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The augmented deformation space of rational maps

Eriko Hironaka

Abstract. It was recently shown that the Epstein deformation space of marked
rational maps with prescribed combinatorial and dynamical structure can be
disconnected. For example, the family of quadratic rational maps with a pe-
riodic critical cycle of order 4 and an extra critical value not lying in this
cycle has a deformation space with infinitely many components. We study the
structure of the augmented deformation space for this example, and show, in
particular, that the closure of deformation space in augmented deformation
space is also disconnected in this case.

In celebration of Lê Dũng Tráng’s 70th birthday

1. Introduction

Let A and B be two finite subsets of the 2-dimensional sphere S2 such that
|A|, |B| ≥ 3, and let f, ι : (S2, A) → (S2, B) be two maps of pairs:

f : (S2, A) → (S2, B)

a branched covering with branch values contained in B, and

ι : (S2, A) ↪→ (S2, B)

a homeomorphism identifying domain and range, and A with a subset of B.
The Epstein deformation space Df,ι is defined as the equalizer of the induced

maps on Teichmüller spaces

f∗, ι∗ : T(S2,B) → T(S2,A).

In unpublished work from the 1990s, A. Epstein showed that if f is not Lattès1,
then Df,ι is either empty or a complex |B|− |A| dimensional submanifold of T(S2,B)

[7]. This generalizes a seminal result of W. Thurston who showed that in the
postcritically finite case, when A = B, either Df,ι is empty, f is a Lattès example,
or Df,ι contains exactly one point [6]. In particular, Df,ι is always connected in the
postcritically finite case. When f is not post-critically finite, then Df,ι need not be
connected [11], but so far there is only one known class of examples.

Problem 1.1. What are necessary and sufficient conditions for Df,ι to be
connected?

This work was partially supported by a grant from the Simons Foundation #426722.
1See [15] for definitions.
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The counter-example to connectedness in [11] is part of a class of quadratic
rational maps studied by Milnor in [14]. These are denoted Pern(0) and have one
periodic n-cycle containing a single critical point, and the behavior of the other
critical value under iteration is unspecified. If in addition the extra critical value
does not lie in the first critical n-cycle, the rational map is said to be in Pern(0)∗.
Given an element F ∈ Pern(0)∗ let f, ι : (S2, A) → (S2, B) be defined so that f
is the topological covering underlying F , ι is a identification of domain and range
of f so that A ⊂ B, A is the critical n-cycle, and B is the union of A and the
extra critical point. For n = 3, T(S2,A) is a singleton set, and hence Df,ι is the
entire space T(S2,B). For n = 4, the work in [11] shows that Df,ι is not connected,
and in fact has infinitely many connected components. This leads to the following
question.

Question 1.2. Does Df,ι have a natural connected closure?

The points in Df,ι are sometimes called the dynamical points in the space of
complex structures on T(S2,B). The augmented deformation space ADf,ι, or ideal
dynamical points, is the subset of the Bers augmented deformation space AT (S2,B)

(see [2]) defined as the equalizer of extensions

f̃∗, ι̃∗ : AT (S2,B) → AT (S2,A)

of f∗ and ι∗.
At the time of this writing, it is not known whether ADf,ι is connected in the

Per4(0)∗ case. Our goal in this paper is to extend the techniques of [11], and apply
them to give a partial description of the structure of ADf,ι and the closure of Df,ι

within it. We prove the following theorem.

Theorem 1.3. For (f, ι) associated to an element of Per4(0)∗, the closure of
Df,ι in augmented deformation space ADf,ι is not connected.

1.1. Some background and ideas behind the proofs. The question of
whether and when Df,ι is connected has roots in work of Thurston from the 1980s,
in which he showed that if

F : P1 → P1

is a non-Lattès rational map from the complex projective line to itself with a finite
post-critical set

∞⋃

n=1

F (n)(CritF ),

and f : (S2, P ) → (S2, P ) is the corresponding branched covering of pointed spheres
with domain and range identified, and postcritical set P , then the lifting map on
holomorphic markings defines a contracting map on Teichmüller space

f∗ : T(S2,P ) → T(S2,P ).

