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Abstract

This note describes some open problems concerning distributions of special classes of real
algebraic integers such as algebraic units, and Salem, P-V and Perron numbers. These special
algebraic integers appear naturally as geometric invariants in low-dimensional topology. We
relate properties of Salem, P-V and Perron to minimization problems in various geometric
settings.

1 Introduction

A complex number α ∈ C is an algebraic integer if it is a root of a monic integer polynomial. Two
algebraic integers α and β are algebraically conjugate, written α ∼ β, if α and β satisfy the same
irreducible monic integer polynomial. An algebraic integer α is an algebraic unit if α ∼ α−1.

Let α be a real algebraic integer with α > 1. Consider all β ∼ α such that β 6= α:

(i) if |β| < |α|, then α is a Perron number;

(ii) if |β| < 1, then α is a P-V number; and

(iii) if |β| ≤ 1 with at least one |β| = 1, then α is a Salem number.

In this short note, we review definitions and known results concerning distributions of P-V,
Salem and Perron numbers (Section 2), and relate them to geometric invariants in low-dimensional
topology, including lengths of geodesics, growth rates of automatic groups, and homological and
geometric dilatations of surface homeomorphisms (Section 3).

2 Distributions of algebraic integers and Lehmer’s problem

Let P be the set of monic integer polynomials. Given f ∈ P, let Sf be the set of complex roots of
f counted with multiplicity, and let S+(f) ⊂ Sf be the subset of points outside the unit circle C.
For f ∈ P define

N(f) =
∣∣S+(f)

∣∣ ;
λ(f) = max{|α| : α ∈ S(f)}; and

M(f) =
∏

α∈S+(f)

|α|.

Here an empty product is defined to equal 1. The number M(f), also an algebraic integer, is called
the Mahler measure of f .

The minimal polynomial for a root of unity is called a cyclotomic polynomial. The following are
equivalent for f ∈ P:
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(i) f is a product of cyclotomic polynomials;

(ii) N(f) = 0;

(iii) λ(f) = 1; and

(iv) M(f) = 1.

Thus, N(f), λ(f) and M(f) can be considered as measures of how far f is from being a product
of cyclotomic polynomials. Let T ⊂ P be the subset of products of cyclotomic polynomials.

While N(f) takes discrete values and λ(f) can get arbitrarily close to one from above it is not
known whether there is a lower bound for Mahler measures greater than one. In 1933 Lehmer [Leh]
posed the following problem.

Question 1 (Lehmer’s problem) Given δ > 0, does there exist a f ∈ P such that 1 < M(f) <
1 + δ?

It is not hard to see that for f ∈ P \ T , if we fix the degree d of f , then λ(f) and M(f) are
bounded from below by a number greater than one depending on d.

Up to degree 40 there is no non-cyclotomic polynomial with Mahler measure less than that of
Lehmer’s candidate polynomial

fL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

(see, for example, [Boyd1] [Mos]). The Mahler measure M(fL) is approximately 1.7628.
By a result of Smyth in 1970, Lehmer’s problem reduces to the case of reciprocal polynomials,

which we describe in Section 2.1. Section 2.2 gives some known results concerning distributions of
Perron, Salem and P-V numbers.

2.1 Reciprocal polynomials

Given f ∈ P of degree d, the reciprocal f∗(x) of f(x) is defined to be

f∗(x) = xdf(1/x).

A polynomial is reciprocal if f = f∗. Visually, a reciprocal polynomial is one for which the coeffi-
cients are palindromic, that is, they are the same written from right to left or left to right. Lehmer’s
polynomial fL is a reciprocal polynomial.

If f satisfies f = −f∗, it is called anti-reciprocal. A polynomial f is anti-reciprocal if and only
if f(x) = (x − 1)g(x) where g(x) is reciprocal. All cyclotomic polynomials are reciprocal except
(x − 1). A polynomial is reciprocal or anti-reciprocal if and only if it is a product of irreducible
reciprocal polynomials and (x − 1). A separable polynomial is reciprocal or anti-reciprocal if and
only if S(f) is closed under inverses. Thus, an algebraic integer α is an algebraic unit if and only
if its minimal polynomial is reciprocal. An irreducible polynomial with a root on the unit circle is
automatically reciprocal. Thus, minimal polynomials of Salem numbers are always reciprocal, and
the minimal polynomial of a P-V number is reciprocal only if it is quadratic.

