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Abstract

In this paper, we define and study properties of generalized Coxeter mapping classes on
surfaces. Like the mapping classes associated to classical Coxeter graphs studied by Thurston
and Leininger, the action on first homology is conjugate to the action of the Coxeter element
of the associated Coxeter system considered as a reflection group, making classification and
computations of invariants easier. However, unlike in the classical case, where dilatations of
pseudo-Anosov examples are bounded from below by Lehmer’s number, the generalized Coxeter
graphs may be used to construct pseudo-Anosov mapping classes with dilatation arbitrarily
close to one. We observe that the smallest dilatation orientable pseudo-Anosov mapping classes
of genus 2,3,4 and 5 found by Lanneau and Thiffeault can be realized as generalized Coxeter
mapping classes, and that the smallest known accumulation point of normalized dilatations can
be realized as the limit of normalized dilatations of a sequence of generalized Coxeter mapping
classes. For the latter construction, we define non-classical periodic Coxeter mapping classes
and use them as building blocks to define twisted mapping classes. We give sufficient conditions
so that a sequence of twisted mapping classes corresponds to a convergent sequence on a fibered
face.

1 Introduction

Let S be a compact oriented surface of finite type. A mapping class on S is an isotopy class of
self-homeomorphisms of S. Of particular interest are the irreducible mapping classes, which do not
fix any nontrivial multi-curves on S. Such mapping classes φ are called pseudo-Anosov and have the
property that for some pair of φ-invariant, singular foliations F+ and F−, with transverse measures
ν+ and ν−, we have ν±(φ(x), φ(y)) = λ±1(x, y), for x and y points on the nonsingular locus of
F± ([38], [13]). When the leaves in F± can be given a consistent orientation, we say that φ is an
orientable pseudo-Anosov mapping class. This is equivalent to the statement that the dilatation
λ(φ) equals the homological dilatation of φ, that is, the spectral radius of the action of φ on the
first homology of S. The minimum possible value of λ(φ) for a fixed surface S is known only for
surfaces with small genus and number of boundary components [23] [15] [9] [26]. Slightly more is
known for the case of orientable pseudo-Anosov mapping classes [18] [25].

∗This work was partially supported by a grant from the Simons Foundation (#209171 to Eriko Hironaka).
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The minimum dilatation of pseudo-Anosov mapping classes on a surface S is known to go to 1 as
the absolute value of the topological Euler characteristic |χ(S)| goes to infinity. The first proof of
this was given in [31], and the orientable case was shown in [18]. The minimum value of L(S, φ)
for S = Sg,n is bounded for (g, n) on any line of rational slope through the origin [31] [18] [39] [41],
but unbounded on any line with g constant: g = g0 ≥ 2 [39]. We will say that a pseudo-Anosov
mapping class has small dilatation if the normalized dilatation

L(S, φ) = λ(φ)|χ(S)|

is small.

Question 1.1 What do small dilatation pseudo-Anosov mapping classes look like?

In this paper, we approach question 1.1 by studying a simple construction of pseudo-Anosov map-
ping classes from generalized Coxeter graphs. We call such mapping classes mixed-sign Coxeter
mapping classes. Our main result is the following.

Theorem 1.2 The set of normalized dilatations of pseudo-Anosov mixed-sign Coxeter mapping
classes has accumulation point γ4

0 .

The minimum accumulation point `0 of L(S, φ) over all pseudo-Anosov mapping classes satisfies

2 < `0 ≤

(
3 +
√

5

2

)2

= γ4
0 ≈ 6.8541, (1)

where γ0 is the golden mean ([17] [1] [22]). The lower bound comes from properties of directed
graphs (see [31] [28]). The upper bound γ4

0 in (1) is achieved by the simplest hyperbolic braid (see,
for example, [28] [17]). Smaller normalized dilatations exist, for example, for the once-punctured

torus, the smallest normalized dilatation is 3+
√

5
2 ≈ 2.61803, and the smallest normalized dilatation

for a closed genus 2 surface |x4 − 2x2 − 2x+ 1| ≈ 5.27451.

1.1 Fibered face theory

By Thurston’s fibered face theory [37] and a result of Fried [14], the rational points on fibered faces
of hyperbolic 3-manifolds parameterize all pseudo-Anosov mapping classes on compact oriented
surfaces (this is explained in more detail below. Since the simplest hyperbolic braid has normalized
dilatation equal to γ4

0 , and its fibered face has positive dimension, the values of L are dense in the
interval [γ4

0 ,∞) (see [17]). The genus 1 and genus 2 examples mentioned above lie on fibered faces
consisting of a single point, and can be considered as isolated points in the space of pseudo-Anosov
mapping classes.

The Universal Finiteness Theorem of Farb, Leininger and Marglit [11] implies that there is a finite
collection of mapping tori (up to homeomorphism) for pseudo-Anosov mapping classes with no
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interior singularities whose normalized dilatations is bounded. Fibered face theory implies that the
dynamical structure of small dilatation mapping classes are governed by a finite set of “templates”
defined by pseudo-Anosov flows on hyperbolic 3-manifolds [37] [14] [11].

More precisely, if a hyperbolic 3-manifold M is fibered and has first Betti number b1(M) greater
than or equal to 2, then there is at least one open cone, called a fibered cone, in Rb1(M) whose
primitive integral points parameterize fibrations of M to S1. This fibered cone is of the form
F · R+, where F is a fibered face of the Thurston norm ball for M in H1(M ;R) (see [37] and
Section 3.3 for definitions). By a result of Fried [14] the normalized dilatation function L extends
to a continuous convex function on the cone F · R+ so that logL is homogeneous of degree −1. It
follows that on every compact subset of F there are pseudo-Anosov mapping classes with unbounded
topological Euler characteristic and bounded normalized dilatation. Conversely, if we restrict to
pseudo-Anosov mapping classes with no interior singularities, all such infinite families lie on a finite
union of such fibered faces by the Universal Finiteness Theorem. Thus, Question 1.1 is strongly
connected to the question.

Question 1.3 What do mapping classes associated to rational points on a single fibered face look
like?

So far there has been no explicit characterization of which 3-manifolds realize minimum normalized
diatations smaller than a given bound, nor has there been a simple constructive description of the
infinite family of pseudo-Anosov maps associated to the rational points on an arbitrary fibered face.

Our main new technique in this paper is to show that there are natural sequences of mapping
classes associated to generalized Coxeter graphs that correspond to Cauchy sequences on fibered
faces. We show that generalized Coxeter mapping classes contain a large family of periodic mapping
classes on surfaces with high symmetry. These provide useful building blocks for defining small
dilatation pseudo-Anosov mapping classes. We observe that the minimum dilatation orientable
pseudo-Anosov mapping classes for genus g = 2, 3, 4, 5 found by Lanneau and Thiffeault [25] can
be defined from generalized Coxeter graphs (Table 2.6). We also define a sequence (Sn, φn) of
pseudo-Anosov mapping classes whose normalized dilatations converge to γ4

0 (Section 3.8).

1.2 Mixed-sign Coxeter reflection groups.

A mixed-sign Coxeter system is a generalization of classical Coxeter systems. A (simply-laced,
classical) Coxeter graph is a finite connected graph with no self- or double-edges. A Coxeter graph
Γ defines a Coxeter reflection group WΓ ⊂ GL(RV), where V is the set of vertices of Γ, and RV
is the vector space of R valued functions on V. The group WΓ is generated by a distinguished
set of reflections S = {s1, . . . , sk} preserving the bilinear form BΓ = 2I − AΓ, where AΓ is the
adjacency matrix of Γ, and I is the identity matrix (see [21] and Section ). The Coxeter element
ωΓ = s1 · · · sk can be used to classify the Coxeter system. For example, if Γ is connected, then
Bγ defines a spherical, affine, or higher rank geometry on RV if and only if ωΓ is finite order, has
infinite order but spectral radius 1, or has spectral radius greater than 1, respectively (see [2]). The
pair (RV , BΓ) and reflection group WΓ with its distinguished generating reflections and Coxeter
element is called the Coxeter system associated to Γ.
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A mixed-sign Coxeter graph is a Coxeter graph with labels

s : V → {1,−1}.

The associated reflection group WΓ,s ⊂ GL(RV) is defined in an analogous way as the classical
Coxeter reflection group, except that the bilinear form is replaced by BΓ,s = 2Is − AΓ, where Is is
the diagonal matrix with entries s(vi) on the diagonal. The relation between properties of ωΓ,s and
properties of WΓ,s is more subtle than in the classical case (see [3]), and, for example, the finite
order mixed-sign Coxeter reflection groups are not yet classified. However, a useful formula for the
Coxeter element in terms of the adjacency matrix still holds in this setting (see Proposition 2.8).

1.3 Constructing small dilatation pseudo-Anosov mapping classes.

The first construction of infinite sequences of pseudo-Anosov mapping classes (Sn, φn), where
|χ(Sn)| is unbounded and L(Sn, φn) is bounded, was given by Penner in [31] (see also [4] [41]).
There is no evidence, however, that the conjectural minimum accumulation point for normalized
dilatations γ4

0 can be achieved by a Penner-type sequence.

Given a mapping class (S, φ), the closure of (S, φ) is the pair (S, φ) where S is the closed surface
obtained from S by filling in boundary components with disks, and φ is the isotopy class of the
extension to S of any homeomorphism in the equivalence class of φ.