Thus, f∗ has a unique fixed point, and hence Df,ι is a singleton set.
This classical result suggests that there could be a contracting flow in the

general case when the identification map ι : (S2, A) → (S2, B) is a strict inclusion
on A. If such a flow exists, there are two possibilities: one is that Df,ι is connected,
and the other is that some points may be pushed out to the boundary of T(S2,B).
This suggests looking at dynamical elements of the augmented Teichmüller space
to find a natural connected completion of Df,ι.
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The proof in [11], that Df,ι can be disconnected translates the question about
flows on Teichmüller spaces to one about the topology of algebraic varieties. A key
ingredient is to define an intermediate covering Mf of T(S2,B) → M(S2,B) that is
a natural quotient of the space of marked rational maps topologically equal to f .
The projection Mf → M(S2,B) is a finite covering, and hence has the structure of
a quasi-projective variety.

In the case when F ∈ Per4(0)∗, the space Mf is isomorphic to a Zariski dense
subset of P1 × P1:

Mf = P1 × P1 \ Z ∪ L

where P1 ×P1 \ L = M(S2,A) ×M(S2,A), and Z indicates the locus where the both
critical points of f lie in the same periodic cycle. With respect to this parameteri-
zation, the image of Df,ι in Mf is the diagonal

Vf,ι = {(x, x) ∈ P1 × P1 | (x, x) (∈ Z ∪ L}.

Let Lf be the group of covering automorphisms of T(S2,B) over Mf,ι. It was shown
in [11] that the projection of Df,ι on Vf,ι is a regular covering with covering auto-
morphism group a proper subgroup Sf,ι ⊂ Lf . In particular, Sf,ι acts transitively
on fibers of Df,ι → Vf,ι.

Choose a basepoint d0 ∈ Df,ι and let v0 be its image in Vf,ι. Then we can
identify Lf with π1(Mf , v0) and Sf,ι with a subgroup of the fundamental group.
Let Ef,ι be the image of π1(Vf,ι, v0) → π1(Mf , v0) induced by the inclusion map.
Then Ef,ι is the subgroup of Sf,ι that fixes the component of Df,ι containing d0;
Ef,ι has infinite index in Sf,ι; and hence Df,ι has infinitely many components. In
other words, the image of π1(Vf,ι, v0) is not sufficiently large in π1(Mf , v0). One
way to try to rectify this is to put both Mf and Vf,ι into a larger ambient space.

Let AT (S2,B) be the augmented Teichmüller space of (S2, B). Then Lf extends
to an action on AT (S2,B) giving a quotient AMf and a commutative diagram

T(S2,B)

/Lf

!!

! " "" AT (S2,B)

/Lf

!!
Mf

! " "" AMf .

Similarly, Sf,ι acts on ADf,ι with quotient denoted AVf,ι. The spaces AVf,ι and
AMf have the advantage of being algebraic geometric sets, and can be studied via
singularity theory.

We define a connected pure 1-dimensional algebraic subset X of a blowup

P̃1 × P1 of P1×P1 and an embedding X → AVf,ι that is surjective except possibly a
finite set of points (Proposition 4.2). By studying properties of X and its embedding

in P̃1 × P1 we prove Theorem 1.3.

1.2. Organization. In Section 2.1, we give necessary definitions of Teichmüller
and moduli spaces for rational maps, and their augmented versions. In Section 3,
we prove some general properties of complements of plane algebraic curves and
their blowups. In Section 4, we apply these ideas to the Per4(0)∗ case, and prove
Theorem 1.3.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

88 ERIKO HIRONAKA

1.3. Further questions. There are still many open questions along the lines
of this investigation. So far, the Per4(0)∗ example is the only known case when Df,ι

is disconnected. Are there others? Is ADf,ι connected in the Per4(0)∗ case, and is
ADf,ι connected in general? The analysis in this paper suggest general approaches
to these questions, which we leave for further investigation.

1.4. Some comments on notation. This paper grew out of the ideas in [11],
but some of the notation has changed. Most notably, we refer to the Teichmüller
space Tf of rational maps topologically equivalent to f , and its corresponding Mod-
uli space Mf . Thus, Epstein’s deformation space Df,ι will be considered as a sub-
space of Tf rather than of the isomorphic space T(S2,B) (also known as the parameter
space). The space Mf may be more familiarly known as a connected component of
a Hurwitz space of rational maps [16] and was denoted by Wf in [11]. A smaller
change is the use of Df,ι for the deformation space Df to emphasize the depen-
dence on both the topological branched covering of pairs f and the identification ι.
Similarly, we changed the notation of Sf to Sf,ι. These ease our transition from a
discussion of deformation space to augmented deformation space.

1.5. Acknowledgments. I would like to thank X. Buff, S. Koch, C. Mc-
Mullen, R. Ramadas, and L. D. Tráng for helpful references and discussions, and
the anonymous referee for their careful reading and useful comments.

2. Background definitions

In this section, we recall definitions and properties of Teichmüller space, moduli
space and deformation space for rational maps and their augmented versions. For
more details about the general theory see, for example, [5], [2], [12], [16] and [17].
We also recall definitions of liftables Lf and special liftables Sf,ι from [11], and
examine their extensions to the augmented spaces.

2.1. Teichmüller spaces for rational maps. Let A be a finite subset of 3
or more points of the topological 2-sphere S2. The Teichmüller space T(S2,A) of
holomorphic markings on (S2, A) is the collection of orientation preserving homeo-
morphisms

φ : (S2, A) → (P1,φ(A))

defined up to post-composition by automorphisms of P1 (i.e., Möbius transforma-
tions) and pre-composition by self-homeomorphisms of S2 that are isotopic rel A
to the identity.

Similarly, given a finite branched covering of pairs f : (S2, A) → (S2, B), where
∞ > |A|, |B| ≥ 3 and B contains the branch values (or critical values) of f , we
define the Teichmüller space Tf of holomorphic markings on (f, A, B) as the set of
commutative diagrams

(S2, A)
ψ ""

f

!!

(P1,ψ(A))

F

!!
(S2, B)

φ "" (P1,φ(B))

also denoted by (φ,ψ, F ), where F is a rational map, φ and ψ are homeomor-
phisms. Two triples (φ,ψ, F ) and (φ1,ψ1, F1) in Tf are equivalent if there are
homeomorphisms α : (S2, A) → (S2, A) isotopic to the identity map rel A and
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β : (S2, B) → (S2, B) isotopic to the identity rel B, and biholomorphic maps
µ, ν : P1 → P1 so that the diagram

(P1,ψ1(A))

F1

!!

(S2, A)
ψ1##

f

!!

α "" (S2, A)

f

!!

ψ "" (P1,ψ(A))

F
!!

(P1,φ1(B) (S2, B)
φ1## β "" (S2, B)

φ "" (P1,φ(B))

commutes, and µ = ψ ◦ α ◦ ψ−1
1 and ν = φ ◦ β ◦ φ−1

1 .
By these definitions, Tf comes with natural surjections

Tf

q

$$!!
!!
!!
!!
!

pU

%%"
""

""
""

""

T(S2,B) T(S2,A)

recording the holomorphic markings of the domain space (pU ) and the range space
(q). Furthermore, Tf can be thought of as the graph of a lifting map

f∗ : T(S2,B) → T(S2A)

defined by f . Thus, q is an isomorphism of holomorphic spaces.
We create an iteration scheme from f by partially identifying the domain

(S2, A) and range (S2, B) of f . That is, we fix a homeomorphism ι : S2 → S2

that restricts to an inclusion ι|A : A ↪→ B. Then we have a map of pairs

ι : (S2, A) → (S2, B).

Let pL = ι∗ ◦ q, where ι∗ : T(S2,B) → T(S2,A) is the map that takes φ ∈ T(S2,B) to
the class in T(S2,A) defined by

φ ◦ ι : (S2, A) → (P1, (φ ◦ ι)(A)) = (P1,φ(A)).

Then the elements of Tf can be thought of as the holomorphic markings of the
branched covering f , and pU and pL record the induced marked holomorphic struc-
tures (S2, A) on the domain and range.

The Epstein’s deformation space Df,ι is the subspace of Tf consisting of holo-
morphic structures on the covering and base of f that are equivalent relative to
A. That is, Df,ι consists of the triples (φ,ψ, F ) so that φ−1 ◦ ψ is isotopic to the
identity relative to A, or equivalently

f∗φ = ι∗φ.

Another way to say this is that Df,ι is the equalizer in Tf of the maps pU and pL,
that is

Df,ι = {(φ,ψ, F ) ∈ Tf | pU (φ,ψ, F ) = pL(φ,ψ, F )}.

We think of Df,ι as the dynamical Teichmüller space for (f, ι).

2.2. Moduli spaces. Let M(S2,A) be the space of embeddings

A ↪→ P1

up to post-composition by a Möbius transformation. Then the restriction map
[φ] +→ [φ|A] defines a regular covering map

T(S2,A) → M(S2,A)
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with covering automorphism group equal to the mapping class group Mod(S2, A)
of orientation preserving homeomorphisms h : S2 → S2 that fix the points of A
up to isotopy rel A. (Unlike the case for Teichmüller spaces and moduli space of
general surfaces, Mod(S2, A) on T(S2,A) acts without fixed points.)

Similarly let Mf be the space of commutative diagrams

A

f |A
!!

! " j "" P1

F
!!

B ! " i "" P1.

where (i, j, F ) is defined up to modifications of the domain and range of F by Möbius
transformations. Then the map (φ,ψ, F ) +→ (φ|B,ψ|A, F ) defines a covering map

Tf → Mf ,

with covering automorphism group Lf ⊂ Mod(S2, B) called the subgroup of lifta-
bles consisting of elements h ∈ Mod(S2, B) such that for some h′ ∈ Mod(S2, A) the
diagram

(S2, A)

f

!!

h′
"" (S2, A)

f

!!
(S2, B)

h "" (S2, B)

commutes.

Remark 2.1. Since A and B are assumed to contain at least three points,
f : (S2, A) → (S2, B) can have no non-trivial covering automorphisms. In the
degree 2 case, this follows from the fact that f must have exactly two branch points
and two branch values. Any other marked point would lie in the unbranched part
of the covering. Even in the case when the degree of f is greater than 2, the fact
that f may be realized as a rational map implies that all covering automorphisms
must be conjugate to a Möbius transformation. If there are at least three points in
A, then the Möbius transformation must be the identity.

By the definition of Lf and since f has no non-trivial covering automorphisms,
f defines a unique lifting map

f & : Lf → Mod(S2, A)

where f &h = h′.
The following Proposition was shown using slightly different language in [13]

(cf. [11] Proposition 2.2). For the convenience of the reader, we include a proof
below.

Proposition 2.2. The map Tf → Mf is a regular covering with automorphism
group Lf .
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Proof. Let h ∈ Lf . Take any (φ,ψ, F ) ∈ Tf . Then we have the commutative
diagram

(S2, A)

f

!!

(S2, A)
f!h## ψ ""

f

!!

(P1,ψ(A))

F
!!

(S2, B) (S2, B)
h## φ "" (P1, B).

(2.1)

Since h and f &h fix B and A, respectively, (φB,ψA, F ) and (φ ◦ h,ψ ◦ f &h, F ) map
to the same element in Mf .

Conversely, suppose (φ,ψ, F ) and (φ1,ψ1, F1) both map to equivalent elements
in Mf . Then by definition, there are embeddings i : B → P1 and j : A → P1

so that i = φ|B = φ1|B , j = ψ1|A = ψ|A and there are Möbius transformations
µ and ν such that F = µ−1 ◦ F1 ◦ ν. We can assume for simplicity that F = F1

by replacing (φ1,ψ1, F1) by the equivalent element (µ−1 ◦ φ1, ν−1 ◦ ψ1, F ) in Tf .
Then the common image of (φ,ψ, F ) and (φ1,ψ1, F ) is some (i, j, F ) in Mf . Thus
the images of φ and φ1 are the same in M(S2,B), the images of ψ and ψ1 are
the same in M(S2,A), and hence there are mapping classes h ∈ Mod(S2, B) and
f &h ∈ Mod(S2, A) such that φ = h ◦ φ1 and ψ = f &h ◦ ψ1. The maps h and f &h
complete a diagram of the form (2.1), and thus h ∈ Lf . !

Let q : Mf → M(S2,B) be the map sending (i, j, F ) to the equivalence class
containing i in M(S2,B); let pU : Mf → M(S2,A) be the map sending (i, j, F ) to
the equivalence class containing j in M(S2,A); let ι∗ : M(S2,B) → M(S2,A) be the
forgetful map sending an inclusion i : B → P1 to i ◦ ι|A; and let pL = ι∗ ◦ q. Then
we have the commutative diagram

Tf

%
q

&&##
##
##
##
##

pU

''$
$$

$$
$$

$$
$

ρ

!!

T(S2,B)

/Mod(S2,B)

!!

/Lf

''$
$$

$$
$$

$$
T(S2,A)

/Mod(S2,A)

!!

Mf

q

&&##
##
##
##
#

pU

''$
$$

$$
$$

$$

M(S2,B) M(S2,A).

All vertical arrows and the left three diagonal arrows are unbranched covering maps.
The right diagonal arrows may not be surjective (see [3]). Let Vf,ι be the image of
the deformation space Df,ι in Mf . Then we have

Vf,ι = Eq(pL, pU ).

2.3. Stabilizer of deformation space. Fix a basepoint d0 ∈ Df,ι, and let
m0 ∈ Mf,ι be the image of d0 under the map ρ. Then we have an identification

* : π1(Mf,ι, m0) → Lf ,
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defined by the path-lifting theorem for coverings. That is, for each γ ∈ π1(Mf,ι, m0),
we lift γ to a path γ′ on T(S2,B) based at d0, and let *(γ) be the mapping class that
takes d0 to the end point of γ′.

Proposition 2.3. The restriction of ρ : Tf → Mf to Df,ι defines a covering
map

ρD : Df,ι → Vf,ι,

and the image Ef,ι,d0 of

π1(Vf,ι, m0) → π1(Mf,ι, m0)
(→ Lf

is the stabilizer of the connected component of Df,ι that contains d0.

Proof. We show that the projection ρDf,ι satisfies the path-lifting theorem.
Let d0 = (φ0,ψ0, F0), and let (it, jt, Ft) be a path in Vf,ι with m0 = (j0, i0, F0). Let
ξ and η be representatives of the class of φ0 and ψ0 so that the diagram commutes

S2

f
!!

η "" P1

F
!!

S2 ξ "" P1,

η|A = ψ0|A and ξ|B = ψ|B. Let pt : (S2, B) → (S2, Bt) be any continuous family
of homeomorphisms. Then

(ξ ◦ pt|Bt , η ◦ pt|At , Ft) ∼ (it, jt, Ft)

and (ξ ◦ pt, η ◦ pt, Ft) is a lift of (it, jt, Ft) and lies in Df,ι.
Thus, as a restriction of an unbranched covering map, ρD is itself is a covering

map. The rest follows from basic covering space theory. !
The lifting map f & : Lf → Mod(S2, A) is uniquely defined and satisfies the

commutative diagram

(S2, A)

f

!!

f!h "" (S2, A)

f

!!
(S2, B)

h "" (S2, B).

For a homeomorphism h : (S2, B) → (S2, B), let hA be the element of Mod(S2, A)
defined by ignoring the points of B \ A, that is hA is the isotopy class of h defined
up to homeomorphisms isotopic to the identity rel A. Define

ι& : Mod(S2, B) → Mod(S2, A)

h +→ hA.

Let Sf,ι ⊂ Lf be the equalizer

Sf,ι = Eq(f &, ι&) ⊂ Lf .

By the identification of Lf with π1(Mf,ι, m0), Sf,ι can equivalently be defined as
the equalizer of the homomorphisms

(pL)∗, (pU )∗ : π1(Mf,ι, m0) → π1(M(S2,A), a0)

where a0 = pL(m0) = pU (m0), where m0 ∈ Vf,ι = Eq(pL, pU ).
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Proposition 2.4 ([11] Proposition 2.5). The stabilizer in Lf of Df,ι equals
Sf,ι, and Sf,ι acts transitively on the fibers of the covering

Df,ι → Vf,ι.

Thus the covering is regular and Sf,ι is the group of covering automorphisms.

Corollary 2.5. The deformation space Df,ι is connected if and only if Vf,ι is
connected and Sf,ι = Ef,ι,d0 .

In the case when (f, ι) is associated to an element of Per4(0)∗, Ef,ι,d0 has
infinite index in Sf,ι ([11], Proposition 2.11).

2.4. Augmented spaces. By a rational curve C we mean a connected nodal
curve with the following properties

(a) the irreducible components of C are isomorphic to P1, and
(b) the fundamental group of C is trivial.

A pre-stable rational curve (C, A) is a rational curve C together with a finite set A
contained in the complement of the nodes of C. The set of nodes of C union the
points of A form the distinguished points of C. A stable rational curve is a pre-stable
rational curve with the following additional property:

(c) the number of distinguished points on each irreducible component of C is
greater than or equal to 3.

For each component C of a pre-stable rational curve (C, A) there are three
possibilities:

(1) C is stable, i.e., it contains at least 3 distinguished points;
(2) C is unstable, and contains two nodes; or
(3) C is unstable, and contains one node and zero or one point in A.

Let Σ
pre
(S2,A) be the set of pre-stable rational curves (C, A) with a bijection A → A,

and let Σ(S2,A) ⊂ Σ
pre
(S2,A) be the space of stable rational curves. Define a map

s : Σ
pre
(S2,A) → Σ(S2,A)

sending (C, A) to the result of contracting components of C using the following
rule: in case (1) leave C alone; and in case (2) and (3) contract C to a point. If C
contains a point of A, then mark the image of the contraction by that point. This
map is well-defined since in case (3) there is at most one point of A in C. We call
s the stabilization map.

A marking of a pre-stable rational curve (C, A) ∈ Σ
pre
(S2,A) is a quotient map

φ : (S2, A) → (C, A),

such that φ is a homeomorphism when restricted to S2 \ γ for some multi-curve
γ ⊂ S2 \ A, φ restricts to a bijection A → A, and the components of γ are in one-
to-one correspondence with the nodes of C. The curve γ is called the contracting
curve for φ. We consider two markings equivalent if they are the same up to
post-composition by automorphisms of C and pre-composition by homeomorphisms
(S2, A) → (S2, A) that are isotopic to the identity rel A.

The collection of markings of pre-stable and stable rational curves by (S2, A)
is denoted by AT pre

(S2,A) and AT (S2,A), respectively. Post-composition by s defines
a surjection

AT pre
(S2,A) → AT (S2,A).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

94 ERIKO HIRONAKA

The space AT (S2,A) is called the augmented Teichmüller space of (S2, A). There
is a natural topology on AT (S2,A) such that points on AT (S2,A) \ T(S2,A) are the
limits of sequences points on T(S2,A) for which the length of γ tends to zero (see [2]
for more precise definitions).

Remark 2.6. The mapping class group Mod(S2, A) extends to actions on
AT pre

(S2,A) and AT (S2,A). Given a point in AT (S2,A), the stabilitzer is the free
abelian group of mapping classes generated by Dehn twists along the components
of the contracting curve.

The action of Mod(S2, A) on AT (S2,A) defines a branched covering

AT (S2,A) → AM(S2,A)

where AM(S2,A) is the space of inclusions

A ↪→ C
of A into a rational curve C up to holomorphic automorphism of C that do not
permute components (cf. [5]).

We now define the augmented Teichmüller and moduli spaces of f . A rational
map F : (CU , A) → (CL, B) is pre-admissible if

(a) F defines a surjective map from CU to CL of generically constant degree
that maps nodes to nodes;

(b) locally near each node of CU , F has generically constant degree; and
(c) (CL, B) is a stable rational curve and (CU , A) is pre-stable.

We say that F is admissible if in addition

(b) (CU , A) is stable.

The augmented Teichmüller space AT f for f is the collection of holomorphic mark-
ings

(S2, A)
ψ ""

f

!!

(CU , A)

F

!!
(S2, B)

φ "" (CL, B)

where the horizontal maps are markings in AT (S2,A) and AT (S2,B) respectively, and
F is a pre-admissible covering. Here, as in the definition of Tf , we take (φ,ψ, F )
up to the natural equivalences.

With this definition, the projection q̃ : AT f → AT (S2,B) defines an isomor-
phism. Let p̃U , p̃L : AT f → AT (S2,A) be defined by

p̃L(φ,ψ, F ) = s(φ)

p̃U (φ,ψ, F ) = s(ψ)

Proposition 2.7. The subgroup of liftables Lf ⊂ Mod(S2, B) extends to an
action on AT f .

Proof. Let φ : (S2, B) → (CL, B) be an element of AT (S2,B), and let γ be the
contracting multi-curve. Since f is unbranched outside of B, it follows that f−1(γ)
is a multi-curve on S2 \ A, and since h is liftable

f &h(f−1(γ)) = f−1(h(γ)).
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Thus h ∈ Lf takes (φ,ψ, F ) to (φ ◦ h,ψ ◦ f &h, F ) where φ ◦ h and ψ ◦ f &h contract
the curves h(γ) and f−1(h(γ)) respectively. !

Let AMf = AT f/Lf . Then the points of AMf are defined by diagrams

A

f |A
!!

! " i "" CU

F

!!
B ! " j "" CL

where (CL, B) is stable, (CU , A) is pre-stable, and the inclusions i, j are defined up
to holomorphic automorphisms of CU and CL. We denote an element by (i, j, F ).
Let pU , pL : AMf → AM(S2,A) be defined by

pL([φ,ψ, F ]) = s ◦ j

pU ([φ,ψ, F ]) = s ◦ i

While the action of Lf on Tf has no fixed points and the quotient map Tf → Mf

is a covering, the quotient map AT f → AMf can have branch points.
Summarizing, we have a commutative diagram of augmented spaces:

AT f

q̃

((%%%
%%
%%
%%
%

p̃U

))&
&&

&&
&&

&&
&

ρ̃

!!

AT (S2,B)

/Mod(S2,B)

!!

/Lf

))'
''

''
''

''
'

AT (S2,A)

/Mod(S2,A)

!!

AMf

q

((%%%
%%
%%
%%
%

pU

))&
&&

&&
&&

&&
&

AM(S2,B) AM(S2,A),

The augmented deformation space is defined to be the equalizer

ADf,ι = Eq(p̃U , p̃L)

and contains the deformation space Df,ι. Let AVf,ι = ρ̃(ADf,ι). Then we have

AVf,ι = Eq(pU , pL),

2.5. Stabilizer of augmented deformation space. In this section, we give
a necessary and sufficient condition for ADf to be connected. Unlike in the case for
Corollary 2.5, ADf,ι → AVf,ι is not an unbranched covering. To get around this we
use the notion of regular neighborhoods. Recall that, for a simplicial subcomplex
V embedded in a manifold X, a regular neighborhood N(V ) of V is an open subset
of X containing V that has a deformation retract to V .

Proposition 2.8. The stabilizer in Lf of ADf,ι equals Sf,ι, that is, if g ∈ Lf

is such that g(α) = α for all α ∈ ADf,ι, then g ∈ Sf,ι.

Proof. The stabilizer in Lf of ADf,ι must be contained in Sf,ι, since Df,ι ⊂
ADf,ι. Let h ∈ Sf,ι and let (φ,ψ, F ) ∈ ADf,ι. Then by definition f &h = i&h. Thus,
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we have a commutative diagram

(S2, A)
f!h ""

f

!!

(S2, A)

f

!!

ψ "" (CU , A)

F

!!
(S2, B)

h "" (S2, B)
φ "" (CL, B)

and we have
f̃∗(h([φ])) = [ψ ◦ f &h] = [ψ ◦ ι&h] = ι̃∗(h([φ])).

Thus h stabilizes ADf,ι. !

Remark 2.9. Conversely, one can ask whether if g ∈ Lf and g(α) = α for
some α ∈ ADf,ι, then does it follow that g ∈ Sf,ι? This is not true in general,
since points in the boundary of ADf,ι have extra automorphisms that need not be
in Sf,ι.

Proposition 2.10. Suppose there is a connected quasi-projective variety X
with Vf,ι ⊂ X ⊂ AVf,ι such that X has a regular neighborhood N(X) ⊂ AMf with
the properties

(1) N(X) ∩ Mf is connected, and
(2) the image of the homomorphism induced by inclusion

π1(N(X) ∩ Mf , m0) → π1(Mf , m0)

contains Sf,ι.

Then Df,ι is contained in a connected component of ADf,ι.

Proof. Let Y0 ⊂ AT f be the connected component of the preimage of X in
AT f containing d0. Let U be the connected component of the preimage of N(X)
in AT f containing d0. Then since N(X) has a retract to X, the set U has a
corresponding retraction to a component of ρ̃−1(X). This component is necessarily
Y0, since Y0 ∩U (= ∅. Since the image of π1(N(X)∩Mf , m0) in Lf = π1(Mf , m0)
contains Sf,ι, it follows that the action of Sf,ι on AT f preserves U and hence Y0.
Thus, we have

Df,ι ⊂ Y0 ⊂ ADf,ι.

!

3. Blowups and topology of curve complements

In this section we study the topology of surface/curve pairs and the effect of
blowups (see for example [8] or [9] for a review of elementary blowup theory for
surfaces).

3.1. Regular neighborhoods of algebraic curves on surfaces. