r1, . . . , rl,ϕ(b) = tbt−1 for all b ∈ B⟩
= ⟨g1, . . . , gk, t | r1, . . . , rl,ϕ(x1)−1tx1t−1, . . . ,ϕ(xd)−1txdt−1⟩.

We write K := Ker(ϵ).
We denote by M the (l+ d)× (k+1)-matrix over Z[π] that is given by all the Fox

derivatives of the relators. We make the following observations.

(1) The relators r1, . . . , rl are words in g1, . . . , gk. The Fox derivatives of the ri
with respect to the gj thus lie in Z[K].

(2) For any i ∈ {1, . . . , k} and j ∈ {1, . . . , r} we have

∂

∂gi

(
ϕ(xj)

−1txjt
−1
)
=

∂

∂gi

(
ϕ(xj)

−1
)
+ ϕ(xj)

−1t
∂

∂gi
xj.

The same argument as in (1) shows that the first term lies in Z[K], and one
can similarly see that the second term is of the form t · g, where g ∈ Z[K].

Thus M∅,{k+1}, the matrix obtained from M by deleting the (k + 1)-st column, is of
the form

M∅,{k+1} = P + tQ,

where P and Q are matrices over Z[K], and where all but the last d rows of Q are
zero.

Let α : π → GL(k,C) be a representation and J ⊂ {1, . . . , d + l} a subset with
|J | = d+ l − k. It follows from the above that

MJ,{k+1} = PJ + tQJ ,

where PJ and QJ are matrices over Z[K] and where at most d rows of QJ are non-zero.
We then see that

det((α⊗ ϵ)(MJ,{k+1})) = det(α(PJ) + tα(QJ)),
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where at most kr rows of α(QJ) are non-zero. If det(α(PJ) + tα(QJ)) is non-zero,
then it follows from an elementary argument that

deg(det(α(PJ) + tα(QJ))) ≤ kr.

We now consider

Q := gcd{det((α⊗ ϵ)(MJ,{k+1})) | J ⊂ {1, . . . , l} with |J | = d+ l − k}.
By the above, if Q ̸= 0, then deg(Q) ≤ kr.

Since ϵ(t) = 1,

∆α
π,ϵ = Q · det((α⊗ ϵ)(1− t))−1 = Q · det(idk − α(t)t)−1 ∈ C(t).

Finally, we suppose that ∆α
π,ϵ ̸= 0. By the above, this implies that Q ̸= 0. In

particular, we see that

deg(∆α
π,ϵ) = deg (Q · det(idk − α(t)t)))

= deg(Q)− deg(det(idk − α(t)t))
= deg(Q)− k
≤ kr − k = k(rkB − 1).

This concludes the proof of the theorem. !
The last ingredient in the proof of Theorem 1.3 is the following result from [FV12a].

The proof of the theorem builds on the virtual fibering theorem of Agol [Ag08]
(see also [FKt12]), which applies for knot complements by the work of Liu [Liu11],
Przytycki-Wise [PW11, PW12a] and Wise [Wi09, Wi12a, Wi12b].

Theorem 8.6. Let K be a knot. Then there exists a representation α : π(K) →
GL(k,C) such that ∆α

K ̸= 0 and such that

deg∆α
K = k(2g(K)− 1).

In [FV12a, Theorem 1.2] an analogous statement is formulated for twisted Rei-
demeister torsion instead of Wada’s invariant. The theorem, as stated, now follows
from the interpretation (see, for example, [Ki96, FV10]) of Wada’s invariant as twisted
Reidemeister torsion.

We can now formulate and prove the following result, which is equivalent to The-
orem 1.3.

Theorem 8.7. Let K be a knot. If π(K) splits over a group B, then rk(B) ≥ 2g(K).

Proof. Let K be a knot and let

f : π(K) → π = ⟨A, t |ϕ(B) = tBt−1⟩
be an isomorphism. We denote by ϵ : ⟨A, t |ϕ(B) = tBt−1⟩ → Z the canonical epi-
morphism which is given by ϵ(t) = 1 and ϵ(a) = 0 for a ∈ A.

Note that ϵ ◦ f : π(K) → Z is an epimorphism. In particular, it sends the meridian
to either 1 or −1. By possibly changing the orientation of the knot, we can assume
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that ϵ ◦ f : π(K) → Z sends the meridian to 1. By Theorem 8.6, there exists a
representation α : π(K) → GL(k,C) such that ∆α

K ̸= 0 and such that

deg∆α
K = k(2g(K)− 1).

By definition, we have

∆α
K = ∆α

π(K),ϵ◦f = ∆α
π,ϵ.

Theorem 8.5 implies that

rk(B) ≥ 1

k
deg

(
∆α
π,ϵ

)
+ 1 =

1

k
deg (∆α

K) + 1 = 2g(K).

!
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SALEM NUMBERS: A SURVEY

CHRIS SMYTH

Abstract. I survey results about, and recent applications of, Salem
numbers.

1. Introduction

In this article I state and prove some basic results about Salem num-

bers, and then survey some of the literature about them. My intention is to

complement other general treatises on these numbers, rather than to repeat

their coverage. This applies particularly to the work of Bertin and her coau-

thors [6, 8, 9] and to the application-rich Salem number survey of Ghate and

Hironaka [27]. I have, however, quoted some results from Salem’s classical

monograph [62].

