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1 Minimum dilatation problem

Let φ : S → S be a pseudo-Anosov mapping class on an oriented surface S = Sg,n of genus g and
n punctures. The dilatation λ(φ) is the expansion factor of φ along the stable transverse measured
singular foliation associated to φ, and is a Perron algebraic unit greater than one. The set of
dilatations for a fixed S is discrete [17].

Let P(S) be the set of all pseudo-Anosov mapping classes on S. Let δ(S) be the minimum dilatation
for φ ∈ P(S). Let Pg,n be the set of pseudo-Anosov mapping classes on Sg,n with dilatation equal
to δ(Sg,n).

The minimum dilatation problem (cf. [15, 14, 3]) can be stated as follows.

Problem 1 (Minimum Dilatation Problem I) What is the behavior of δ(Sg,n) as a function
of g and n?

The exact value of δ(Sg,n) is not known except for very small cases (for example, for closed surfaces,
the answer is only known for g = 2 [6]). However, more is known about the asymptotic behavior
of δ(Sg,n) as a function of g and n, and the topological Euler characteristic χ(Sg,n).

Let P =
⋃
S P(S). The normalized dilatation is defined by

L : P → R+

(S, φ) 7→ λ(φ)|χ(S)|.

For ` > 1, we say φ is `-small if L(φ) ≤ `. Let P(`) be the set of `-small pseudo-Anosov maps.

The current smallest known accumulation point of the image of L is

`0 =

(
3 +
√

5

2

)2

. (1)
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(See [8, 1, 12].)

Problem 2 (Assymptotic Minimum Dilatation Problem) Is there an accumulation point for
the image of L that is smaller than `0?

One can also formulate the minimum dilatation problem from a geometric rather than numerical
standpoint.

Problem 3 (Minimum Dilatation Problem II) What do small dilatation mapping classes look
like?

In the remainder of this note, we will describe three constructions of mapping classes with small
dilatation. These constructions all define mapping classes that can be thought of as nearly periodic.
We begin in Section 2 by making precise a notion of deformations of mapping classes on arbitrary
surfaces (cf. [16]), and show that to solve Problems 2 and 3 it suffices to investigate the deformation
theory of mapping classes (cf, [4]). Two nearly periodic constructions are described in Section 3.
These are obtained by combining a periodic mapping class, or a periodic mapping class relative
to boundary, with a mapping class that is the identity outside a subsurface of bounded Euler
characteristic. We give a third construction in Section 4 using generalized Coxeter graphs to
construct periodic mapping classes that form the building block for nearly periodic examples. In
Section 5 we discuss further questions concerning the singularities of a mapping class, and their
orbits.

2 Three-manifolds, fibered faces and small dilatation mapping
classes.

Given a hyperbolic 3-manifold M (possibly with cusps), let Ψ(M) be the set (possibly empty) of
fibrations of M (with connected fibers) over the circle S1. Let Φ(M) be the set of monodromies of
elements of Ψ(M). By allowing M to vary, we obtain a new partition of the set of pseudo-Anosov
mapping classes

P =
⋃
M

Φ(M).

For fixed M , the set Φ(M) partitions further. Let || || be the Thurston norm on H1(M ;R) defined
in [16]. This norm has the property that if ψ ∈ H1(M ;Z) is induced by a fibration of M over S1,
i.e., it is a fibered element, then the the topological Euler characteristic of the fiber surface χ(S)
satisfies

||ψ|| = |χ(S)|.

The unit norm ball for || || is a convex polyhedron with vertices defined over the integers. For any
open top dimensional face F , the primitive integral elements in the cone over F in H1(M ;R) are
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either all fibered, or are all non-fibered. In the former case, F is called a fibered face. The primitive
elements in the cone over F are in 1-1 correspondence with rational points on F .

For a fibered face F and subset K ⊂ F , let Φ(M,K) be the set of monodromies (S, φ) of the
fibrations corresponding to rational points on K. Then the Φ(M,F ), where F ranges over fibered
faces of M , partition the set P of all pseudo-Anosov mapping classes on punctured oriented surfaces
of finite type. Furthermore, by work of Fried [5] and McMullen [14] the normalized dilatation
function L extends to a convex function on F going to infinity toward the boundary of F and has
a unique minimum in the interior of F . It follows that if K ⊂ F is a compact subset of F , then
L is bounded on Φ(M,K), and hence Φ(M,K) defines a family of small dilatation pseudo-Anosov
mapping classes.