Smyth showed [Smy] that if f 6= ±f∗, then the smallest Mahler measure is realized by

fS(x) = x3 − x− 1,

which has Mahler measure M(fS) ≈ 1.32472. Since Lehmer’s polynomial fL satisfies

M(fL) < M(fS),

it follows that to solve Lehmer’s problem it is enough to look at reciprocal polynomials.
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2.2 P-V and Salem polynomials

An interesting special case of Lehmer’s problem is when N(f) = 1. The following are equivalent:

(i) N(f) = 1;

(ii) f has a single root outside C, which is (up to sign) a Salem number or a P-V number; and

(iii) f = gh where g ∈ T and h is the minimal polynomial of a Salem number or a P-V number.

For quadratic polynomials N(f) = 1 implies that both roots are real. The reciprocal case is
discussed in Section 3.1. For irreducible polynomials of degree > 2, N(f) = 1 implies f has a Salem
root (up to sign) if and only if f is reciprocal or anti-reciprocal.

The set of P-V numbers is closed [Sal], and the smallest accumulation point is the golden mean
αG (cf. Section 3.1). A complete set of P-V numbers less than 1.6 was catalogued by Dufresnoy
and Pisot [DP].

The polynomial fS(x) = x3 − x− 1 is the minimal polynomial for the smallest P-V number θ0

[Sie], and fL is the minimal polynomial for the smallest known Salem number αL. It is an open
problem whether there is a lower bound larger than one for the set of Salem numbers, or whether
there is a Salem number less than fL.

In their study of distributions of Salem numbers, Salem [Sal] and Boyd [Boyd2] investigated
sequences polynomials of the form

Qn(t) = tnP (t)± P∗(t), (1)

for P ∈ P. The sequence of polynomials of the form given in (1) is called a Salem-Boyd sequence
for P . Salem [Sal] proved that the set of P-V numbers lies in the set of upper and lower limits of
Salem numbers by proving the following result.

Theorem 1 Given any P-V polynomial P , let Qn be a Salem-Boyd sequence for P . Then for some
N > 0, N(Qn) = 0 for n < N , and N(Qn) = 1 for n ≥ N . Furthermore, for n > N , the Salem
numbers M(Qn) = λ(Qn) converge monotonically to M(P ) = λ(P ) from above or below depending
on the sign.

In the more general setting where P ∈ P is any element, Boyd showed the following [Boyd2].

Theorem 2 Let Qn be a Salem-Boyd sequence for a monic integer polynomial P (t). Then we have
the following.

(1) N(Qn) ≤ N(P ) for all n ≥ 1;

(2) limn→∞ λ(Qn) = λ(P ); and

(3) limn→∞M(Qn) = M(P ).

Any reciprocal polynomial can be written in the form of Qn for some P and n. Thus, although
Theorem 2 doesn’t give a lower bound on M(Qn) or λ(Qn) in terms of M(P ) and λ(P ), it does par-
tition the set of Mahler measures and radii of reciprocal polynomials into (non-disjoint) convergent
families.

A polynomial f is a Perron polynomial if there is a simple real root α > 1, such that for any
other root β of f , |β| < α. Lehmer’s problem is unsolved for this special subclass of monic integer
polynomials. By definition, the characteristic polynomial of a Perron-Frobenius matrix is Perron
[Gan].

Theorem 1 generalizes to Perron polynomials as follows [Hir4].
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Theorem 3 If P is a Perron polynomial and Qn is a Salem-Boyd sequence for P . Then λ(Qn) is
an eventually monotone sequence converging to λ(P ).

In general, M(Qn) is not monotone, eventually monotone, or monotone for an arithmetic sub-
sequence.

3 Examples from low-dimensional topology and geometry

In this section, we list some occurrences of reciprocal, Salem, P-V and Perron polynomials in low
dimensional topology. These examples indicate a common underlying structure behind many of
the invariants of low dimensional topology, which is yet to be fully explored.

3.1 Quadratic polynomials

There is a bijective correspondence between Γ = SL(2, Z) and reciprocal quadratic polynomials.
This is defined by

A 7→ fA,

where fA is the characteristic polynomial for A ∈ Γ. The characteristic polynomial fA of any
element A ∈ Γ is reciprocal, since the two eigenvalues of A must multiply to 1.

The inverse map is defined as follows. Let λ be a quadratic such that a = λ + 1/λ ∈ Z, and
define

A =
(

a 1
−1 0

)
.

Then λ and λ−1 are the roots of fA.
The correspondence

Trace(A) 7→ λ(fA) (2)

is order preserving, and λ(fA) = 1 if and only if |Trace(A)| ≤ 2. Thus, non-cyclotomic reciprocal
quadratics correspond to hyperbolic elements of Γ.

Consider the action of Γ as isometries on the hyperbolic disk H2. Then hyperbolic elements
A ∈ Γ correspond to closed geodesics γA on the quotient space Γ\H2, whose length `(γA) is given
by

`(γA) = log(Trace(A)).

The correspondence given in (2) also gives rise to an ordering preserving correspondence between
λ(fA) and lengths of closed geodesics on Γ\H2.

If follows that for quadratic reciprocal polynomials f , the smallest Mahler measure greater than
one that occurs is realized by

f0(x) = x2 − 3x + 1

and M(f0) = λ(f0) = (3 +
√

5)/2.

Remark 4 There is a similar correspondence between Salem numbers and lengths of closed geodesics
on more general arithmetic quotients of H2 (see, for example, [G-H]). Thus, the minimization
problem for Salem numbers is related to the problem of finding a minimum length geodesic on an
arithmetic quotient of the hyperbolic plane.
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The smallest Mahler measure greater than one among all quadratics is realized by the non-
reciprocal polynomial

fg(x) = x2 − x− 1.

Here, M(fg) = (1 +
√

5)/2 is the golden mean. The smallest Mahler measures greater than one
for reciprocal polynomials of degrees 4 and 6 are approximately 1.72208 and 1.40127, respectively,
and hence are also larger than the smallest non-reciprocal Mahler measure M(fS). For degrees 8
and higher there always exists a reciprocal polynomial (not necessarily irreducible) with Mahler
measure greater than one and less than M(fS).

3.2 Transformations preserving lattices

Let B be a non-degenerate symmetric bilinear form on Rn, and suppose M ∈ SL(n, Z) preserves
B. Equivalently, M preserves the lattice in Rn defined by the inner product associated to B. Then
the set of eigenvalues of M is closed under inverses. Thus, if for example M has no repeated
eigenvalues, or equivalently the characteristic polynomial fM is separable, then fM is reciprocal or
anti-reciprocal (see, for example, [G-Mc], Theorem 2.1).

Consider the Coxeter element of a Coxeter system (see [Hum] for definitions). The Coxeter
element preserves an associated symmetric bilinear form defined by the Coxeter system. If (W,S)
is an irreducible Coxeter system, and f(W,S) is the characteristic polyonomial of the Coxeter element
of (W,S), then λ(f(W,S)) = 1 if and only if (W,S) is spherical or affine [A’C]. If (W,S) is irreducible
and not spherical or affine, then λ(f(W,S)) is minimized by the E10 Coxeter system (W0, S0), and
f(W0,S0) = fL is Lehmer’s polynomial ([Mc] Theorem 6.1). It follows that for any Coxeter system
(W,S), either f(W,S) ∈ T or M(f(W,S)) ≥ M(f(W0,S0), which solves Lehmer’s problem for this class
of examples.

3.3 M-matrices

Let T ∈ SL(n, Z) be a matrix satisfying

T = ±M trM−1, (3)

where M ∈ SL(n, Z), and M tr is the transpose of M . Then T−1 is conjugate to ±T tr and hence T
has reciprocal or anti-reciprocal characteristic polynomial. Such matrices are called M -matrices.

Howlett [How] showed that if T is the Coxeter element of a simply-laced Coxeter system asso-
ciated to a graph Γ, then the Coxeter element can be written in terms of the adjacency matrix A
for Γ. Let A+ be its upper triangular part. Then setting M = I − A+, we have T = −M trM−1.
This gives another proof that the characteristic polynomial of a Coxeter element is reciprocal in
the simply-laced case.

Another well-known case is the Alexander matrix of a knot (S3,K) (see [Rolf] for definitions).
Let V be the Seifert matrix for (S3,K). Then the Alexander polynomial for (S3,K) is given by
∆(S3,K)(t) = |det(tV −V tr)|, up to multiples of t±1. If V is invertible, it follows that the characteris-
tic polynomial ∆(S3,K) is reciprocal and has a monic representative. Furthermore, ∆(S3,K)(1) = ±1.
Conversely, if f is a reciprocal polynomial with f(1) = ±1, then there is a knot (S3,K), such that
∆(S3,K) = f [Seif].
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3.4 Growth rates of automatic groups

Let G be a finitely presented group, with generating set S, such that S is closed under inverses.
The growth series of G is the formal sum

Ψ(G,S)(x) =
∞∑
i=0

anxn

where an is the number of words in G of minimal word length n in the generating set S. The growth
rate of G is given by

λ(G, S) = lim sup |an|
1
n .

