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Mandelbrot Set

For c any complex constant, consider the polynomial function

fc : z 7→ z2 + c

acting on the complex plane.
We can identify the the set of complex numbers C with the
Euclidean plane R2:

z = (x , y)

c = (c1, c2)

fc(x , y) = (x2 − y2 + c1, 2xy + c2)

c1, c2, x , y are real numbers
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Mandelbrot Set

The dynamical behavior of the maps fc fall into one of three
classes:

1 there are (non-empty) open regions that are attracted to
infinity and open regions that approach a periodic cycle (these
regions are separated by what is called the Julia set);

2 there is no finite attractive periodic cycle, but there are points
that stay bounded under iterations of the map (the points
that stay bounded form the Julia set); and

3 all points are attracted to infinity (e.g., if |c| is large enough).
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Mandelbrot Set

Figure: Julia set for z 7→ z2 − 1

Figure: Julia set for z 7→ z2 + i



Lehmer’s Number and the Golden Mean

Mandelbrot Set

In the 1970’s and 1980’s, B. Mandelbrot working at IBM Watson
Research Center asked, what happens when you plot the values of
c for which the dynamics have Type 1?

(R. Brooks, J. Hubbard, A. Douady, D. Sullivan, others...)
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Mandelbrot Set

Figure: Mandelbrot Set (taken from Curt McMullen’s web gallery)
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Zooming in on the Mandelbrot Set. VIMEO

The video illustrates some themes that occur throughout
mathematics.

Building on simple rules, one can create and explore a world,
in which even the most naive questions are difficult to solve.

The insights and language that are developed to understand
and solve one problem, can be re-used in many settings.

continuous parameter spaces for geometric structures
deformations of structures and corresponding deformations of
invariants

Deep investigation leads to complicated patterns from which
certain essential recurring objects appear.

http://vimeo.com/6035941
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Part II: Lehmer’s problem
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Lehmer’s problem

Algebraic integers

Monic integer polynomial:

p(x) = xn + an−1x
n−1 + · · ·+ a0, ai ∈ Z.

Algebraic integer α ∈ C:

Solution to p(α) = 0, for some monic integer polynomial
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Lehmer’s problem

Some properties

The set of algebraic integers...

contains the regular integers,

is closed under +,−, and ×,

is countable, and

is dense in C.
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Lehmer’s problem

Example
Golden Mean: φ = 1 + 1

1+ 1

1+ 1
1+···

≈ 1.618034

φ is a root of x2 − x − 1.

Figure: Acropolis in Athens, Greece, and spiraling squares
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Lehmer’s problem

Location of zeros: roots of unity

Figure: Roots of p(x) = x20 − 1.
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Lehmer’s problem

Location of zeros: golden mean and its conjugate

Figure: Roots of p(x) = x2 − x − 1 and unit circle.
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Lehmer’s problem

Location of zeros: a quintic polynomial

Figure: Roots of p(x) = x5 − x2 − 1 and unit circle.
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Lehmer’s problem

Invariants of monic integer polynomials

Mahler measure: Mah(p(x)) = Πp(µ)=0max{|µ|, 1}.

House: |p(x)| = max{|µ| : p(µ) = 0}.

N(p(x)) = #{µ p(µ) = 0, |µ| > 1}.

Remark: |p(x)| ≤ Mah(p(x)) ≤ |p(x)|N(p(x)).

Question (Lehmer’s problem, 1933)

Given δ > 0, is there a monic integer polynomial p(x) so that

1 < Mah(p(x)) < 1 + δ?
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Lehmer’s problem

Palindromic polynomials

palindromic polynomials:

p(x) = x2n + an−1x
2n−1 + · · ·+ a1x

n+1 + a1x
n + · · ·+ an−1x + 1.

Property: if µ is a root of p(x), then so is 1
µ . We also say p(x) is

reciprocal.
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Lehmer’s problem

Some subclasses of algebraic integers

Perron polynomials: p(x) has a root α > 0 such that α = |p(x)|
and for all other roots µ of p(x),

|µ| < |p(x)|.

Subcases:

Salem polynomials: p(x) is palindromic and number of roots of p
outside the unit circle N(p(x)) = 1.

Pisot polynomials: p(x) is non-palindromic and number of roots
of p outside the unit circle N(p(x)) = 1.

Perron, Salem and Pisot numbers are the house of Perron, Salem

and Pisot polynomials
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Lehmer’s problem

Properties:

Mah(p(x)) = 1 if and only if all roots of p(x) are roots of
unity.

(Smyth) The smallest Mahler measure for non-reciprocal
polynomials is given by

µP = Mah(x3 − x − 1) ≈ 1.32472,

x3 − x − 1 is a Pisot Polynomial.
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Lehmer’s problem

Smallest Pisot number

Figure: Roots of smallest Pisot polynomial pL(x) = x3 − x − 1.
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Lehmer’s problem

Properties:

Mah(p(x)) = 1 if and only if all roots of p(x) are roots of
unity.

(Smyth) The smallest Mahler measure for non-reciprocal
polynomials is given by

µP = Mah(x3 − x − 1) ≈ 1.32472,

x3 − x − 1 is a Pisot Polynomial.

Lehmer’s number is smaller than the smallest non-reciprocal
Mahler measure

λL = Mah(pL(x)) ≈ 1.17628 < µP ,

pL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 is a Salem
polynomial.
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Lehmer’s problem

Lehmer’s number

Figure: Roots of Lehmer’s polynomial
pL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.
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Lehmer’s problem

Properties:

Mah(p(x)) = 1 if and only if all roots of p(x) are roots of
unity.

(Smyth) The smallest Mahler measure for non-reciprocal
polynomials is given by

µP = Mah(x3 − x − 1) ≈ 1.32472,

x3 − x − 1 is a Pisot Polynomial.

Lehmer’s number

λL = Mah(pL(x)) ≈ 1.17628 < µP ,

pL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 is a Salem
polynomial.

Open problem: Is there a polynomial p(x) with

1 < Mah(p(x)) < λL?
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Lehmer’s problem

Assume p(x) is not a product of cyclotomic polynomials.

Still open questions:

Is the minimum Mah(p(x)) greater than one attained for p(x)
non-cyclotomic?

Is the minimum attained by a Salem number?

Is there a universal lower bound greater than 1 for

L(p(x)) = |p(x)|deg(p(x))?
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Mapping classes on Surfaces

Let S be a compact surface of genus g with n boundary
components.

Let f : S → S be a mapping class, that is, a self-homeomorphism
taken up to isotopy relative to the boundary.

There are three types...
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Mapping classes on surfaces

Nielsen-Thurston classification of mapping classes

f is either

periodic f n = id,

reducible f (γ) = γ for some essential simple closed curve
γ ⊂ S , or

pseudo-Anosov if `ω(f n(γ)) has growth rate λ > 1, where λ
does not depend on choice of Riemannian metric ω or γ. (can
think of as a well-mixing property)
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Mapping classes on surfaces

Action on essential simple closed curves

Example: a pseudo-Anosov map on the S0,4, the sphere with
4 boundary components.
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Mapping classes on surfaces

simplest hyperbolic braid:
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Mapping classes on surfaces

Action of the mapping class

Action of the mapping class on a simple closed curve.
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Action on a simple closed curve (one application of map):
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Action on a simple closed curve:
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Mapping classes on surfaces

Action on a simple closed curve (2 applications of map):
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Mapping classes on surfaces

Action on a simple closed curve:
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Mapping classes on surfaces

Action on a simple closed curve (3 applications of map):

back to start
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Mapping classes on surfaces

Train track compatible with simplest pseudo-Anosov braid
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Mapping classes on surfaces

After 1st application of map (with train track):

skip forward
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Mapping classes on surfaces

Curve γ after 2nd application of map:
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Mapping classes on surfaces

After 2nd application of map (with train track):
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After 2nd application of map (with train track):
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Mapping classes on surfaces

Train track with edge weights (after 2nd application of
map):

skip forward
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Mapping classes on surfaces

Curve γ after 3rd application of map:
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Mapping classes on surfaces

After 3rd application of map (with train track):
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Mapping classes on surfaces

Train track with edge weights (after 3rd application of
map):

back to start skip forward
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Mapping classes on surfaces

(Thurston) Pseudo-Anosov mapping classes have the property that
for some train track, every essential simple closed curve is
eventually carried on the train track. Thus the action of the
mapping class on the train track determines the dilatation λ.
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Transition matrix

T =

[
1 1
1 2

]
.

In our example, [
0
2

]
7→

[
2
4

]
7→

[
6
10

]
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Mapping classes on surfaces

Consequence:

Dilatations are...

Perron numbers, and

satisfy reciprocal polynomials.

Open question (W. Thurston): Are all Perron units realizable
as the dilatation of a pseudo-Anosov mapping class?
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Mapping classes on surfaces

Simplest hyperbolic braid and the golden mean

Define the normalized dilatation of a mapping class f : S → S by

L(S , f ) = λ(f )|χ(S)|.

The smallest known accumulation point of L(S , f ) is(
3 +
√

5

2

)2

= |x2−3x+1|2 = (golden mean+1)2 = (golden mean)4,

realized by the simplest hyperbolic braid.
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Lehmer’s number and the golden mean

The simplest hyperbolic braid generates an infinite family of
mapping classes on different surfaces.

The function L behaves continuously under deformations in
this family. (W. Thurston, D. Fried, C. McMullen)

In this family, there is a mapping class with dilatation equal to
Lehmer’s number.
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Mapping classes on surfaces

Lehmer’s number and golden mean

An analysis of the family yields the (Teichmüller polynomial)

p(u, t) = u2 − u(1 + t + t−1) + 1.

All the dilatations in the family can be computed using this
polynomial. In particular,

golden mean + 1 = |p(x , 1)| = |x2 − 3x + 1|

and

Lehmer’s number = |p(x6, x)| = |x12 − x7 − x6 − x5 + 1|.
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Mapping classes on surfaces

Summary

In the context of normalized dilatations of pseudo-Anosov mapping
classes, the 4th power of the golden mean is the conjectural
minimum, and it is realized by the simplest pseudo-Anosov braid.

Lehmer’s number appears in the family of dilatations naturally
associated to the simplest pseudo-Anosov braid by ”going up one
dimension” and using the geometry of 3 dimensional manifolds.

Analogous to the Mandelbrot set, the golden mean and Lehmer’s
number occurs and recurs as one delves into questions about the
dynamical complexity of algebraic integers and mapping classes of
surfaces.
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Thank you!

VIMEO

http://vimeo.com/6035941
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