Question 1.4 For which closed oriented surfaces S can the minimum dilatation pseudo-Anosov
mapping classes on S be realized as the closure of a mixed-sign Coxeter mapping class?

The minimum dilatations are unknown for genus g ≥ 3, however, in the orientable case, when
λhom(φ) = λ(φ), the smallest dilatations, together with explicit definitions of their monodromy,
were found for genus g = 2, 3, 4, 5 by E. Lanneau and J.-L. Thiffeault [25]. We make the following
observation (see Table 2.6).

Observation 1.5 The minimum dilatations for orientable mapping classes for genus 2,3,4, and 5
are realizable as the closures of mixed-sign Coxeter mapping classes.

Remark 1.6 The minimum dilatation for orientable mapping classes for genus 7 was found in [1]
and in [22], and for genus 8 in [17]. These examples were found using fibered face theory, and there
is as yet no intrinsic description.

1.4 Lanneau-Thiffeault Question.

For orientable pseudo-Anosov mapping classes Lanneau and Thiffeault ask (see [25]) whether the
minimum dilatation for orientable pseudo-Anosov mapping classes is the largest root λg of polyno-
mials of the form

LT (x) = x2g − xg+1 − xg − xg−1 + 1,
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for all even g. In [17] it is shown that for even g, there are orientable genus g pseudo-Anosov
mapping classes (Sg, φg) with exactly two singularities whose dilatation equals λg. This sequence
of mapping classes corresponds to a convergent sequence of points on a single fibered face, and we
have

lim
g→∞

L(Sg, φg) = lim
g→∞

(λg)
2g = γ4

0 .

Thus, the smallest known accumulation point for normalized dilatations, is also achieved by a
sequence of orientable pseudo-Anosov mapping classes implying the following.

Theorem 1.7 The set of normalized dilatations of closures of orientable pseudo-Anosov mixed-sign
Coxeter mapping classes has accumulation point γ4

0 .

Theorem 1.2 follows from Theorem 1.7.

To find graphs associated to small dilatation mapping classes, we use the heuristic principle that
a mapping class with small dilatation should be a slight perturbation of a mapping class that is
periodic. Roughly speaking, the Coxeter element of a Coxeter graph is conjugate to the homological
action of its corresponding mapping class. For classical Coxeter systems, the Coxeter element is
periodic if and only if the Coxeter system is spherical. These are classified, and furthermore, the
spectral radius of Coxeter elements is monotone with respect to graph inclusion. Thus, for mapping
classes associated to classical Coxeter systems, there is a universal lower bound on the dilatations
of associated pseudo-Anosov maps (see [29] and [27]).

For mixed-sign Coxeter graphs, the spectral radius of Coxeter elements is not monotone. Thus, it is
possible to find large and complicated graphs whose Coxeter elements are periodic. These are useful
tools for building pseudo-Anosov mapping classes with large complexity (as measured by the Euler
characteristic of the surface) and small dilatation. More precisely, we find sequences of spherical
mixed-sign graphs Kn with increasing number of vertices, a fixed graph Γ0 and concatenations
Γn = K]Kn, so that the spectral radius λ(Γn) of the Coxeter element of Γn goes to 1 quickly, i.e.,

log λ(Γn) � 1

n
.

Murasugi sums provide a way to translate between graph theoretic perturbations, and perturbations
of mapping classes. Using this idea, we prove that the sequences of mapping classes associated to
Kn are the Murasugi sum of simple to understand mapping classes. We further show that mapping
classes (Σn, ρn) associated to Γn correspond are fibrations of a single 3-manifold. Thus the Murasugi
sum of (Σn, ρn) with any fixed mapping class defines a sequence (Sn, φn) whose mapping tori are
homeomorphic. We call such mapping classes (Sn, φn) twisted mapping classes. Fibered face
theory then implies that the sequence of normalized dilatations has accumulation points either in
the interior or on the boundary of a fibered face. By arranging for the former, we obtain many
sequences of mapping classes with bounded normalized dilatations.

In particular, we show that for our particular choice Γn, the mapping classes (SΓn , φΓn) correspond
to points on the fibered face of the 62

2-link complement and converge to the minimum (S0, φ0) for
normalized dilatation. By continuity of normalized dilatation on fibered faces, it then follows that

lim
n→∞

L(SΓn , φΓn) = γ4
0 .
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1.5 Organization.

We begin in Section 2 with definitions of mixed-sign Coxeter systems Γ, s and their properties,
particularly in relation to the Artin groupAΓ associated to Γ. We also define a surface SΓ associated
to Γ given an ordering on the vertices and a fat graph structure. Then the Artin group AΓ acts
as mapping classes on SΓ, and for each choice of signs s on Γ, we define a particular element
φΓ,s depending on an ordering on Γ. If Γ is bipartite, then this is the same as examples studied
by Thurston [38] and Leininger [27]. In Section 3, we define twisted mapping classes and prove
Theorem 1.7.

Acknowledgments: I am grateful to the Tokyo Institute of Technology and University of Tokyo
for their support during the writing of this paper, and J. F. Valdez and J. Mangahas for helpful
conversations.

2 Mixed-sign Coxeter systems and associated mapping classes.

In this section we define a correspondence between various objects associated to a mixed-sign
Coxeter graph. The following table summarizes the main objects.

Data Object Notation

mixed sign graph Γ, s Mixed-sign Coxeter system (WΓ,s,RΓ,s)

ordered mixed sign graph Γ, s Mixed-sign Coxeter element ωΓ,s

graph Γ Artin group and representation ρΓ : AΓ → GL(RV)

ordered fatgraph Γ geometric realization (SΓ, CΓ)

ordered mixed sign fatgraph Γ, s Coxeter mapping class (SΓ, φΓ,s)

Given an ordered mixed-sign Coxeter graph, (Γ, s) we define a reflection group WΓ,s in Section 2.1,
and a representation of the Artin group AΓ

ρΓ : AΓ → GL(RV)

in Section 2.2. When Γ has a fatgraph structure, we define an associated geometric realization
(SΓ, CΓ) of Γ, and a mapping class φΓ,s : SΓ → SΓ (Section 2.3). The groups AΓ and WΓ,s

come with k standard generators {σ1, . . . , σk} and {s1, . . . , sk}, respectively. Let σ and w be the
epimorphisms of the free group 〈x1, . . . , xk〉 to AΓ and WΓ,s, where σ(xi) = σi and w(xi) = si.

〈x1, . . . , xk〉
σ //

w

%%KK
KKK

KKK
KKK

AΓ
ρΓ // GL(RV)

η // GL(H1(SΓ;R))

WΓ,s
⊂ // GL(RV).

Let ωΓ,s = w(x1 · · ·xk), called the (mixed-sign) Coxeter element. Write s(i) = s(vi), and let σΓ,s =

ρΓ(σ
s(1)
1 · · ·σs(k)

k ). The representations ρΓ and η preserve symplectic forms, while the elements of
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WΓ,s preserve a symmetric one, but we will show

ωΓ,s = −σΓ,s

as elements of GL(RV) (Proposition 2.6). The element σΓ,s satisfies

η(ρΓ(σΓ,s)) = (φΓ,s)∗

and hence the homological dilatation of φΓ,s and the spectral radius of the Coxeter element ωΓ,s

satisfy
λhom(φΓ,s) = |ωΓ,s|

(see Proposition 2.12). From this we derive a sufficient condition for a mixed-sign Coxeter mapping
class to be pseudo-Anosov (see Proposition 2.13).

Mixed-sign Coxeter mapping classes are defined on surfaces with boundary, but in some cases the
dynamical information contained in the mapping class extends to the closure of the surface obtained
by filling in disks. This is discussed in Section 2.4. The special case of mapping classes associated
to bipartite Coxeter graphs is treated in Section 2.5. Section 2.6 gives a table of mixed-sign Coxeter
graphs associated to minimum dilatation orientable pseudo-Anosov mapping classes for small genus.

Remark 2.1 The study of mapping classes using Coxeter graphs and associated reflection groups
has a long history in algebraic geometry dating back to the 19th century, particularly in the study
of complex surface singularities (see [34], [10] and references therein). The focus in geometric
topology has on the other hand been on representations of the Artin group of a Coxeter graph
into the mapping class group (see, for example, [24]). The difference comes from the fact the
associated bilinear forms left invariant by the respective automorphism groups are different: one
being symmetric and the other symplectic. From this point of view our results concerning special
elements of the Artin group, and Coxeter elements of the Coxeter reflection group are part of an
overlap in the two theories (see also [40] [19]).

2.1 Mixed-sign Coxeter reflection group

In this section we define mixed-sign Coxeter systems as a slight generalization of classical simply-
laced Coxeter systems. Let (Γ, s) be a mixed-sign Coxeter graph with ordered vertices V =
{v1, . . . , vn} and map s : V → {±1}. For i, j = 1, . . . , k, define

mi,j =


1 if i = j
2 if vi and vj are not connected by an edge
3 if vi and vj are connected by an edge.

Remark 2.2 In the usual definition of Coxeter and Artin groups, the mi,j are allowed to vary (for
i 6= j) in the set {2, 3, . . . ,∞}. In this paper, we restrict only to the simply-laced case described
above.
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Let Is be the n× n matrix with 0 on the off-diagonal, and diagonal entries equal to s(1), . . . , s(n).
Let A = [ai,j ] be the adjacency matrix of Γ, A+ the upper triangular part of A, and U = Is −A+.
Then U determines a symmetric form

B = U + UT

on V .

The Coxeter system (W,R) = (WΓ,s,RΓ,s) associated to (Γ, s) is the subgroup of GL(RV) generated
by RΓ,s = {s1, . . . , sn}, where the si are defined by

si(vj) = vj − 2
B(vi, vj)

B(vI , vI)
vi

=

{
−vj if i = j,

vj + s(i)ai,jvi if i 6= j.

Each si can be interpreted as a reflection through the hyperplane perpendicular to vi in RV with
respect to the symmetric form B. If s ≡ 1, then (W,R) is the classical Coxeter system.

Given a mixed-sign ordered Coxeter graph (Γ, s), we define the Coxeter element to be

ωΓ,s = s1 · · · sn ∈ WΓ,s.

Coxeter systems (W,R), and more generally reflection systems, are classified by the type of as-
sociated bilinear form B. If B is positive or negative definite, we say (W,R) is spherical, if B is
positive or negative semi-definite, then we say (W,R) is affine, and if the signature of B is (p, q),
where p and q are nonzero we say (W,R) is higher rank. (see [21]). For classical Coxeter systems,
these are the only cases that occur.

The classical (simply-laced) Coxeter systems (W,R) and their Coxeter elements ωΓ, where s ≡ 1,
have the following special properties (see, for example, [6] [2] [29]).

(i) (Presentation.) The Coxeter group W has presentation in terms of the standard generators
R = {s1, . . . , sk}:

〈s1, . . . , sk : (sisj)
mi,j 〉.

(ii) (Monotonicity.) The spectral radius of Coxeter elements is monotone increasing with respect
to inclusion of Coxeter graphs that respect orderings on vertices. If Γ1 and Γ2 are both higher
rank and Γ1 ( Γ2, then the spectral radius of Γ2 is strictly higher than that of Γ1.

(iii) (Bipartite Coxeter eigenvalue.) The spectral radius of Coxeter elements is bounded from
below by

(µ2 − 2) +
√

(µ2 − 2)2 − 4

2
,

known as the bipartite eigenvalue of the Coxeter system.

These properties do not necessarily hold for mixed-sign Coxeter systems (see [3]).
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Example 2.3 If vi and vj are two adjacent vertices on Γ, and s(i) 6= s(j), then sisj has infinite
order.

Example 2.4 The mixed-sign Coxeter graph (Γ, s), where Γ is the complete graph on 3 vertices,
and s ≡ −1, is spherical. The Coxeter group is isomorphic to the symmetric group on 4 letters,
while the three generator group with only the pairwise relations is isomorphic to the affine group
associated to Ã2 = (Γ,+1) and has infinite order.

Example 2.5 Property (ii), the monotonicity property, of classical Coxeter elements implies that
there is a lower bound greater than 1 for the spectral radius of classical Coxeter elements of non-
spherical or affine Coxeter graphs. For classical Coxeter elements with µ2 > 2, the smallest positive
spectral radius is Lehmer’s number

λL ≈ 1.17628

(see [29]), which is also the smallest possible bipartite eigenvalue of a non-spherical and non-affine
Coxeter graph. On the other hand, as we see later in this paper, the spectral radius of mixed-sign
Coxeter elements can be made arbitrarily close to one.

2.2 Representations of Artin groups

We recall the definition of the Artin group AΓ associated to a Coxeter graph Γ, and define rep-
resentations of AΓ associated to an ordered mixed-sign Coxeter graph (Γ, s) (see, for example, [5]
and references therein).

The Artin group of Γ is the group

AΓ = 〈σ1, . . . , σn : [σiσj ]mi,j = [σjσi]mi,j 〉

where [σiσj ]m is the alternating product

[σiσj ]m = σiσjσi . . .

of length m. If Γ is the classical Coxeter graph An, then AΓ is the braid group on the disk with
n+ 1 punctures.

Let RV be the vector space of real labels on the vertices of Γ. The ordered vertices V determine an
ordered basis v1, . . . , vn of RV . Let A be the adjacency matrix for Γ. Let F be the skew-symmetric
bilinear form on RV defined with respect to v1, . . . , vn by

F = A+ −A−,

where A+ is the upper triangular part of A, and A− is the lower triangular part. The matrix F
defines a skew symmetric form on RV that depends on the choice of ordering of V.

Let s be a sign-labeling for Γ. Define ρΓ to be the representation

ρΓ : AΓ → GL(RV)
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preserving F defined by

ρΓ(σi)(vj) = vj + F (vi, vj)vi

=


vj if i = j,

vj + ai,jvi if i < j,
vj − ai,jvi if i > j.

Then the image preserves F . We call ρΓ the Artin representation of AΓ. Define

σΓ,s = σ
s(1)
1 · · ·σs(k)

k

to be the Artin element associated to the ordered mixed-sign Coxeter graph.

Proposition 2.6 The Coxeter element ωΓ,s and the Artin element σΓ,s are related by

ωΓ,s = −ρΓ(σΓ,s).

Let Bc = U + cUT , for c ∈ C \ 0. Then we have B = B1 and F = B−1. Now define elements

f
(c)
1 , . . . , f

(c)
n ∈ GL(RV) by

f
(c)
i (vj) = vj − s(i)Bc(i, j)vi

=


−cvi if i = j
vj + s(i)ai,jvi if i < j
vj + cs(i)ai,jvi if i > j

Then f
(1)
i = si and f

(−1)
i = ρΓ(σ

s(i)
i ).

Proposition 2.6 follows from the following generalization of a result of Howlett [20].

Lemma 2.7 Using the above notation

f c1 · · · f cn = −cU−1UT .

We present the generalized proof here.

Proof of Lemma 2.7. First we notice that

Uf
(c)
1 =


s(1) −a1,2 −a1,3 . . . −a1,n

0 s(1) −a2,3 . . . −a2,n

. . .
0 . . . s(n)



−c s(1)a1,2 . . . s(1)a1,n

0 1 0 . . . 0
. . .
0 1



=


−cs(1) 0 . . . 0

0 s(1) −a2,3 . . . −a2,n

. . .
0 . . . s(n)


10



Assume that

Uf
(c)
1 · · · f

(c)
k =



−cs(1) 0 . . . 0
−ca1,2 −cs(1) 0 . . . 0

. . .
−cak,1 . . . −cak,k−1 −cs(k) 0 . . . 0

0 . . . 0 s(k + 1) −ak+1,k+2 . . . −ak+1,n

. . .
0 . . . 0 s(n− 1) −an−1,n

0 . . . 0 s(n)


=

[
Lk 0
0 Uk

]
.

Multiplying on the right by

f
(c)
k+1 =

 I 0 0

−s(k + 1)cak+1,1 · · · − s(k + 1)cak+1,k −c s(k + 1)ak+1,k+2 . . . s(k + 1)ak+1,n

0 0 I


amounts to replacing the k + 1st row of Uf

(c)
1 · · · f

(c)
k by

[ak+1,1, . . . , ak+1,k,−s(k + 1), 0, . . . , 0].

Thus,

Uf
(c)
1 · · · f

(c)
k+1 =

[
Lk+1 0

0 Uk+1

]
and Ln = −cUT as desired.

For each c, the transformation f = f
(c)
1 · · · f

(c)
n satisfies

fTBcf = Bc.

The following consequence of Lemma 2.7 completes the proof of Proposition 2.6.

Proposition 2.8 The mixed-sign Coxeter element and representation of the corresponding element
of the Artin group is given by

ωΓ,s = −U−1UT ,

and
ρΓ(σΓ,s) = U−1UT .

2.3 Geometric realization and mixed-sign Coxeter mapping class

In this section, we define a compact oriented surface SΓ from an ordered Coxeter fatgraph Γ, and
a mapping class φΓ,s from Γ and a sign-labeling s.
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Let Γ be a Coxeter graph with vertices V. A fatgraph (or ribbon) structure on Γ is a choice of
cyclic ordering on the edges emanating from each vertex of V. For any embedding of a graph Γ
on a surface S there is a corresponding fat graph structure on Γ. Conversely, for any fat graph
structure on Γ there is a unique oriented closed surface on which Γ embeds as a fat graph so that
the complementary components are disks.

Let
o : V → {1, . . . , n}

be the bijection corresponding to the ordering on V. For each v ∈ V, let Vv ⊂ V be the link of v,
i.e., the set of vertices connected to v by an edge. Then the fat graph structure of Γ is equivalent
to a choice of cycle

σv = (i1, . . . , ik),

in the symmetric group Sn on n elements for each element v ∈ V with Vv = {vi1 , . . . , vik}.

Construct a system of annuli Tv, for v ∈ V, with oriented core curve γv so that

1. Tv and Tw are glued together along a square patch if and only if v and w are connected by
an edge;

2. if o(v) < o(w), then ialg(γv, γw) > 0; and

3. If v is a vertex, then for each of the the core curves γw, for w ∈ Vv, intersect γv in a cyclic
ordering that respects the orientation of `v and cycle σv.

Figure 1: Positive intersection

Here we use the convention that if γi and γj intersect as in Figure 1, then ialg(γi, γj) = 1.

Figure 2 shows the arrangement of Tv1 , Tv2 , Tv3 and Tv where σv = (1, 2, 3), and o(v2) < o(v) <
o(v1), o(v3).

The arrows in the figure indicate which vertex comes before the other in the global ordering. One
sees that the surface depends on the relative global ordering of adjacent vertices and the fatgraph
structure.

Let s be a sign-labeling for Γ. Let φΓ,sSΓ → SΓ be the mapping class defined by

φΓ,s = (δ1)s(1) · · · (δk)s(k),

where δi are the right Dehn twists centered at γi. (See, for example, [12] for definition of Dehn
twist.) Then (SΓ, φΓ,s) is the Coxeter mapping class associated to (Γ, s).
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Figure 2: A local picture of Coxeter graph and corresponding union of annuli

Figure 3 gives an illustration of the action of a right Dehn twist on a transversally intersecting curve.
One may verify that δi(γj) = γj + γi when γi and γj are oriented in this way with ialg(γi, γj) = 1.

Figure 3: Right Dehn twist along δi acting on γj , where i < j.

Remark 2.9 The surfaces SΓ depend only on the choice of vertex ordering and fatgraph structure
on Γ. Different vertex orderings and fatgraph structures can give rise to different homeomorphism
types of surfaces.

By contrast, the topological Euler characteristic of SΓ is independent of the ordering and fatgraph
structure.

Lemma 2.10 Let SΓ be a geometric realization of Γ. Then χ(SΓ) = −|E|, where |E| is the total
number of edges of Γ. In particular, χ(SΓ) does not depend on the ordering of V or the fatgraph
structure.

Proof. The construction of SΓ is inductive with respect to an ordering on the vertices V =
{v1, . . . , vk}. At each stage i we attach an annulus to the preceding surface along patches one for
each vertex vj adjacent to vi such that j < i. The Euler characteristic thus changes by the number
of such vertices. Thus each edge is counted exactly once.

Remark 2.11 We could extend the definition of (SΓ, φΓ,s) further, by replacing s with

ε : V → Z∗,

13



where Z∗ is the set of nonzero integers, and setting

φΓ,ε = δε11 ◦ · · · ◦ δ
εn
n .

Each φΓ,ε is, however, also associated to a signed graph. The signed graph (Γ′, s) is obtained from

(Γ, ε) by successively replacing each vertex vi in Γ with mi = |εn| copies v
(j)
i . Each of the new

vertices v
(j)
i of Γ′ has edges connecting it to all the vertices to which vi was connected. The new

sign labels on v
(j)
i equal the sign of ε.

Let RV ↪→ H1(SΓ;R) be the linear map defined by sending the ith basis vector to [γi]. Let
GL(RV) → GL(H1(SΓ;R)) be the homomorphism defined by extending by the identity on the
complementary space of the image of RV .

Proposition 2.12 The induced map (φΓ,s)∗ : H1(SΓ;R)→ H1(SΓ;R) on homology satisfies

(φΓ,s)∗ = ρΓ(σΓ,s)

and hence
λhom(φΓ,s) = |ωΓ,s|.

Proof. Let gi = [γi] be the homology classes. The choice of orientations and algebraic intersections
of g1, . . . , gk satisfy

(δi)∗(g
s(i)
j ) =


gj if i = j
gj + s(i)gi if i < j
gj − s(i)gi if i > j.

This can be checked by examining Figure 3. Thus, (δi)
s(i)
∗ restricted to the image of RV in H1(SΓ;R)

equals ρΓ(σi).

Proposition 2.13 If Γ is connected and the spectral radius of the Coxeter element |ωΓ,s| is greater
than one, then (SΓ,s, φΓ,s) is pseudo-Anosov, and the dilatation satisfies

λ(φΓ,s) ≥ |ωΓ,s|.

Proof. By the Nielsen-Thurston classification, any mapping class is either periodic, reducible or
pseudo-Anosov [38]. Since Γ is connected, ωΓ is irreducible, and hence so is the homological action
of φΓ. This implies that φΓ is not reducible.

Since λhom(φΓ,s) > 1, φΓ,s is not periodic, so it must be pseudo-Anosov. The rest follows from the
following well-known inequality (see, e.g. [33]).

λhom(φ) ≤ λgeo(φ).
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2.4 Mapping classes on closures and interiors

Let S be a compact surface, we have defined the mapping class group Mod(S) to be the group
of isotopy classes of orientation preserving self-homeomorphisms of S up to isotopy relative to the
boundary of S. Consider the interior int(S) of S. Topologically, this is homeomorphic to a surface
with punctures one for each boundary component of S. Let Mod(int(S)) be the group of orientation
preserving self-homeomorphisms on int(S) modulo isotopy. Then the map

α : Mod(S)→ Mod(int(S)) (2)

defined by restriction has kernel generated by Dehn twists centered at boundary parallel simple
closed curves.

The following results are well-known, and are contained for example in [5].

Lemma 2.14 If (S, φ) is a pseudo-Anosov element of Mod(S), then α(S, φ) is also pseudo-Anosov,
and the dilatations are the same.

Proof. If (S, φ) is pseudo-Anosov, and (F±, ν±) are its associated stable and unstable foliations,
then (F±, ν±) also define stable and unstable foliations for α(S, φ), and the stretching factor λ is
also preserved.

Let S be the closed surface obtained by filling in the boundary components of S with disks. Then
there is a homomorphism

β : Mod(S)→ Mod(S) (3)

defined by extending over disks. This map is neither one-to-one nor onto. Furthermore, the image
of a pseudo-Anosov mapping class is not necessary pseudo-Anosov. We will write (S, φ) = β(S, φ).

Lemma 2.15 If (S, φ) is pseudo-Anosov, and none of the boundary components are 1-pronged,
then (S, φ) is also pseudo-Anosov with dilatation λ(φ) = λ(φ).

The idea of the proof is that if there are no 1-pronged boundary components, then the stable and
unstable foliations of (S, φ) determine invariant transverse measured foliations for φ with expansion
factor λ±1 for λ = λ(φ) (see, for example, [18], Lemma 2.5).

We can also refine Lemma 2.15 as follows. Let (S, φ) be a mapping class, where S is compact. For
any boundary component b of S, let b = b1, . . . , bs be the orbit of b under the action of φ. Let
cl(S, b) be the surface obtained by filling in the boundary components b1, . . . , bs with disks, and let
cl(φ, b) be the extension of φ. Let cl(S, φ, b) = (cl(S, b), cl(φ, b)). If (S, φ) is pseudo-Anosov, and b
is m-pronged, then all orbits of b are also m-pronged.
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Lemma 2.16 If (S, φ) is pseudo-Anosov, then (cl(S, b), cl(φ, b)) is pseudo-Anosov if the boundary
components b1, . . . , bs are not 1-pronged. In this case,

λ(cl(φ)) = λ(φ).

The proof is the same as for Lemma 2.15.

2.5 Bipartite graphs

In this section we collect some special properties of mixed-sign Coxeter systems, and mixed-sign
Coxeter mapping classes associated to bipartite graphs.

A Coxeter graph Γ is bipartite (with bipartite ordering) if the following hold:

(i) its vertices can be separated into two disjoint sets V = V1 ∪ V2 where the subgraph of Γ
generated by Vi has no edges for i = 1, 2; and

(ii) by the ordering on V has the property that the elements of V1 proceed all the elements of V2.

A graph Γ is bipartite if and only if it contains no odd cycles. Given a sign-labeling s of a Coxeter
graph Γ. Let s be the sign-labeling defined by s(v) = −s(v) for all v ∈ V.

Theorem 2.17 If Γ is bipartite, and s is any sign-labeling on Γ, then (WΓ,s,RΓ,s) and (WΓ,s,RΓ,s)
are conjugate as subgroups of GL(RV), and, in particular, the spectral radius of Coxeter elements
satisfies

|ωΓ,s| = |ωΓ,s|.

Proof. It suffices to show that the generating sets RΓ,s = {s1, . . . , sk} and RΓ,s = {s1, . . . , sk} are
conjugate as elements of GL(RV).

let V = V1 ∪ V2 be the bipartite partition. Let ki be the number elements in Vi, for i = 1, 2, and
let k = k1 + k2 be the total number of vertices V. Let Ik1,k2 be the k × k diagonal matrix with the
first k1 diagonal entries equal to 1 and the second k2 diagonal entries equal to -1. Then si and s′i
satisfy

si = Ik1,k2siIk1,k2 .

If a graph Γ is bipartite, and is given the bipartite ordering, then there is a fatgraph structure on
Γ so that after cutting each annulus at a transversal arc between the two boundary components,
the surface can be placed on a plane as a union of rectangles oriented in vertical and horizontal
directions as in Figure 4. The right diagram in Figure 4 gives the corresponding surface SΓ.
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Figure 4: Surface associated to a bipartite graph

The bipartite eigenvalue of a graph Γ is defined by

βΓ = |x2 − (2− µ2)x+ 1|,

where µ is the spectral radius of the adjacency matrix of Γ. Note, this does not depend on the
ordering of the vertices of Γ.

The following theorem was proved for (positively signed) classical Coxeter graphs Γ in [29].