(See [ECH+] for more details.) The growth series Φ(G,S) is rational, for example, when G is
hyperbolic, automatic, or a Coxeter group (see for example [ECH+], [Can], for more details). In
the automatic case, we can realize λ(G, S) as λ(f(G,S)) where f(G,S) is the characteristic polynomial
of an associated matrix.

Lehmer’s polynomial appears among these examples as follows. Let (Gp1,...,pk
, Sp1,...,pk

) be
the Coxeter group of reflections through sides of a polygon in the hyperbolic plane with angles
π
p1

, . . . , π
pk

, where
1
p1

+ · · ·+ 1
pk

< k − 2,

Then Cannon and others [F-P], [C-W], [Floy] calculate the denominators of the growth series, and
show that λ(Gp1,...,pk

, Sp1,...,pk
) is a Salem number. In particular, Lehmer’s polynomal fL occurs as

the denominator for (G2,3,7,S2,3,7) and corresponds to the angle set giving rise to the smallest area
hyperbolic polygon.

There is a close relation between the automatic group structure of (Gp1,...,pk
, Sp1,...,pk

) and
the Coxeter element of (Gp1,...,pk

,Sp1,...,pk
), where (Gp1,...,pk

,Sp1,...,pk
) is the simply-laced Coxeter

system associated to the “star-like” graph with k-branches emanating from a central vertex of
lengths p1, . . . , pk. (See, for example, [Hir2]. Although the star-like graphs do not directly de-
fine the auotomatic structures of (Gp1,...,pk

, Sp1,...,pk
), calculations in [Hir1] show that the sequence

an for the growth series Ψ(Gp1,...,pk
,Sp1,...,pk

) can be computed directly from the Coxeter element
(Gp1,...,pk

,Sp1,...,pk
).

3.5 Dilatations of pseudo-Anosov maps

Let F be a compact orientable surface with negative Euler characteristic, and let φ : F → F
be a homeomorphism. The Thurston-Nielsen theory [Thu] [FLP] [CB] states that for any surface
homeomorphism φ : F → F , φ is isotopic to some Φ satisfying one of the following:

(i) Φ is periodic, i.e., Φn is the identity;

(ii) Φ is irreducible, i.e., there is a closed curve on F invariant under Φ such that complementary
components have negative Euler characteristic; or

(iii) Φ is pseudo-Anosov, i.e., there is a number λ > 1 and a pair F± of transverse measured
foliations such that

Φ(F±) = λ±1F±.

In the pseudo-Anosov case, Φ is the unique element in the isotopy class of φ with smallest topological
entropy [FLP]. The number λ(φ) = λ(Φ) is called the dilatation of φ.
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Suppose Φ is pseudo-Anosov. Then there is an embedded graph G in F representing the spine
of F , such that the transition matrix MΦ for Φ restricted to G is a Perron-Frobenius matrix. Thus,
the characteristic polynomial fφ of MΦ is a Perron polynomial. Furthermore, the Perron number
associated to fφ equals the dilatation λ(φ). The transition matrix MΦ has the property that M tr

Φ

is conjugate to M−1
Φ and hence its characteristic polynomial fφ is reciprocal.

(b)

m n m n

(a)

Figure 1: Braids with small dilatation.

In [HK] we study two families of pseudo-Anosov maps on a marked disk associated to the braids
βm,n (a) and σm,n (b) drawn in Figure 1, and show that their dilatations satisfy the characteristic
equations

xn+1Rm(x) + (Rm)∗(x)

for βm,n and, when n ≥ m + 2,
xn+1Rm(x)− (Rm)∗(x)

for σm,n, where
Rm(x) = xm(x− 1)− 2.

The polynomials Rm have m roots outside the unit circle. Thus, R1(x) is a P-V polynomial, and
hence by Theorem 1 the dilatations of β1,n and σ1,n (n ≥ 3) are Salem numbers and are monotone
(decreasing for β1,n and increasing for σ1,n). For all m, the polynomials Rm are Perron polynomials,
and hence by Theorem 3 the dilatations are eventually monotone (again, decreasing for βm,n and
increasing for σm,n). Since λ(Rm) approaches 1 as m goes to infinity, it follows that for any ε > 0,
it is possible to make m and n large enough so that the dilatations are within ε of 1.