Recall that a number is an algebraic integer if it is the zero of a poly-

nomial with integer coefficients and leading coefficient 1. Then its (Galois)

conjugates are the zeros of its minimal polynomial, which is the lowest de-

gree polynomial of that type that it satisfies. This degree is the degree of

the algebraic integer.

A Salem number is an algebraic integer τ > 1 of degree at least 4,

conjugate to τ−1, all of whose conjugates, excluding τ and τ−1, lie on |z| = 1.

Then τ + τ−1 is a real algebraic integer > 2, all of whose conjugates ̸= τ +

τ−1lie in the real interval (−2, 2). Such numbers are easy to find: an example

is τ+τ−1 = 1+
√

2, giving (τ+τ−1−1)2 = 2, so that τ 4−2τ 3+τ 2−2τ+1 = 0

and τ = 1.8832 . . . . We note that this polynomial is a so-called (self)-

reciprocal polynomial: it satisfies the equation zdeg P P (z−1) = P (z). This

simply means that its coefficients form a palindromic sequence: they read

the same backwards as forwards. This holds for the minimal polynomial of

all Salem numbers. It is simply a consequence of τ and τ−1 having the same

minimal polynomial.

Salem numbers are usually defined in an apparently more general way,

as in the following proposition. The proposition shows that this apparent

greater generality is illusory.

2010 Mathematics Subject Classification. Primary 11R06.
Key words and phrases. Salem number.
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Lemma 1 (Salem [63, p.26]). Suppose that τ > 1 is an algebraic integer,

all of whose conjugates ̸= τ lie in the closed unit disc |z| ≤ 1, with at least

one on its boundary |z| = 1. Then τ is a Salem number (as defined above).

Proof. Taking τ ′ to be a conjugate of τ on |z| = 1, we have that τ̄ ′ = τ ′−1

is also a conjugate τ ′′ say, so that τ ′−1 = τ ′′. For any other conjugate τ1 of

τ we can apply a Galois automorphism mapping τ ′′ #→ τ1 to deduce that

τ1 = τ−1
2 for some conjugate τ2 of τ . Hence the conjugates of τ occur in

pairs τ ′, τ ′−1. Since τ itself is the only conjugate in |z| > 1, it follows that

τ−1 is the only conjugate in |z| < 1, and so all conjugates of τ apart from

τ and τ−1 in fact lie on |z| = 1. !

It is known that an algebraic integer lying with all its conjugates on the

unit circle must be a root of unity (Kronecker [Kr]). So in some sense Salem

numbers are the algebraic integers that are ‘the nearest things to roots of

unity’. And, like roots of unity, the set of all Salem numbers is closed under

taking powers.

Lemma 2. If τ is a Salem number of degree d, then so is τn for all n ∈ N.

Proof. If τ is conjugate to τ ′ then τn is conjugate to τ ′n. So τn will be a Salem

number of degree d unless some of its conjugates coincide: say τn
1 = τn

2 with

τ1 ̸= τ2. but then, by applying a Galois automorphism mapping τ1 #→ τ , we

would have τn = τn
3 say, where τ3 ̸= τ is a conjugate of τ . But then |τn| > 1

while |τn
3 | ≤ 1, a contradiction. !

Which number fields contain Salem numbers? Of course one can simply

choose a list of Salem numbers τ, τ ′, τ ′′, . . . say, and then the number field

Q(τ, τ ′, τ ′′, . . . ) certainly contains τ, τ ′, τ ′′, . . . . However, if one is interested

only in Salem numbers whose degree is that of the field, we can be much

more specific.

Proposition 3 (Salem [61, p.169]). Suppose that K is a number field with

[K : Q] = d. Then K contains a Salem number τ of degree d (equivalently,

K = Q(τ) for some Salem number τ) if and only if K has a totally real

subfield K ′ of index 2, and K = K ′(τ) with τ + τ−1 = α, where α > 2 is an

algebraic integer in K ′, all of whose conjugates ̸= α lie in (−2, 2).

If K = Q(τ) for some Salem number τ of degree d, then there is a Salem

number τ1 ∈ K such that the set of Salem numbers of degree d in K consists

of the powers of τ1.

Proof. If K contains a Salem number τ of degree d, then clearly K = Q(τ),

and so the subfield K ′ = Q(α) is totally real, where α = τ + τ−1 > 2,
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with all its conjugates ̸= α lying in (−2, 2). Since τ 2 − ατ + 1 = 0, we have

[K : K ′] = 2.

Conversely, suppose that K has a totally real subfield K ′ of index 2,

and K = K ′(α), where α > 2 is an algebraic integer in K ′, all of whose

conjugates ̸= α lie in (−2, 2). Then, defining τ by τ 2 − ατ + 1 = 0 we have

K = Q(τ), where τ is a Salem number.

For the last part, consider the set of all Salem numbers of degree d in

K = Q(τ). Now the number of Salem numbers < τ in K is clearly finite,

as there are only finitely many possibilities for the minimal polynomials of

such numbers. Hence there is a smallest such number, τ1 say. For any Salem

number, τ ′ say, in K we can choose a positive integer r such that τ r
1 ≤ τ ′ <

τ r+1
1 . But if τ r

1 < τ ′ then τ ′τ−r
1 would be another Salem number in K which,

moreover, would be less than τ1, a contradiction. Hence τ ′ = τ r
1 . !

Here we have used the following lemma.

Lemma 4. If τ ′ > τ are both Salem numbers of degree d = [K : Q] in a

number field K, then τ ′τ−1 is also a Salem number of degree d in K.

Proof. Since τ has degree d, we have K = Q(τ). Hence τ ′ is a polynomial in

τ . Therefore any Galois automorphism taking τ $→ τ−1 will map τ ′ to a real

conjugate of τ ′, namely τ ′±1. But it cannot map τ ′ to itself for then, as τ

is also a polynomial in τ ′, τ would be mapped to itself, a contradiction. So

τ ′ is mapped to τ ′−1 by this automorphism. Hence τ ′τ−1 is conjugate to its

reciprocal. So the conjugates of τ ′τ−1 occur in pairs x, x−1. Again, because

τ ′ is a polynomial in τ , any automorphism fixing τ will also fix τ ′, and so

fix τ ′τ−1. Likewise, any automorphism fixing τ ′ will also fix τ .

Next consider any conjugate of τ ′τ−1 in |z| > 1. It will be of the form

τ ′
1τ

−1
1 , where τ ′

1 is a conjugate of τ ′ and τ1 is a conjugate of τ . For this to lie

in |z| > 1, we must either have |τ ′
1| > 1 or |τ1| < 1, i.e., τ ′

1 = τ ′ or τ1 = τ−1.

But in the first case, as we have seen, τ1 = τ , so that τ ′
1τ

−1
1 = τ ′τ−1, while

in the second case τ ′
1 = τ ′−1, giving τ ′

1τ
−1
1 = ττ ′−1 ∈ |z| < 1. Hence τ ′τ−1

itself is the only conjugate of τ ′τ−1 in |z| > 1. It follows that all conjugates

of τ ′τ−1 apart from (τ ′τ−1)±1 must lie on |z| = 1, making τ ′τ−1 a Salem

number.

To show that τ ′τ−1 has degree d, consider d automorphisms that map τ

to each of its d conjugates. Then, as we have seen, only the automorphism

that maps τ to itself maps τ ′τ−1 to itself. However, if τ ′τ−1 has degree d/k

then there are k such automorphisms mapping τ ′τ−1 to itself. Hence k = 1
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and τ ′τ−1 has degree d. As τ is a unit, τ ′τ−1 is an algebraic integer, and so

is a Salem number. !

We now show that the powers of Salem numbers have an unusual prop-

erty.

Proposition 5 (Salem [62]). For every Salem number τ and every ε > 0

there is a real number λ > 0 such that the distance ∥λτn∥ of λτn to the

nearest integer is less than ε for all n ∈ N.

Proof. We consider the standard embedding of the algebraic integers Z(τ)

as a lattice in Rd defined for k = 0, 1, . . . , d − 1 by the map

τk $→ (τk, τ−k, Re τk
2 , Im τk

2 , Re τk
3 , Im τk

3 , . . . , Re τk
d/2, Im τk

d/2),

where τ±1, τ±1
j (j = 2, . . . , d/2) are the conjugates of τ . As this is a lattice

of full dimension d, we know that for every ε′ > 0 there are lattice points

in the ‘slice’ {(x1, . . . , xn) ∈ Rn : |xi| < ε′ (i = 2, . . . , d)}. Such a lattice

point corresponds to an element λ(τ) of Z(τ) with conjugates λi satisfying

|λi| <
√

2ε′ (i = 2, . . . , d).

Next, consider the sums

σn = λ(τ)τn+λ(τ−1)τ−n+λ(τ2)τ
n
2 +λ(τ−1

2 )τ−n
2 +. . .λ(τd/2)τ

n
d/2+λ(τ−1

d/2)τ
−n
d/2,

where λ(x) ∈ Z[x]. Since σn is a symmetric function of the conjugates of τ ,

it is rational. As it is an algebraic integer, it is in fact a rational integer.

Since all terms λ(τ−1)τ−n, λ(τ2)τn
2 , λ(τ−1

2 )τ−n
2 , . . . , λ(τd/2)τn

d/2, λ(τ−1
d/2)τ

−n
d/2

are <
√

2ε′ in modulus, we see that

|σn − λ(τ)τn| < (d − 1)
√

2ε′.

Hence, choosing ε′ = ε/((d−1)
√

2), we have ∥λτn∥ ≤ |σn−λ(τ)τn| < ε. !

In fact, this property essentially characterises Salem (and Pisot) numbers

among all real numbers. Pisot [56] proved that if λ and τ are real numbers

such that

∥λτn∥ ≤
1

2eτ(τ + 1)(1 + log λ)

for all integers n ≥ 0 then τ ∈ S∪T and λ ∈ Q(τ). The denominator in this

result was later improved by Cantor [18] to 2eτ(τ +1)(2+
√

log λ), and then

by Decomps-Guilloux and Grandet-Hugot [20] to e(τ + 1)2(2 +
√

log λ).

For further results concerning the distribution of the fractional parts of

λτn for τ a Salem number, see Dubickas [23] and Zäımi [75, 76, 77].
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2. A smallest Salem number?