Figure 5: Two surfaces obtained from the hexagonal graph by identifying opposite short edges of
the rectangles.

Theorem 2.18 Let Γ be a positively signed bipartite Coxeter graph with bipartite ordering. Let µ
be the spectral radius of the adjacency matrix of Γ. Then either |µ2 − 2| ≤ 2, which implies that
|ωΓ,1| = 1, or

|ωΓ,1| = βΓ

and hence only depends on the combinatorics of Γ. Furthermore, for any arbitrary (positively
signed) Coxeter graph Γ, with arbitrary ordering on the vertices,

|ωΓ,1| ≥ βΓ.

In [38], Thurston gave an example of pseudo-Anosov mapping classes constructed using classical
bipartite Coxeter graphs. These are mixed-sign Coxeter mapping classes associated to a bipartite
Coxeter graph, with bipartite order. He proved the following.

Theorem 2.19 If Γ is a classical bipartite Coxeter graph with bipartite order, then the widths and
lengths of the rectangles in the construction of SΓ can be chosen so that φΓ,s has constant derivative.
If φΓ is pseudo-Anosov, then

λgeo(φΓ,s) = λhom(φΓ,s) = βΓ.
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Figure 6: Dual configuration associated to a 4 cycle with bipartite ordering

Example 2.20 Consider the hexagonal graph shown Γ6 in Figure 5. Since each vertex has order
two, there is only one fatgraph structure on Γ6. For the middle diagram, there is no way to orient
the core curves on the rectangles in a way that is orientation compatible with any ordering on Γ6.
The orientation on one curve determines the orientations on its adjacent ones. Thus, a 2n-gon
has an orientation compatible diagram of this form if and only if n is even. The right diagram
is compatible with the bipartite ordering. In this example, the middle surface has genus 2 and 4
boundary components, while the right hand surface has genus 3 and 2 boundary components.

4

3 4

2 1 2

3

1

Figure 7: Dual configuration associated to a 4 cycle with cyclic ordering

Example 2.21 It also may not be possible to make the surface from a globally planar configuration
of straight paths, as one can in the bipartite case. Consider for example the cyclic graph with 4
vertices. The bipartite ordering gives rise to a planar configuration (see Figure 6), while for the
cyclic ordering, one can verify that there is no configuration of straight line paths that realize
the graph (see Figure 7). This example also illustrates that while the graph determines the Euler
characteristic of the surface (with boundary), but ordering of the vertices can affect the genus. In the
bipartite case, the surface has (g, n) = (1, 4), while in the cyclic case the surface has (g, n) = (2, 2).

2.6 Minimum dilatation orientable examples.

Table 1 displays mixed-sign Coxeter graphs that give rise to the minimum dilatation orientable
mapping classes of genus 2 through 5 found by Lanneau and Thiffeault [25]. For genus 2 and 3, the
equivalent integer labeled graphs are also given (see Remark 2.11). We use the convention that a
filled in vertex is given the sign label ‘+1’ while the unfilled vertex is given the sign label ‘-1’.

Let δ+
g be the minimum dilatation for an orientable pseudo-Anosov mapping class on a closed

surface. The minimum orientable examples for genus g = 2, 4, 5 can be realized as the closures of
classical Coxeter mapping classes associated to bipartite graphs constructed in [38] [27]. For genus
4 and genus 5, the graphs are the classical hyperbolic extensions of the E7 and E8 graphs, and in
the genus 5 example, the dilatation is equal to Lehmer’s number. The hyperbolic extension of E6
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genus mixed-sign Coxeter graph

2
=

3

3
=

2 2

4

5

Table 1: Graphs corresponding to minimum dilatation orientable examples for g = 2, 3, 4, 5

is given in Figure 8. It’s corresponding mapping class is defined on a surface of genus 4, but it has
the same dilatation as the genus 3 example given in Table 1.

The sequence δ+
g converges to 1. Moreover, we have

log(δ+
g ) � 1

g

(see [18]). Thus, classical Coxeter mapping classes cannot realize small dilatation orientable map-
ping classes for high genus.

Remark 2.22 One can also study dilatations of pseudo-Anosov mapping classes (S, φ) in terms
of the topological Euler characteristic χ(S). This is well-motivated by the following. Given a
pseudo-Anosov mapping class (S, φ), let

L(S, φ) = λ(φ)|χ(S)|

be the χ-normalized dilatation of (S, φ). Let M be a hyperbolic 3-manifold, and F a fibered face
(see [37]). Then F is a polyhedron of dimension equal to b1(M)− 1 where b1(M) is the first Betti
number of M . The rational points in the interior of F correspond to mapping classes (S, φ) that
are monodromies of fibrations of M over the circle.

On any compact subset of the interior of a fibered face F the χ-normalized dilatation extends to
a continuous convex function on F (see [14] [28]) and hence is bounded. Given a pseudo-Anosov
(S, φ), let (S0, φ0) be the mapping class obtained by letting S0 = S \Sing(φ), and φ0 = φ|S0 . Then
(S0, φ0) is pseudo-Anosov, and λ(φ0) = λ(φ) (see, Lemma 2.16).

Farb, Leininger and Margalit Universal Finiteness Theorem [11] implies that the collection of
mapping classes (S, φ) with bounded χ-normalized dilatation correspond (after puncturing S at
singularities) to rational points on compact subsets of a finite collection fibered faces.
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Figure 8: A positive Coxeter graph related to genus 3 example.

As an example, numerically d+
3 equals the house of the hyperbolic extension of E6 (see [29], Table

5, and Figure 8). Let (ShE6 , φhE6) be the mapping class obtained from hE6 using the bipartite
ordering. Then ShE6 has genus 4 and 2 boundary components. The genus 3 example obtained from
the graph Γ3 in Table 1 has 4 boundary components. Thus, the surfaces ShE6 and SΓ3 have the
same topological Euler characteristic.

The above discussion suggests another version of the minimum dilatation problem.

Problem 2.23 Find the minimum dilatation of pseudo-Anosov mapping classes with no interior
singularities with a given topological Euler characteristic.

3 Twist graphs and twisted Coxeter mapping classes

In this section, we define (full) twist graphs, and associated (full) twist mapping classes and use
them to prove Theorem 1.7. Twist graphs are elementary building blocks that can be used to
construct small dilatation pseudo-Anosov mapping classes via Murasugi sum. We will construct
sequences of mapping classes associated to iterative joins of twist graphs, and investigate conditions
under which the normalized dilatations are bounded.

Before defining twist graphs and twist mapping classes, we define Murasugi sum for a pair fibered
3-manifolds (Section 3.1). As as example, we recall the definition of Hopf-plumbing for fibered knot
and link complements (Section 3.2).

3.1 Generalized Murasugi sums of mapping classes.

The Murasugi sum was originally defined for fibered links in S3 [30]. In this section we study
properties of Murasugi sums for arbitrary mapping classes.

Let P2k be a 2k-sided polygon with alternate edges removed. The polygon P2k is properly embedded
in a compact surface S if the boundary components of P2k are contained in the boundary of S, and
the interior of P2k is contained in the interior of S.

Let (S0, φ0) and (S1, φ1) be two mapping classes with proper embeddings of P2k. Let S be the
surface obtained by gluing S0 and S1 by identifying the interiors of the embedding of P2k in S0 to
the interior of the embedding of P2k in S1 after rotating by 2π

k .

20



Note that the intersection of the closure of S \ Si with Si is contained in the boundary of Si for
i = 0, 1. Thus, we can extend φi : Si → Si by the identity on S \ Si and let φ : S → S be the
composition φ = φ1 ◦ φ0. The mapping class (S, φ) is called the Murasugi sum of (S0, φ0) and
(S1, φ1) relative to the embeddings of P2k.

Murasugi sum and mapping tori. Let M0 and M1 be the mapping tori of (S0, φ0) and (S1, φ1).
Identify Si with a fiber of Mi. Let M♦

i be the result of cutting Mi along ιi(P2k) ⊂ Si, creating a
boundary component homeomorphic to a sphere with hemispheres identified with two copies ιi(P

+
2k)

and ιi(P
−
2k) of P2k glued together along their boundaries. Let M ′ be the result of gluing M♦

0 with

M♦
1 along boundary spheres, so that ι0(P+

2k) is glued to ι1(P−2k) and ι0(P−2k) is glued to ι1(P+
2k).

Lemma 3.1 The mapping torus M of (S, φ) is homeomorphic to M ′.

Figure 9: Murasugi sum of surface flows.

To prove Lemma 3.1 it is useful to view the mapping torus of a mapping class (S, φ) as a manifold
with a continuous surjection

f : S × [0, 1]→M

such that

(i) f is an embedding on S × [1, 0), and

(ii) f(s, 1) = (φ(s), 0), for s ∈ S.

An f satisfying (i) and (ii) is called a surface flow, with transverse surface S identified with
f(S × {0}), and monodromy (S, φ).

Lemma 3.2 The map from fibrations to surface flows given by modding out the product S × [0, 1]
by the equivalence (x, 1) ∼ (φ(x), 0) is a bijection.

Proof. Given a surface flow with transverse surface S and monodromy (S, φ), there is correspond-
ing fibration of M over S1 with monodromy (S, φ) defined by contracting the embedded surfaces
f(S × {t}).
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We relax the definition of surface flow slightly to include the following. Let f : S × [0, 1] → M be
a continuous surjective map so that (i) is replaced by

(ia) f|(S×{t}) is 1-1 for all t ∈ [0, 1]; and

(ib) f(s, t) = f(s′, t′) only if s = s′ and for all t1 ∈ [t, t′], f(s, t1) = f(s, t).

Given a flow f satisfying (ia), (ib) and (ii), one can continuously deform f until it satisfies (i) and
(ii), and hence f determines a unique fibration of M with fiber S. We will use this weaker version
of surface flow in what follows.

Figure 10: Local gluing of S0 and S1 at P with upward surface flow.

Proof of Lemma 3.1. Let P = P2k, and let (Mi, Si, fi) be two flows defined (up to isotopy) by
(Si, φi), for i = 0, 1.. Define a flow (M,S, f) by f : S × [0, 1]→M , where

f(s, t) =


f0(s, 2t) if s ∈ S0, 0 ≤ t ≤ 1/2
f1(s, 0) if s ∈ S1 \ ι1(P ), 0 ≤ t ≤ 1/2
f0(s, 1) if s ∈ S0 \ ι0(P ), 1/2 ≤ t ≤ 1
f1(s, 2t− 1) if s ∈ S1, 1/2 ≤ t ≤ 1

The sum of the flows is illustrated in Figure 9. The monodromy φ is the isotopy type of the
composition f1 ◦f0. Figure 10 illustrates the local gluing of S0 and S1. The map f defines a unique
surface flow on M up to isotopy, and hence a fibration of

M → S1,

with monodromy equal to the Murasugi sum of (S0, φ0 and (S1, φ1).

Example 3.3 Let Γi = (Vi, Ei), i = 0, 1 be two mixed-sign Coxeter graphs, and let vi ∈ Vi be
fixed vertices. Then the join of Γ0 and Γ1 at v0 and v1 is the graph obtained by taking the disjoint
union of Γ0 and Γ1 and adding a new edge ε between v0 and v1. If Γ0 and Γ1 are ordered and have
fatgraph structure at their vertices, then the join is determined by the choice of element wi ∈ Vvi
for each i = 1, 2. Then v1 is inserted into Vv2 after w2, and similarly v2 is inserted into Vv1 after
w1.

Assume that Γi are simply-laced Coxeter graphs with global orderings and local fatgraph structure,
let si, i = 0, 1 be sign labels on Vi, and let (SΓi,si , φΓi,si) be the corresponding Coxeter mapping
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Figure 11: Join of graphs, and corresponding geometric realization.

class. Then for any choice of pairs of adjacent edges at v0 and v1, we have a new mixed-sign Coxeter
graph with global and local fatgraph structure (Γ, s), and the Coxeter mapping class (SΓ,s, φΓ,s) is
obtained from (SΓi , si) by Murasugi sum along square a P4.

Figure 11 shows an example. Although the graphs are drawn with sign-labelings, the geometric
realizations only depend on the underlying ordered fatgraphs.

3.2 Hopf plumbing for fibered links

Since the disk is a fiber surface for the complement of the unknot, any sequence of Hopf-plumbings
starting with the unknot gives rise to a new fibered 3-manifold. Furthermore, the monodromy is
simply the composition of the old monodromy with the monodromy of the Hopf link, that is a right
Dehn twist if the twist is clockwise, and a left Dehn twist if the twist is counter-clockwise.

In many cases the mixed-sign Coxeter mapping classes are the monodromy of fibered knots and
links in S3. For example, if we take a configuration of oriented chords `1, . . . , `k on an oriented disk
in S3 such that the algebraic intersections ιalg(`i, `j) > 0 for i > j, then we can construct a surface

SΓ,s ⊂ S3 for any choice of labeling s as follows. For i = 1, . . . , k, we successively attach a band
with a coutner-clockwise (resp., clockwise) full-twist along each chord `i according to whether s(i)
is positive (resp., negative). This construction was studied in the positive case (s ≡ 1) in [16].

Proposition 3.4 The link complement S3 \ ∂SΓ,s fibers over the circle with fiber SΓ,s and mon-
odromy (SΓ, φΓ,s).

Proof. By construction, the link K = ∂SΓ,s is obtained by a sequence of Hopf-plumbings starting
with the disk. Thus, S3 \K is fibered with fiber SΓ,s.

To find the monodromy, we need only verify that a clockwise twisted Hopf band has monodromy
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equal to a right Dehn twist. This is shown in Figure 12.

Figure 12: The monodromy of a counter-clockwise twisted Hopf band.

Seifert matrices. Later in this paper, it will be useful to write down the homological dilatation
matrix for the monodromy of a fibered link complement.

Let K ⊂ S3, and let S be a surface embedded in S3 with K = ∂S. Let x1, . . . , xk be a system of
simple closed curves on S that generate H1(S : Z). We can find a matrix representing the action
of the monodromy of the fibration as follows (see [32]). For each i = 1, . . . , k, let x+

i be the result
of pushing xi into S3 \ S in the positive direction. Let A be the k × k matrix whose i, j entry is
given by the linking number `k(x+

i , xj).

Proposition 3.5 The linear map φ∗ : H1(S;Q) → H1(S;Q) induced by the monodromy (S, φ) is
defined by the matrix

φ∗ : (Atr)−1A.

The matrix (Atr)−1A is sometimes known as the Seifert matrix for the spanning surface S.

3.3 Fibered faces and dilatations.

Thurston’s fibered face theory for 3-manifolds provides a way to parameterize mapping classes with
related dynamics. Let M be an oriented 3-manifold. An element of α ∈ H1(M ;Z) is fibered if the
corresponding map α∗ : π1(M) → Z has finitely generated kernel. By a theorem of Stallings [36],
this is equivalent to the existence of a fibration M → S1 inducing the map α∗ on fundamental
groups. If α is fibered, let (Sα, φα) be the monodromy of α, that is, Sα ⊂M is a general fiber, and
φα : Sα → Sα is the first return map under the flow defined by α.

Thurston defined a norm on H1(M ;R) as follows. For α ∈ H1(M ;Z), let

||α|| = min{|χ(Sα)|}

where Sα ranges over oriented surfaces in S dual to α after removing any connected components
of positive Euler characteristic. Thurston showed the following.

Theorem 3.6 (Thurston [37]) If M is hyperbolic, then || || extends to a norm on H1(M ;R) and
the unit ball is a compact convex polyhedron. Furthermore, for every top dimensional open face F
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of the unit ball, either there are no fibered elements in the cone F · R+ or all the integral points in
F · R+ are fibered with pseudo-Anosov monodromy.

If the cone F · R+ contains fibered elements, it is called a fibered cone and F is a fibered face.
Given a rational ray from the origin passing through a fibered face F , there is a unique primitive
integral element α on the ray with relatively prime coordinates. This element α corresponds to a
fibration of M over the circle with connected fiber Sα, and for any positive integer k, the element
kα corresponds to a fibration of M whose fiber is k copies of Sα. Furthermore, the dilatations of
the monodromy φα and φkα are related by

λ(φkα) = λ(φα)
1
k ,

or

log λ(φkα) =
1

k
log λ(φα).

Theorem 3.7 (Fried [14]) The function

l(α) = log λ(φα)

extends to a continuous convex function on each fibered cone F ·R+ that is homogeneous of degree
−1 and goes to infinity toward the boundary of F .

Corollary 3.8 For F a fibered face, and α ∈ F ·R+, let α = α
||α|| . Then the normalized dilatation

function
L(α) = λ(φα)|χ(Sα)|

defined for integral elements extends to a continuos and convex function on F that goes to infinity
toward the boundary of F .

Proof. This follows from the fact that when α is a fibered element ||α|| = |χ(Sα)|, where Sα is the
fiber of the corresponding fibration of M to S1.

Corollary 3.9 For F a fibered face, and K ⊂ F an infinite compact subset, the collection of
monodromies (Sα, φα) corresponding to rational points α ∈ K has unbounded topological Euler
characteristic and bounded normalized dilatation. In particular, if αn is a sequence of distinct
rational points on F converging to an interior element in F , then the corresponding monodromies
(Sn, φn) have unbounded normalized dilatations and bounded normalized dilatation.

3.4 Full twist braids and their monodromy.

In this section, we define twist maps and twist graphs, and use them as building blocks for con-

structing sequences of mixed-sign Coxeter mapping classes. The twist maps (Σ
(k)
m , R

(k)
m ), m ≥ 2,

k ≥ 1, have the following properties:
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1. (Σ
(k)
m , R

(k)
m ) is the Coxeter mapping class associated to a graph with s ≡ −1;

2. (R
(k)
m )km is a product of left Dehn twists on the boundary components of Σm;

3. the mapping class R
(k)
m preserves a flat structure on Σ

(k)
m with a distinguished periodic orbit

O of order m; and

4. the mapping tori of the restrictions (Σ
(k)
m \ O, R

(k)
m |Σ(k)

m \O
) are independent of k, and are

homeomorphic to the complement of a tubular neighborhood of the link in S3 drawn in
Figure 14.

Figure 13: Closure of a full twist braid on 5 strands, and a fiber surface.

Let b
(k)
m be the product of k full twist braids on m strands. The corresponding encircled link

L
(k)
m ∪ E, where E is the encircling link, is drawn in Figure 13 in the case m = 5 and k = 1.

Lemma 3.10 The link complement S3 \ L(k)
m ∪ E is independent of k.

Proof. The complement of a tubular neigborhood L
(k)
m ∪ E in S3 is homeomorphic to the com-

plement of the link drawn in Figure 14 The link complement for L
(k)
m is obtained from the link in

Figure 14 by the surgery that contracts the curve k` + m, where m is the meridian and ` is the
longitude of the encircling component E.

Figure 14: The mapping torus associated to (Σ
(k)
m , R

(k)
m ).

Consider the fibration of S3 \ L(k)
m ∪ E with fiber equal to the surface Σ

(k)
m drawn on the right in

Figure 13. The monodromy is periodic of order km (modulo the action near the boundary), and
can be seen explicitly as follows.
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The surface Σ
(k)
m is a union of m main disks (drawn vertically in Figure 13) and km attaching disks

(drawn horirzontally). We can think of the darkly shaded regions as being the positively oriented

side of Σ
(k)
m , and the lightly shaded region as being on the negatively oriented side. Number the

main disks from right to left d1, . . . , dm and the attaching disks a1, . . . , akm from top to bottom.
Then the monodromy acts by cyclically permuting the main disks

d1 → d2 → · · · → dm → d1

while rotating them by 2π
km , and the attaching disks

a1 → a2 → · · · → akm → a1,

while rotating them by 2π
m . The mapping class R

(k)
m has the property that (R

(k)
m )m rotates the

interiors of each of the disks by 360 degrees in the counter-clockwise direction. In other words, it
is isotopic to the product of left Dehn twists along boundary parallel curves. Thus we have the
following.

Figure 15: Seifert surface for full twist briad on 5 strands and corresponding Coxeter graph

(T
(1)
5 ,−1).

Lemma 3.11 The twist mapping class (Σ
(k)
m , R

(k)
m ) satisfies

(R(k)
m )km = (∂1 ◦ ∂2 ◦ · · · ∂m)−1

where ∂i is a positive Dehn twist around the ith boundary component of Σm. (Here, the ordering
of the ∂i does not matter, since the Dehn twists on the right hand side of the equation commute.)

We now show that the mapping classes (Σ
(k)
m , R

(k)
m ) are mixed-sign Coxeter mapping classes.

Consider the graph T
(k)
m with (km− 1)× (m− 1) vertices shown in the left diagram of Figure 15.

This graph captures the combinatorics of the set of loops drawn on the surface Σ
(k)
m on the right of

Figure 15. Order the columns of the graph T
(k)
m from left to right, and each column from bottom

to top. Starting from the bottom left corner, moving up the first column, then going to the bottom
of the second column to the top, etc. This ordering is consistent with arrows in the directed graph

shown in Figure 15. Assign the label −1 to all vertices and denote the signed graph by (T
(k)
m ,−1).
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Figure 16: Constructing the embedding of Σ
(k)
m in S3 by Hopf plumbings on a disk.

Proposition 3.12 The monodromy of S3 \Lm,k with fiber Σ
(k)
m is the mixed-sign Coxeter mapping

class associated to the labeled graph (T
(k)
m ,−1).

Proof. The surface Σ
(k)
m ⊂ S3 is isotopic to the surface obtained by successive Hopf plumbing (see

Figure 16). This sequence of clockwise Hopf plumbings is compatible with the ordering on T
(k)
m .

Furthemore, as seen in Figure 17, the Seifert matrix is equal to −I − A+(T
(k)
m ), where A+(T

(k)
m )

is the upper triangular part of the adjacency matrix for T
(k)
m , i.e., the directed adjacency matrix

for T
(k)
m with the given ordering of vertices. The claim thus follows from Proposition 3.5 and

Proposition 2.8.

Figure 17: Local picture of (Σ
(1)
5 , R

(1)
m ) .

Remark 3.13 A Coxeter system is spherical if its associated bilinear form is positive or negative
definite, and it is affine if its bilinear form is positive or negative semi-definite. In the classical case,
where s ≡ 1, the Coxeter system is spherical or affine if and only if a Coxeter element has spectral
radius equal to 1. In the mixed-sign case, the classification problem is more subtle. The graphs
(Tm,−1) are examples of mixed-sign Coxeter systems whose Coxeter element has spectral radius
one, but is not spherical or affine (for example, the Coxeter group contains hyperbolic elements).
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3.5 Flat structure.

We digress in this section by noting that the mapping classes (Σ
(k)
m , R

(k)
m ) are naturally endowed

with a flat structure, Furthermore, (Σm(1), R
(1)
m ) are translation surfaces. Give each d1, . . . , dm

and a1, . . . , am the flat structure of regular m-gons. Then Rm preserves the induced singular
flat structure on Σm. More precisely, the m-gons d1, . . . , dm, and a1, . . . , am are each permuted
cyclically, preserving centers and rotating the m-gons by an angle of π

m .

Figure 18: The main disks d1, . . . , dm, dm+1, where dm+1 is identified with d1 (m = 3).

Figure 18 shows two views of Σm for m = 3. The left-most figure shows a view of the surface with
boundary, where one of the three boundary curves is drawn spiraling inward. The 3-gons d1, d2, d3

are drawn as hexagons (the innermost hexagon is identified with the outermost hexagon), and the
boundary of one of the hexagons ai is drawn as a zigzag. The right-hand figure gives a side view,
where the top hexagon corresponds to the inner hexagon in the left hand diagram. Again the
bottom hexagon is identified with the top hexagon. The map Rm takes each di and ai and rotates
by an angle of π

3 in the counter-clockwise direction.

Figure 19: Two views of the twist surface (homeomorphic to a torus) for m = 3.

If we shrink the boundary of Σm to a point, then the resulting surface can be given a flat structure
as the union of 2m regular m-gons of equal size. To visualize the flat structure on the closure
Σm, one contracts the spiraling boundary curves. For example, Σ3 is a torus, and R3 preserves its
structure as a union of six equilateral triangles. In Figure 19 the surface Σ3 and its flat structure
are shown. Sides labeled with the same symbol are identified. One can see that Σ3 is a translation
surface.

The map R4 preserves the structure of Σ4 as the union of 8 squares (Figure 20). Again, we see that
Σ4 is a translation surface. While the flat structure on Σ3 has no singularities, the flat structure

29



Figure 20: The twist surface for m = 4.

on Σ4 has 4 singularities of degree 2.

3.6 Iterated Murasugi sum with twist maps

In this section we use twist maps (Σ
(k)
m , R

(k)
m ) to build families of mapping classes with the same

mapping torus.

Figure 21: The extended twist graph for m = 6.

On the level of Coxeter graphs, the construction goes as follows. Let (Γ, s) be a mixed-sign Coxeter
mapping class containing (Am,−1) as a subgraph, where Am is the standard spherical Coxeter
graph. We define an extended m-twist graph (T̃m,−1) with a distinguished (Am,−1)-subgraph,
and define a sequence of graphs (Γk, sk) obtained by iteratively joining the extended m-twist graphs.

The extended m-twist graph is the graph with m(m − 1) vertices shown in Figure 21 for m = 6.
Figure 22 illustrates the k times iterated m-twist graph (T km,−1) for k = 3. This is obtained
by identifying the top row of the m-twist graph with the bottom row of the m-twist graph, and
repeating.

Now consider a general mixed-sign Coxeter graph (Γ, s) containing an (Am,−1) subgraph. Let

(Sk, φk) be the mapping class obtained by joining (Γ, s) to the extended (T
(k)
m ,−1) along (Am,−1)

as in Figure 22.

Lemma 3.14 The mapping tori for (Sk, φk), k ≥ 1, are contained in a single homeomorphism
class M of 3-manifolds, and the mapping tori Mk for (Sk, φk) are Dehn fillings of M along the
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Figure 22: The iterated twist graph (right) for m = 4 and k = 3.

tubular neighborhood N of the suspension of O, with slope [1 : k] with respect to some fixed choice
of generators of π1(N).

Proof. This follows from the fact that the mapping tori for (Σ
(k)
m , R

(k)
m ) belong to a single homeo-

morphism class.

Remark 3.15 The proof above also applies to the iterated Murasugi sum of (Σ
(k)
m , R

(k)
m ) with an

arbitrary mapping class (S, φ) containing an embedded P2m whose alternating sides are contained
in the boundary of S.

3.7 Attaching tails, and iterated Hopf plumbing.

Consider the special case when m = 1. Then the corresponding Coxeter graph is (Ak,−1), where
Ak is the classical spherical Coxeter system. In this case, since Ak is a tree, and hence bipartite
(see Section 2.5) the signs on the vertices (in this case “-1”) can be replaced by 1, and we can take

T
(k)
2 to be the classical Ak diagram.

Let (S, φ) is any mapping class with an attaching square, and (Sk, φk) is the sequence of mapping

classes obtained by attaching (Σ
(k)
1 , R

(k)
1 ). We call (Sk, φk) the sequence of mapping classes obtained

from (S, φ) by attaching a tail.

A Salem-Boyd sequence of polynomials is a sequence of the form

Pk(x) = xkQ(x) +Q∗(x)

31



where Q(x) is a monic integer polynomial, and Q∗(x) = xdeg(Q)Q(1/x) is the reciprocal of Q(x).
These sequences were used in [35] and [7] to study properties of Salem numbers. The house |Pk| of
Pk has the following properties (see, [16] Theorem 12).

Theorem 3.16 If Pk(x) = xkQ(x) +Q∗(x) is a Salem-Boyd sequence, then

(i) the number of roots of Pk outside the unit circle is monotone increasing, and eventually con-
stant, and

(ii) limk→∞ |Pk| = |Qk|.

Mapping classes (Sk, φk) corresponding to graphs with tails are studied in [16] in the case when the
graph is dual to a chord system on a disk. In this case, it is shown that the mapping classes are
the monodromy of a sequence of links Lk in S3, obtained from a single fibered link L0 by twisting
a suitable pair of strands. Furthermore, the Alexander polynomial, or characteristic polynomial
of the action of φk on first homology, is a Salem-Boyd sequence. The proof (see [16], Theorem 9)
relies only on the form of (φk)∗ given in Proposition 2.8 and Proposition 2.12.

Theorem 3.17 ([16], Theorem 9) The Alexander polynomial ∆k corresponding to (Sk, φk) is a
Salem-Boyd sequence, and hence the homological dilatations λhom(φk) form a convergent sequence.

Corollary 3.18 Let (Sk, φk) be obtained by attaching a single tail to a mapping class (S, φ). Then
either

(i) λhom(φk) = 0 for all k, or

(ii) |∆k| converges to a real number greater than one.

Proof. This follows from Theorem 3.17 and Theorem 3.16.

Corollary 3.19 Let (Γ, s) be a connected mixed-sign Coxeter graph, v ∈ V a distinguished vertex,
and (Γk, sk) the join of Γ, s with (Ak, s(v)). Let (Sk, φk) be any Coxeter mapping class associated
to (Γk, sk). Then either

(i) φk is periodic,

(ii) φk is pseudo-Anosov, but λhom(φk) = 0 for all k, or

(iii) for large k, φk is pseudo-Anosov, and there is a constant C such that

λ(φk) ≥ C > 1.
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Proof. Since Γ is connected, each φk is either periodic, or φk is pseudo-Anosov. If |∆k| > 1
for some k, then, by Corollary 3.18, λhom(φk) = |∆k| is greater than one for k large enough. In
this case, by Proposition 2.13, φk is pseudo-Anosov, and, for any ε > 0, λ(φk) ≥ ` − ε, where
` = limk→∞ |∆k|.

Example 3.20 Let (Γm,n, s) be the graph in Figure 23. Since T
(k)
1 is a bipartite graph, and

hence (by Theorem 2.17) it is interchangeable with the standard An-Coxeter graph with all signs
positive. Thus, we can think of this graph as being obtained from the connected two vertex graph
with opposite sign labels on the vertices by joining m and n iterated twist graphs of width r = 1.
Since the graph is bipartite, the ordering of the vertices does not change value of |ωΓm,n,s|. Let
(Sm,n, φm,n) be the mapping class associated to (Γm,n, s). The surface Sm,n has genus

gm,n =

[
m+ n

2

]
,

and one or two boundary components, according to whether m+n is even or odd. Here [a] denotes
the greatest integer less than or equal to a real number a. In particular, gm,m = m.

Figure 23: mixed-sign Coxeter graph (Γ4,5, s) obtained by joining twist graphs of width 1.

The mapping classes (Sm,n, φm,n) have also been studied in a different form by P. Brinkmann [8]
and [18] (cf. [39]), yielding the following.

Theorem 3.21 (Brinkmann [8], Hironaka-Kin [18], Tsai [39]) For all m,n, (Sm,n, φm,n) is
pseudo-Anosov, and for fixed m+ n, the dilatation is minimized when m = n. Furthermore,

log(λ(φg,g)) �
log(g)

g
.

The following question is open.

Question 3.22 Is there a mixed-sign Coxeter graph (Γ, s) with vertices v1, . . . , vm (possibly counted
with multiplicity) so that the mapping classes (Sk, φk) associated to the joins of (Γ, s) with iterated
ki- twists of width 1 at each of the vi, k = (k1, . . . , km), has the asymptotic behavior

log(λ(φk)) �
1

gk
, (4)

where and gk is the genus of Sk?

3.8 Asymptotically small dilatation Coxeter mapping classes.

In this section, we prove Theorem 1.7 by showing the existence of a sequence of mixed-sign Coxeter
mapping classes (Sk, φk) whose closures (Sk, φk) have the following properties:
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Figure 24: A negatively signed Coxeter fatgraph for k = 1, k = 2 and k = 3.

(i) φk is pseudo-Anosov,

(ii) the associated stable and unstable foliations are orientable,

(iii) Sk has monotone increasing genus gk,

(iv) λ(φk) approaches 1, and furthermore

lim
k→∞

λ(φ
gk
k ) =

3 +
√

5

2
,

the smallest known accumulation point of genus-normalized dilatations.

The mapping classes (Sk, φk) are obtained from the mixed-sign Coxeter mapping classes corre-
sponding to the negatively signed graphs Γk drawn in Figure 24 by closing over all but 3 boundary
components. The graphs are given their fatgraph structures as planar graphs.

To show that the mapping classes (Sk, φk) satisfy the conditions (i)-(iv), we relate them to the
monodromy of the links drawn in 25. The figure shows pairs of equivalent link diagrams for the
mapping tori of (Sk, φk), k = 1, 2. In the left versions the shaded region shows the contribution
of the copies of (Σ3, R3). The links beside them on the right shows an equivalent positive braid
version of the links. The graphs Γk give rise to the Seifert surfaces corresponding to the latter
planar projection of the links after closing over suitable boundary components.

Lemma 3.23 The mapping classes (Sk, φk) corresponding to (Γk,−1) satisfy (i)-(iv).

By Lemma 3.14, the mapping tori for (S0
k , φ

0
k) belong to a single homeomorphism class, in this case,

it is the complement M of the 62
2-link L in S3 (see, the knot table in [32]). The link is shown in

Figure 26.

The mapping class, written as φ0 = σ1σ
−1
2 in terms of the standard braid generators, is known as

the simplest hyperbolic braid monodromy, The fibered face defined by the braid monodromy φ0

shown in the link diagram in Figure 26 was studied in [17]. The link L has two components, K1

corresponds to the strands of the braid, and K2 is the encircling link. Let t ∈ H1(M,Z) be the
meridian loop around K1 and let u ∈ H1(M ;Z) be the meridian loop around K2. Let ξ be the
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Figure 25: Link diagram for Sk, φk, for k = 1, 2.

Figure 26: The 62
2-link.

dual to t and ψ the dual to u in H1(M ;Z). Then ψ is the fibration of M corresponding to the
braid monodromy φ0. Given a fibration α : M → S1, there is a corresponding element of H1(M ;Z)
defined by the induced map α∗ : H1(M ;Z)→ Z, and hence we can write

α∗ = aψ + bξ.

The integers a and b are determined by the condition that α∗ restricted to H1(Sα;Z) is trivial,
where Sα is any fiber of α.

For each k, we will show that (Sk, φk) is the monodromy of 6kψ+ ξ. The link diagrams for (Sk, φk)
can be obtained from that of the 62

2-link shown in Figure 26, by removing a tubular neighborhood
of K2, and refilling with meridian µ′2, where

µ′2 = µ2 − k`2.

Under the induced homomorphisms ψ∗, ξ∗ : H1(M ;Z)→ H1(S1;Z) = Z,, we have ψ∗(µ
′
2) = 1, and

ξ∗(µ
′
2) = −3k. Thus, (Sk, φk) is the monodromy of the fibration defined by ψk = 3kψ + ξ.

The homological and geometric dilatations of (Sk, φk) can be computed from the Teichmüller and
Alexander polynomials of M . Since 62

2 is a symmetric braid (that is, if one can move the link
isotopically to get the same link diagram with K1 and K2 switched) it follows that the fibered face
for ψ and invariants like the Teichmüller polynomial are the same as those of the fibered face for ξ
(after switching variables). For the 62

2-link complement, the Thurson norm is defined by

||(a, b)|| = max{|2a|, |2b|},
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so for k > 1, ψk lies in the fibered face containing ξ, and the rays through ψk in H1(M ;R) converge
to the ray through ξ. Using the computations in [28] and [17], we have the following.

Corollary 3.24 The mapping classes (Sk, φk) have genus 3k − 1.

Proposition 3.25 The homological and geometric dilatations of (Sk, φk) are given by

λgeo(φk) = λ(φk) = |LT1,3k| = |x6k − x2k+1 − x3k − x3k−1 + 1|,

and
λhom(φk) = |x6k − x3k+1 + x3k − x3k−1 + 1|.

Corollary 3.26 When k is even, then (Sk, φk) is orientable, and attains Lanneau and Thiffeault’s
conjectural minimum dilatation for orientable pseudo-Anosov mapping classes on closed surfaces of
even genus.

Corollary 3.27 The mapping class (S2, φ2) is a minimum dilatation orientable mapping class for
genus g = 5..

The following was proved (in stronger form) in [17] using fibered face theory.

Lemma 3.28

lim
k→∞

λ(φk)
3k =

3 +
√

5

2
.

This completes the proof of Theorem 1.7.
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