A theorem of Farb-Leininger-Margalit [4] shows, essentially, that all small dilatation mapping classes
are contained in Φ(M,K), for a finite set of pairs (M,K), as we will now explain. Consider the
subcollection P0 ⊂ P consisting of elements (S, φ) whose stable and unstable foliations have no
interior singularities. Given (S, φ) ∈ P, let S0 be the complement of the interior singularities in S,
and let φ0 be the restriction of φ to S0. Then we have the following.

Lemma 4 The dilatations of (S, φ) and (S0, φ0) satisfy

λ(φ0) = λ(φ).

It follows that there is a surjective map
P → P0

that preserves dilatation and increases normalized dilatation. Let P0(`) be the set of pseudo-Anosov
mapping classes with normalized dilatation less than or equal to `.

Theorem 5 (Farb-Leininger-Margalit [4]) Given ` > 1, there is a finite set of 3-manifolds
M1, . . . ,Mr so that

P0(`) ⊂
r⋃
i=1

Φ(Mi).

Remark 6 It follows from Theorem 5 that to understand the shape of all `-small dilatation map-
ping it suffices to understand how mapping classes vary in Φ(M,K) for fixed M and K.

We also mention the following Corollary to Theorem 5.

Corollary 7 If P ⊂ P0(`) is any subset, then there is a 3-manifold M so that

P ∩ Φ(M)

is infinite.

3



There has been extensive study, for example, of the so-called magic manifold as a potential manifold
associated to small dilatation pseudo-Anoosv maps [?, 12, ?].

Penner showed [15](cf. [14]) that there exists an ` > 1 so that the elements of Pg,0 are `-small
for large enough g, Let P 0

g,n be the elements of Pg,n after removing singularities. By the Farb-
Leininger-Margalit theorem, we have the following.

Corollary 8 There is a finite set of Mi such that⋃
g

P 0
g,0 ⊂

r⋃
i=1

Φ(Mi),

and there exists a 3-manifold M so that ⋃
g

P 0
g,0 ∩ Φ(M)

is an infinite set.

Tsai showed in [18] that for fixed g ≥ 2, the set
⋃
n Pg,n is not `-small for any `. It is plausible,

however, that Farb-Leininger-Margalit’s finiteness theorem extends to families such as
⋃
n Pg,n.

Question 9 For which g ≥ 2 does there exist a finite set of Mi so that

⋃
g,n

P 0
g,n ⊂

k⋃
i=1

Φ(Mi) ?

Non-hyperbolic Dehn fillings. Let g ≥ 2 and consider (Sg,n, φg,n) ∈ Pg,n. Let M be the
mapping torus. Then either φ is not pseudo-Anosov, and hence the corresponding Dehn filling of
M is not hyperbolic, or φ is pseudo-Anosov and we have

λ(φ) ≥ λ(φ) ≥ λ(φg,0) > 1.

The latter can only happen for a finite number of n, since for fixed g,

lim
n→∞

λ(φg,n) = 1

(see [18]).

It follows that aside from a finite number of n, the Dehn filling M(φg,n) is non-hyperbolic. Thus,
an affirmative answer to Question 9 implies that for each g there is a 3-manifold M such that

Φ(M) ∩

(⋃
n

Pg,n

)
is infinite (accumulating toward the boundaries of fibered faces of M) and this M admits an infinite
number of non-hyperbolic Dehn fillings corresponding to minimum dilatation mapping classes.
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Question 10 Let S be a fixed surface with boundary, and let φ ∈ P(S) be an element of min-
imum dilatation. Is the Dehn filling of the mapping torus of (S, φ) corresponding to φ always
non-hyperbolic?

If the answer to Question 10 is negative, it implies that for some g ≥ 2, the sequence δg,n is not
strictly monotone decreasing as a function of n (cf. [3]).

3 Two constructions of nearly periodic mapping classes with small
dilatation.

It is reasonable to guess that small dilatation mapping classes should be “nearly” periodic. We
give two descriptions of sequences of mapping classes that are of this form.

Penner-type sequences. Let φ ∈ P(S) be a mapping class with the following properties:

(i) S admits a periodic map Rk : S → S of order k with fundamental domain a subsurface Σ with
boundary,

(ii) there are two disjoint unions of arcs B+ and B− on the boundary of Σ so that

Rk(B
−) = B+ = Σ ∩Rk(Σ),

(iii) η : S → S is the identity map outside of Σ,

(iv) γ is a simple-closed curve on Σ ∪RkΣ ∪ · · ·RskΣ with s < k, and

(v) Riγ is disjoint from γ for all i ≤ s.

A sequences of mapping classes (Sk, φk) is of Penner-type if for some Rk, γ, η,Σ, B
± as above,

φk = Rk ◦ ∂γ ◦ η,

where ∂γ is the (right or left) Dehn twist centered at γ. Let C = |χ(Σ ∪ γ)|. We say that the
Penner sequence has support bounded by C. Given a sequence of Penner-type, let Σ = Sk/Rk, and
let φ be the composition of ∂γ ◦ η, where γ is the image of γ in the quotient space Sk.

Theorem 11 ([10]) Let (Sk, φk) be a Penner-type sequence. Then (Sk, φk) is pseudo-Anosov for
large k if and only if (Σ, φ) is pseudo-Anosov. In this case, the normalized dilatations L(Sk, φk)
converges to L(Σ, φ) and hence is bounded.

Question 12 (Farb-Leininger-Margalit) Can any small dilatation mapping class be constructed
as a composition of a periodic mapping class and a mapping class that is the identity outside a locus
with bounded Euler characteristic?
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Twisted mapping classes. Let Pm be a closed 2m-gon with alternate sides removed. Let
(S1, φ1) and (S2, φ2) be two mapping classes with proper embeddings Pm ⊂ Si, for i = 1, 2. Then
the Murasugi sum of (S1, φ1) and (S2, φ2) equals (S, φ), where S is the result of gluing S1 and S2
along the corresponding mages of Pm and φ is the composition of the extensions of φ1 and φ2 by
the identity on S.

In [9], we show the following.

Lemma 13 For each m, there is a family of mapping classes (Σk, σk) so that

(i) σmkk is a composition of Dehn twists centered at boundary components of Σk,

(ii) there exist mk disjoint embedded copies of Pm in Σk, and

(iii) the mapping tori of (Σk, σk) are independent of k.

The surfaces Σk constructed in [9] come with a distinguished proper embedding of Pm. Let (S0, φ0)
be any mapping class with a proper embedding of Pm in S0. Let (Sk, φk) be the mapping classes
obtained by Murasugi sum of (S0.φ0) with (Σk, σk) along Pm.

Lemma 14 ([7]) The mapping tori for (Sk, φk) have homeomorphism type that is independent of
k.

Theorem 15 ([7]) For any choice of (S0, φ0), the mapping classes (Sk, φk) correpsond to a con-
vergent sequence on a fibered face (possibly converging to the boundary).

Theorem 16 ([9]) There exists (S0, φ0) so that (Sk, φk) converge to a point in the interior of a
fibered face, and

log(λ(φk)) �
1

k
.

In particular, there is an (S0, φ0) so that by closing over the boundary of Sk, we obtain orientable
mapping classes (Sk, φk) such that

lim
k→∞

λ(φk)
gk =

3 +
√

5

2
,

where gk is the genus of Sk.

4 Small dilatation orientable pseudo-Anosov mapping classes from
mixed-sign Coxeter graphs.

In this section, we construct small dilatation quasi-periodic mapping classes using generalized
Coxeter graphs.
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Let Γ be a simply-laced Coxeter graph with vertices V and a sign-labeling s : V → {±1}. A
geometric realization of Γ is a pair (S,G), where S is a compact oriented surface, and G is a set
of simple-closed curves on S in general position with a bijection f : V → G so that the geometric
intersection matrix for {f(v) | v ∈ V} in S equals the incidence matrix for V on Γ. The geometric
realization (S,G) determines a map from the Artin group of Γ to the mapping class group of S
given by sending generators of the Artin group to Dehn twists centered at the curves in G. Let
φ : S → S be the composition of Dehn twists centered at the curves of G with respect to some
ordering. The graph Γ determines (S,G) once we add the following requirements:

(a) the realization (S,G) respects a given fat graph structure on Γ;

(b) S has a deformation retract to the union of curves in G;

(c) for a given ordering on the vertices {v1, . . . , vk} of Γ, if i < j, then the algebraic intersection
of the curves γi and γj is non-positive; and

(d) the ordering of G used to define φ is compatible with the ordering in (c).

Given a surface S with boundary, let S be the closed surface obtained by filling in the boundary
components of S with disks. If φ is a mapping class on S, then let φ be the isotopy class of the
canonical extension of φ over S. We call (S, φ) the closure of the mapping class (S, φ).

Question 17 For which g can the minimum dilatation orientable mapping classes on a closed
surfaces of genus g be realized as the closure of a mixed-sign Coxeter mapping class?

In [9], we show using results of [13] that minimum dilatation orientable mapping classes for genus
g = 2, 3, 4 and 5 can be realized as the closures of mixed-sign Coxeter mapping classes.

The structure of the mixed-sign Coxeter mapping classes is strongly associated to properties of
an associated reflection system, which we call the mixed-sign Coxeter system. These are defined
in [9]. The key property is that the Coxeter element (a product of reflections) of the mixed-sign
Coxeter system has spectral radius equal to the spectral radius of the homological action of the
corresponding mapping class (a corresponding product of parabolic elements). One expects small
dilatation mapping classes to come from Coxeter graphs that are the join of a small Coxeter graph
with a Coxeter element of spectral radius 1.

Consider the graph in Figure 1. The positively signed (or classical) Coxteter system associated
to this graph is of higher rank type [2], and in particular none of its Coxeter elements have finite
order. When the vertices of this graph are all given negative signs, however, and the vertices are
ordered from top to bottom, the Coxeter element has finite order, but the Coxeter group can have
infinite order, as is true for the Coxeter graph in Figure 1. One can see this by noticing that the
graph contains bipartite Coxeter subgraphs that are non-spherical or affine.

The example in Figure 1 can be generalized to graphs with m × m vertices for m ≥ 2 (see [9]).
Broadly speaking, mixed-sign Coxeter graphs provide a larger set of examples of periodic mapping
classes than in the classical case. These mapping classes may in turn be used to construct further
examples of small dilatation mapping classes.
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Figure 1: A negatively signed graph with finite order Coxeter element.

Problem 18 Classify mixed-sign Coxeter graphs. In particular, which mixed-sign Coxeter graphs
have a Coxeter element of finite order?

5 Singularities of mapping classes

We conclude this note with some further questions concerning the shape of small dilatation mapping
classes (S, φ). These concern the associated local Euclidean structure on S so that φ stretches in
one direction by λ > 1 and in the other by 1

λ .

Let P∗,0 =
⋃
g Pg,0. In [8], we find a sequence (Sg, φg) ∈ P, where Sg is a closed surface of g ≥ 2,

and L(Sg, φg) converges to `0. For these examples, (Sg, φg) has either 2 or 4 singularities.

Question 19 Is there a bound on the number of singularities of elements of P∗,0?

By Theorem 5, we know, for example, that there is a finite collection of hyperbolic 3-manifolds
Mi such that the elements of P∗,0 are, after removing singularities, contained in Φ(Mi) for some i.
Since the number of orbits of the singularities an element of Φ(Mi) equals the number of cusps of
Mi, this means that the number of orbits must be bounded.

Question 20 What is the maximum number of orbits of singularities for (S, φ) ∈ P∗,0?

Now consider Pg,∗ =
⋃
n Pg,n. If Question 9 has an affirmative answer, then again, we see that the

number of orbits of the singularities of Pg,n must be bounded. On the other hand, by a theorem of
Thurston, a hyperbolic 3-manifold with a single cusp has at most a finite number of non-hyperbolic
Dehn fillings. Thus, an affirmative answer to Question 9 would imply that for fixed g there are an
infinite number of elements of Pg,∗ with punctures lying in more than one orbit. For g = 0, the
smallest known examples have one orbit (see [11]).

The following questions are analogs of Question 19 and Question 20 for the punctured case.

Question 21 For each fixed g, is there a bound on the number of interior singularities of elements
(S, φ) ∈ Pg,n?
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Question 22 For each fixed g is there a bound on the number of orbits of punctures for (S, φ) ∈
P 0
g,n?
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foliations. Ann. Sci. École Norm. Sup., 33:519–560, 2000.

[15] R. Penner. Bounds on least dilatations. Proceedings of the A.M.S., 113(2):443–450, 1991.

[16] W. Thurston. A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc., 339:99–130,
1986.

9



[17] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer.
Math. Soc. (N.S.), 19(2):417–431, 1988.

[18] C. Tsai. The aymptotic behavior of least pseudo-Anosov dilatations. Geometry and Topology,
13:2253–2278, 2009.

10