Define the polynomial L(z) by

L(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

Then L(z) is the minimal polynomial of a Salem number τ10 = 1.176 . . . .

This was discovered by D. H. Lehmer [33] in 1933. Curiously, the polyno-

mial L(−z) had appeared a year earlier in Reidemeister’s book [57] as the

Alexander polynomial of the (−2, 3, 7) Pretzel knot. Lehmer’s paper seems

to be the first where what is now called the Mahler measure of a polynomial

appears: the Mahler measure M(P ) of a monic one-variable polynomial P

is the product
∏

i max(1, |αi|) over the roots αi of the polynomial.

Lehmer also asked whether the Mahler measure of any nonzero noncy-

clotomic irreducible polynomial with integer coefficients is bounded below

by some constant > 1. This is now commonly referred to as ‘Lehmer’s con-

jecture’ — see [71]. If this were true, then there would be a smallest Salem

number. The ‘strong version’ of ‘Lehmer’s conjecture’ states that τ10 is that

number. A consequence of this strong version, applied to the minimal poly-

nomial of a Salem number, is the following.

Conjecture 6. Suppose that n ∈ N and α0, α1, α2, . . . , αn are real numbers

with α0 ∈ (2, τ10 +τ−1
10 ) and α1, . . . , αn ∈ (−2, 2). Then

∏n
i=0(x+αi) ̸∈ Z[x].

(Note that τ10 + τ−1
10 = 2.026 . . . .) For if there were a Salem number

τ < τ10 then α0 = τ + τ−1 would lie in (2, τ10 + τ−1
10 ) and its conjugates αi

for i > 0 would lie in (−2, 2), with
∏n

i=0(x + αi) ∈ Z[x]. Thus the strong

version of Lehmer’s Conjecture would then be false.

3. Construction of Salem numbers

3.1. Salem’s method. Salem [62, Theorem IV, p.30] found a simple way to

construct infinite sequences of Salem numbers from Pisot numbers. Recall

that a Pisot number is an algebraic integer greater than 1 all of whose

conjugates, excluding itself, all lie in the open unit disc |z| < 1. Now if P (z)

is the minimal polynomial of a Pisot number, then, except possibly for some

small values of n, the polynomials Sn,P,±1(z) = znP (z)±zdeg P P (z−1) factor

as the minimal polynomial of a Salem number, possibly multiplied by some

cyclotomic polynomials. In particular, for P (z) = z3 − z − 1, the minimal

polynomial of the smallest Pisot number, S8,P,−1 = (z − 1)L(z). Salem’s

construction shows that every Pisot number is the limit on both sides of a

sequence of Salem numbers. (The construction has to be modified slightly

when P is reciprocal.)
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Boyd [11] proved that all Salem numbers could be produced by Salem’s

construction, in fact with n = 1. It turns out that many different Pisot num-

bers can be used to produce the same Salem number. These Pisot numbers

can be much larger than the Salem number they produce. In particular,

on taking P (z) = z3 − z − 1 and ε = −1, the minimal polynomial of the

smallest Pisot number θ0 = 1.3247 . . . , Salem’s method shows that there are

infinitely many Salem numbers less than θ0. This fact motivates the next

definition, due to Boyd.

Salem numbers less than 1.3 are called small. A table of 39 such numbers

was compiled by Boyd [11], with later additions of four each by Boyd [13] and

Mossinghoff [50], making 47 in all. See the table [51]. (The starred entries in

this table are the four Salem numbers found by Mossinghoff. They include

one of degree 46.) Further, it was determined by Flammang, Grandcolas and

Rhin [26] that the table was complete up to degree 40. This was extended

up to degree 44 by Mossinghoff, Rhin and Wu [52] as part of a larger project

to find small Mahler measures.

In [14] Boyd showed how to find, for a given n ≥ 2, ε = ±1 and real

interval [a, b], all Salem numbers in that interval that are roots of Sn,P,ε(z) =

0 for some Pisot number having minimal polynomial P (z). In particular, of

the four new small Salem numbers that he found, two were discovered by

this method. The other two he found in [14] are not of this form: they are

roots only of some S1,P,ε(z) = 0.

Boyd and Bertin [7] investigated the properties of the polynomials S1,P,±1(z)

in detail. For a related, but interestingly different, way of constructing Salem

numbers, see Boyd and Parry [17].

Let T denote the set of all Salem numbers (Salem’s notation). (It couldn’t

be called S, because that is used for the set of all Pisot numbers. The

notation S here is in honour of Salem, however: Salem [59] had proved the

magnificent result that the Pisot numbers form a closed subset of the real

line. And so, I suppose, is T !) Salem’s construction shows that the derived

set (set of limit points) of T contains S. Salem [62, p.31] wrote ‘We do not

know whether numbers of T have limit points other than S’. Boyd [11, p.

327] conjectured that there were no other such limit points, i.e., that the

derived set of S ∪ T is S. (He had recently conjectured [12] that S ∪ T is

closed – a conjecture that left open the possibility that some numbers in T

could be limit points of T .)

3.2. Salem numbers and matrices. One strategy that has been used to

try to prove Lehmer’s Conjecture is to attach some combinatorial object
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(knot, graph, matrix,. . . ) to an algebraic number (for example, to a Salem

number). But it is not clear whether the object could throw light on the

(e.g.) Salem number, or, on the contrary, that the Salem number could

throw light on the object.

Typically, however, such attachment constructions seem to work only

for a restricted class of algebraic numbers, and not in full generality. For

example, McKee and Smyth [38] consider integer symmetric matrices as

the objects for attachment. (These can be considered as generalisations

of graphs: one can identify a graph with its adjacency matrix – an integer

symmetric matrix having all entries 0 or 1, with only zeros on the diagonal.)

The main tool for our work was the following classical result, which deserves

to be better known.

Theorem 7 (Cauchy’s Interlacing Theorem). Let M be a real n × n sym-

metric matrix, and M ′ be the matrix obtained from M by removing the ith

row and column. Then the eigenvalues λ1, . . . , λn of M and the eigenvalues

µ1, . . . , µn−1 of M ′ interlace, i.e.,

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn.

We say that an n × n integer symmetric matrix M is cyclotomic if all

its eigenvalues lie in the interval [−2, 2]. It is so-called because then its

associated reciprocal polynomial

PM(z) = zn det
(

(z + z−1)I − M
)

has all its roots on |z| = 1 and so (Kronecker again) is a product of cyclo-

tomic polynomials. Here I is the n × n identity matrix.

The cyclotomic graphs are very familiar.

Theorem 8 ( J.H. Smith 1969 [68]). The connected cyclotomic graphs con-

sist of the (not necessarily proper) induced subgraphs of the Coxeter graphs

Ãn(n ≥ 2), D̃n(n ≥ 4), Ẽ6, Ẽ7, Ẽ8, as in Figure 1.

. . . .. . . .

....

Ãn

D̃n

Ẽ6 Ẽ7 Ẽ8

Figure 1. The Coxeter graphs Ẽ6, Ẽ7, Ẽ8, Ãn(n ! 2) and
D̃n(n ! 4). (The number of vertices is 1 more than the index.)
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(These graphs also occur in the theory of Lie algebras, reflection groups,

Lie groups, Tits geometries, surface singularities, subgroups of SU2(C) (McKay

correspondence),. . . .)

McKee and Smyth describe all the cyclotomic matrices, of which the

cyclotomic graphs form a small subset. They prove that the strong version of

Lehmer’s conjecture is true for the set of polynomials PM : namely, if M is not

a cyclotomic matrix, then PM has Mahler measure at least τ10 = 1.176 . . . ,

the smallest known Salem number. In fact they show that the smallest

three known Salem numbers are all Mahler measures of PM for some integer

symmetric matrix M , while the fourth smallest known Salem number is not.

For other construction methods for Salem numbers see Lakatos [33, 34,

35] and also [42, 38, 39, 40, 41, 69, 70]. In particular, in [33, 35] Lakatos shows

that Salem numbers arise as the spectral radius of Coxeter transformations

of certain oriented graphs containing no oriented cycles.

3.3. Traces of Salem numbers. McMullen [44, p.230] asked whether

there are any Salem numbers of trace less than −1. McKee and Smyth

[38, 39] found examples of Salem numbers of trace −2, and indeed showed

that there are Salem numbers of every trace. It is known [39] that a Salem

number of degree d ≥ 10 has trace at least ⌊1−d/9⌋. In particular, for d = 22

the trace is at least −2. (For this case this result was obtained earlier by

McMullen [29, Cor.1.8], but with the extra restriction that the minimal

polynomial S(x) of the Salem number had S(−1) = ±1 and S(1) = ±1. )

3.4. Distribution modulo 1 of the powers of a Salem number. Let

τ > 1 be a Salem number. Salem [62, Theorem V, p.33] proved that although

the powers τn (mod 1) of τ are everywhere dense on (0, 1), they are not

uniformly distributed on this interval. See also [21].

3.5. Sumsets of Salem numbers. Dubickas [22] shows that a sum of

m ≥ 2 Salem numbers cannot be a Salem number, but that for every m ≥ 2

there are m Salem numbers whose sum is a Pisot number and also m Pisot

numbers whose sum is a Salem number.

3.6. Galois group of Salem number fields. Lalande [36] and Christopou-

los and McKee [19] studied the Galois group of a number field defined by

a Salem number. Let τ be a Salem number of degree 2n, K = Q(τ) and L

be its Galois closure. Then it is known that G := Gal(L/Q) ≤ Cn
2 ! Sn.

Conversely, if K is a real number field of degree 2n > 2 with exactly 2 real

embeddings, and, for its Galois closure L, that G ≤ Cn
2 ! Sn, then Lalande

proved that K is generated by a Salem number.
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Now, for a Salem number τ , let K ′ = Q(τ +τ−1), L′ be its Galois closure

and N ⊂ G be the fixing group of L′. Then Christopoulos and McKee

showed that G is isomorphic to N ! Gal(L′/Q), where N is isomorphic to

either Cn
2 or Cn−1

2 . The latter case is possible only when n is odd.

Amoroso [1] found a lower bound, conditional on the Generalised Rie-

mann Hypothesis, for the exponent of the class group of such number fields

L.

3.7. Other Salem number studies. Salem [60], [63, p. 35] proved that

every Salem number is the quotient of two Pisot numbers.