The pseudo-Anosov maps defined by βm,n and σm,n lift to homeomorphisms of genus g compact
surfaces with b boundary components via double covering, where, if m + n is even, g = m+n

2 and
b = 1, and if m + n is odd, g = m+n−1

2 and b = 2. Let φg be the lift of σg−1,g+1. Then

log(λ(φg)) = log(λ(σg−1,g+1)) �
1
g
,

and we recover Penner’s result on least dilatations of pseudo-Anosov maps on orientable genus g
surfaces. The lifts of βm,n are the monodromy of fibered two-bridge links (see also [Bri] and [Hir4]).

Reflecting βm,n across the axis containing the marked points, we see that the two braids are
in the form given in Figure 2. A conjecture of de Carvalho and Hall [dCH], predicts that under
certain conditions on B and for n large enough, braids of the form given in Figure 2 (left) will
determine pseudo-Anosov maps whose invariant fibrations will have nice limiting behavior. Thus,
it is natural to ask the following.

Question 2 Under what conditions on B will the braids in the form given in Figure 2 (left) have
dilatations satisfying a Salem-Boyd sequence?
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(b)

n

B

m

m+1 m

m

(a)

Figure 2: Braid form.

For βm,n and σm,n the limiting behavior is the same, and this occurance explains the appearance
of Rm for the characteristic equations of both braid families.

Problem 3 Characterize pairs of distinct braids which if plugged into B will give rise to Salem-
Boyd sequences associated to the same polynomial P and differing by the sign in front of P .

3.6 Homological dilatation

Let φ : F → F be a surface homeomorphism, and let φ∗ be the restriction of φ to the first homology
H1(F ; R). If Φ is a pseudo-Anosov representative of the isotopy class of φ, then since MΦ measures
the growth rate of word lengths of π1(F ) under iterations of Φ (see, for example, [FLP], [BH]) we
have in general

λ(φ∗) ≤ λ(φ).

If, in addition, the invariant foliations F± are orientable, then the largest eigenvalue λ(φ∗) of φ∗,
called the homological dilatation of φ, equals λ(φ) [Ryk].

A link (S3,K) is a pair where K is the disjoint union of a finite number of smoothly embedded
circles in S3. A link (S3,K) is fibered if for a regular neighborhood U(K) of K in S3, S3 \U(K) is
a locally trivial fiber bundle over S1. This fiber bundle structure over S1 is not necessarily unique
when K has more than one compoent. Given a fibration let Σ be a fiber. Then S3 \ U(K) is
homeomorphic to the product of Σ × [0, 1] modulo an identification (x, 1) = (φ(x), 0), where φ is
a surface homeomorphism from Σ to itself, i.e., it is the mapping torus for φ. If K is a knot, then
the characteristic polynomial of φ∗ equals ∆(S3,K). In general, if f is a monic reciprocal integer
polynomial, then there is a fibered link such that f equals the characteristic polynomial of φ∗ up
to a multiple of (x − 1) [Kan]. It thus follows that any question about algebraic integers can be
translated to a question about homological dilatations of fibered links.

Problem 4 Characterize fibered links with small Mahler measure greater than one.

Using the similar forms of Alexander matrices and Coxeter elements described in Section 3.3, it
is possible to construct many examples of fibered knots (and links) such that

fφ∗(x) = f(W,S)(−x),

where (W,S) is a simply-laced Coxeter system [Hir3].
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One such example is the (−2, 3, 7)-pretzel knot K2,3,7, which is a fibered knot associated to the
E10 Coxeter system. Since K2,3,7 has only one component,

fφ∗(x) = ∆K2,3,7(x).

Thus, ∆K2,3,7(−x) = fL(x) is the Lehmer polynomial (cf. Section 3.2).
If Kn is obtained from a fibered link K0 by plumbing a (2 − n)-torus link (see, for example,

[Mur] and [Har] for definitions), we say that Kn is obtained from K0 by iterated Hopf plumbing.
In [Hir4], we show that the characteristic polynomial of the homological monodromy of such a Kn

is a Salem-Boyd sequence. As an example, braids of the form given in Figure 2 define via double
covering homeomorphisms of surfaces, which are obtained by iterated Hopf plumbing.

Problem 5 Let φ : F → F be a homeomorphism of a surface with boundary, and let φn : Fn → Fn

be obtained by iterated Hopf plumbing. Under what conditions on φ and n is φn pseudo-Anosov,
and in this case do the dilatations satisfy a Salem-Boyd sequence?
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