P. Borwein and Hare [10] studied the ‘spectrum’ of values a0 + a1τ +

· · ·+ anτn when the ai ∈ {−1, 0, 1}, n ∈ N and τ is a Salem number.

For connections between small Salem numbers and exceptional units, see

Silverman [67].

Dubickas and Smyth [24] studied the lines passing through two conju-

gates of a Salem number.

For generalisations of Salem numbers, see Bertin [4, 5], Kerada [31],

Meyer [49], Samet [63], Schreiber [65] and Smyth [69]. Note the correction

made to [63] in [69].

4. Salem numbers outside Number Theory

The survey of Ghate and Hironaka [27] contains many applications of

Salem numbers, for the period up to 1999. Only a few of the applications

they describe are briefly recalled here, in subsections 4.1, 4.2 and 4.3. Oth-

erwise, I concentrate on developments since their paper appeared.

For some of these applications, the restriction that Salem numbers should

have degree at least 4 can be dropped: the results also hold for reciprocal

Pisot numbers, whose minimal polynomials are x2 − ax + 1 for a ∈ N,

n ≥ 3. Some authors include these numbers in the definition of Salem

numbers. Accordingly, I will allow these numbers to be Salem numbers in

this section.

4.1. Growth of groups. For a group G with finite generating set S = S−1,

we define its growth series FG,S(x) =
∑

∞

n=0 anxn, where an is the number

of elements of G that can be represented as the product of n elements of S,

but not by fewer. For certain such groups, FG,S(x) is known to be a rational

function. Then expanding FG,S(x) out in partial fractions leads to a closed

formula for the an. See [27, Section 4] for a detailed description, including

references. See also [2].
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In particular, let G be a Coxeter group generated by reflections in d ≥ 3

geodesics in the upper half plane, forming a polygon with angles π/pi (i =

1, 2, . . . , d), where
∑

i π/pi < π. Taking S to be the set of these reflections, it

is known (Cannon and Wagreich, Floyd and Plotnick, Parry) that then the

denominator of FG,S(x) – call it ∆p1,p2,...,pd
(x) – is the minimal polynomial of

a Salem number, τ say, possibly multiplied by some cyclotomic polynomials.

Then the an grow exponentially with growth rate limn→∞ an+1/an = τ .

Hironaka [30] proved that among all such ∆p1,p2,...,pd
(x), the lowest growth

rate was achieved for ∆p1,p2,p3
(x), which is Lehmer’s polynomial L(x), with

growth rate τ10 = 1.176 . . . .

4.2. Alexander Polynomials. A result of Seifert tells us that a polyno-

mial P ∈ Z[x] is the Alexander polynomial of some knot iff it is monic

and reciprocal, and P (1) = ±1. In particular, Hironaka [30] showed that

∆p1,p2,...,pd
(−x) is the Alexander polynomial of the (p1, p2, . . . , pd,−1) pretzel

knot. Hence, from the result of the previous section, we see that Alexander

polynomials are sometimes Salem polynomials (albeit in −x).

Indeed, Silver and Williams [66], in their study of Mahler measures of

Alexander polynomials, found families of links whose Alexander polynomials

had Mahler measure equal to a Salem number. The first family l(q) was ob-

tained [66, Example 5.1] from the link 72
1 by giving q full right-handed twists

to one of the components as it passed through the other component (the

trivial knot). The Mahler measure of the Alexander polynomials of these

links produced a decreasing sequence of Salem numbers for q = 1, 2, . . . , 11.

For q = 10 the Salem number 1.18836. . . (the second-smallest known) was

produced, with minimal polynomial

x18 − x17 + x16 − x15 − x12 + x11 − x10 + x9 − x8 + x7 − x6 − x3 + x2 − x + 1,

while q = 11 gave the Salem number M(L(x)) = 1.17628 . . . . For q > 11

Salem numbers were not produced. The second example was obtained in a

similar way [66, Example 5.8], using the link formed from the knot 51 by

an adding the trivial knot encircling two strands of the knot, and then

giving these strands q full right-hand twists. For increasing q ≥ 3 this

gave a monotonically increasing sequence of Salem numbers tending to the

smallest Pisot number θ0 = 1.3247 . . . . These Salem numbers are equal to

M(x2(q+1)(x3−x−1)+x3+x2−1). Furthermore, M(xn(x3−x−1)+x3+x2−1)

is also a Salem number for n ≥ 9 and odd. Silver (private communication)

has shown that these Salem numbers are also Mahler measures of Alexander

polynomials: “ Putting an odd number of half-twists in the rightmost arm
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of the pretzel knot produces 2-component links rather than knots. Their

Alexander polynomials have two variables. However, setting the two vari-

ables equal to each other produces the so-called 1-variable Alexander poly-

nomials, and indeed the ‘odd’ sequence of Salem polynomials . . . results.”

4.3. Lengths of closed geodesics. It is known that there is a bijection

between the set of Salem numbers and the set of closed geodesics on certain

arithmetic hyperbolic surfaces. Specifically, the length of the geodesic is

2 log τ , where τ is the Salem number corresponding to the geodesic. Thus

there is a smallest Salem number iff there is a geodesic of minimal length

among all closed geodesics on all arithmetic hyperbolic surfaces. See Ghate

and Hironaka [27, Section 3.4] and also Maclachlan and Reid [43, Section

12.3] for details.

4.4. Arithmetic Fuchsian groups. Neumann and Reid [53, Lemmas 4.9,

4.10] have shown that Salem numbers are precisely the spectral radii of

hyperbolic elements of arithmetic Fuchsian groups. See also [27], [43, pp.

378–380] and [37, Theorem 9.7].

The following result is related.

Theorem 9 ( Sury [73] ). The set of Salem numbers is bounded away from

1 iff there is some neighbourhood U of the identity in SL2(R) such that, for

each arithmetic cocompact Fuchsian group Γ, the set Γ ∩U consists only of

elements of finite order.(A Fuchsian group is a group Γ discrete in SL2(R)

and such that Γ\H has finite volume. )

4.5. A dynamical system. For given β > 1, define the map Tβ : [0, 1) →
[0, 1) by Tβx = x− ⌊x⌋. Klaus Schmidt [64] conjectured that for β a Salem

number, the orbit of β − ⌊β⌋ is eventually periodic. This conjecture was

proved by Boyd [15] to hold for Salem numbers of degree 4. However, using

a heuristic model in [16], his results indicated that while Schmidt’s conjec-

ture was likely to also hold for Salem numbers of degree 6, it may be false

for a positive proportion of Salem numbers of degree 8. As Boyd points out,

the basic reason seems to be that, for β a Salem number of degree d, this

orbit corresponds to a pseudorandom walk on a d-dimensional lattice. Un-

der this model, but assuming true randomness, the probability of the walk

intersecting itself is 1 for d ≤ 6, but is less than 1 for d > 6.

4.6. Surface automorphisms. A K3 surface is a simply-connected com-

pact complex surface X with trivial canonical bundle. The intersection form
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(a nonvanishing holomorphic 2-form) makes H2(X, Z) into an even uni-

modular 22-dimensional lattice of signature (3, 19); see [48, p.17]. Now let

F : X → X be an automorphism of positive entropy of a K3 surface X.

Then the spectral radius λ(F ) (modulus of the largest eigenvalue) of F is

a Salem number. More specifically, the characteristic polynomial χ(F ) of

F acting by pullback on this lattice is the minimal polynomial of a Salem

number multiplied by k ≥ 0 cyclotomic polynomials. Since χ(F ) has degree

22, the degree of λ(F ) is at most 22. (If F is projective, χ(F ) and so λ(F )

has degree at most 20.)

It is an interesting problem to descibe which Salem numbers arise in this

way. Gross and McMullen [29] have shown that if the minimal polynomial

S(x) of a Salem number of degree 22 has |S(−1)| = |S(1)| = 1 (which

they call the unramified case) then it is the characteristic polynomial an

automorphism of some (non-projective) K3 surface X. (If the entropy of F

is 0 then this characteristic polynomial is simply a product of cyclotomic

polynomials.) It is known (see [44, p.211] and references given there) that

the topological entropy h(F ) of F is equal to log λ(F ), so is either 0 or the

logarithm of a Salem number.

For each even d ≥ 2 let τd be the smallest Salem number of degree d.

McMullen [46, Theorem 1.2] has proved that if F : X → X is an auto-

morphism of any compact complex surface X with positive entropy, then

h(F ) ≥ log τ10 = log(1.176 . . . ) = 0.162 . . . . Bedford and Kim [3] have

shown that this lower bound is realised by a particular rational surface au-

tomorphism. McMullen [47] showed that it was realised for a non-projective

K3 surface automorphism, and later [48] that it was realised for a projective

K3 surface automorphism. He showed that the value log τd was realised for

a projective K3 surface automorphism for d = 2, 4, 6, 8, 10 or 18, but not

for d = 14, 16, or 20. (The case d = 12 is currently undecided.) In fact,

if h(F ) = log τ for a K3 surface automorphism and Salem number τ , then

[58, p. 475] τ has degree at most 22, and degree at most 20 if the surface is

projective – see [29, Remark p. 268].

McMullen [44] found 10 Salem numbers of degree 22 and trace −1, also

having some other properties, from which he was able to construct from

each of these Salem numbers a K3 surface automorphism having a Siegel

disc. (These were the first known examples having Siegel discs).

Oguiso [54] showed that, as for K3 surfaces (see above), the characteris-

tic polynomial of an automorphism of a hyper-Kähler manifold is also the

minimal polynomial of a Salem number multiplied by k ≥ 0 cyclotomic
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polynomials. In another paper [55] he constructed an automorphism F of a

(nonprojective) K3 surface with λ(F ) = τ14. Here the K3 surface contained

an E8 configuration of rational curves, and the automorphism also had a

Siegel disc.

Reschke [58] studied the automorphisms of two-dimensional complex

tori. He showed that the entropy of such an automorphism, if positive, must

be a Salem number of degree at most 6, and gave necessary and sufficient

conditions for such a Salem number to arise in this way.

4.7. Salem numbers and Coxeter systems. Consider a Coxeter system

(W, S), consisting of a multiplicative group W generated by a finite set

S = {s1, . . . , sn}, with relations (sisj)mij = 1 for each i, j, where mii = 1

and mij ≥ 2 for i ̸= j. The si act as reflections on Rn. For any w ∈ W let

λ(w) denote its spectral radius. This is the modulus of the largest eigenvalue

of its action on Rn. Then McMullen [45, Theorem 1.1] shows that λ(w) ≥
τ10 = 1.176 . . . . This could be interpreted as circumstantial evidence for λ10

indeed being the smallest Salem number.

The Coxeter diagram of (W, S) is the weighted graph whose vertices are

the set S, and whose edges of weight mij join si to sj when mij ≥ 3. Denoting

by Ya,b,c the Coxeter system whose diagram is a tree with 3 branches of

lengths a, b and c, joined at a single node, McMullen also showed that

the smallest Salem numbers of degrees 6, 8 and 10 coincide with λ(w) for

the Coxeter elements of Y3,3,4, Y2,4,5 and Y2,3,7 respectively. In particular,

λ(w) = τ10 for the Coxeter elements of Y2,3,7.

4.8. Dilatation of pseudo-Anosov automorphisms. For a closed con-

nected oriented surface S having a pseudo-Anosov automorphism that is a

product of pairs of positive multi-twists, Leininger [37, Theorem 6.2] showed

that its dilatation is at least τ10. This follows from McMullen’s work on Cox-

eter systems quoted above. The case of equality is explicitly described (in

particular, S has genus 5). (However, on surfaces of genus g there are exam-

ples of pseudo-Anosov automorphisms having dilatations equal to 1+O(1/g)

as g → ∞. These are not Salem numbers when g is sufficiently large.)

4.9. Bernoulli convolutions. Following Solomyak [72], let λ ∈ (0, 1), and

Yλ =
∑

∞

n=0 ±λn, with the ± chosen independently ‘+’ or ‘−’ each with

probability 1
2 . Let νλ(E) be the probability that Yλ ∈ E, for any Borel set

E. So it is the infinite convolution product of the means 1
2(δ−λn + δλn) for

n = 0, 1, 2, . . . ,∞, and so is called a Bernoulli convolution. Then νλ(E)
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satisfies the self-similarity property

νλ(E) =
1

2

(

νλ(S
−1
1 E) + νλ(S

−1
2 E)

)

,

where S1x = 1 + λx and S2x = 1 − λx. It is known that the support of

νλ is a Cantor set of zero length when λ ∈ (0, 1
2), and the interval [−(1 −

λ)−1, (1 − λ)−1] when λ ∈ (1
2 , 1). When λ = 1

2 , νλ is the uniform measure

on [−2, 2]. Now the Fourier transform ν̂λ(ξ) of νλ is equal to
∏

∞

n=0 cos(λnξ).

Salem [63, p. 40] proved that if λ ∈ (0, 1) and 1/λ is not a Pisot number,

then limξ→∞ ν̂λ(ξ) = 0. This contrasts with an earlier result of Erdős that

if λ ̸= 1
2 and 1/λ is a Pisot number, then ν̂λ(ξ) does not tend to 0 as

ξ → ∞. Recently Feng [25] has studied νλ when 1/λ is a Salem number,

proving in this case that νλ the corresponding measure νλ is a multifractal

measure satisfying the multifractal formalism in all of the increasing part

of its multifractal spectrum.
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Gruyter, Berlin, 1999.

[43] Maclachlan, Colin; Reid, Alan W., The arithmetic of hyperbolic 3-manifolds. Grad-
uate Texts in Mathematics, 219. Springer-Verlag, New York, 2003.

[44] McMullen, Curtis T., Dynamics on K3 surfaces: Salem numbers and Siegel disks.
J. Reine Angew. Math. 545 (2002), 201–233.

[45] McMullen, Curtis T., Coxeter groups, Salem numbers and the Hilbert metric. Publ.
Math. Inst. Hautes Études Sci. No. 95 (2002), 151–183.

[46] McMullen, Curtis T., Dynamics on blowups of the projective plane. Publ. Math.
Inst. Hautes Études Sci. No. 105 (2007), 49-89.

[47] McMullen, Curtis T., K3 surfaces, entropy and glue. J. Reine Angew. Math. 658

(2011), 1–25.
[48] McMullen, Curtis T., Automorphisms of projective K3 surfaces with minimum

entropy. Preprint.
[49] Meyer, Yves, Algebraic numbers and harmonic analysis. North-Holland Mathemat-

ical Library, Vol. 2. North-Holland Publishing Co., Amsterdam-London; American
Elsevier Publishing Co., Inc., New York, 1972.

[50] Mossinghoff, Michael J., Polynomials with small Mahler measure. Math. Comp. 67

(1998), no. 224, 1697-1705, S11-S14.
[51] Mossinghoff, M., List of small Salem numbers.

http://www.cecm.sfu.ca/∼ mjm/Lehmer/lists/SalemList.html
[52] Mossinghoff, Michael J.; Rhin, Georges; Wu, Qiang, Minimal Mahler measures.

Experiment. Math. 17 (2008), no. 4, 451-458.
[53] Neumann, Walter D.; Reid, Alan W., Arithmetic of hyperbolic manifolds. Topology

’90 (Columbus, OH, 1990), 273-310, Ohio State Univ. Math. Res. Inst. Publ., 1,
de Gruyter, Berlin, 1992.

[54] Oguiso, Keiji, Salem polynomials and birational transformation groups for hyper-
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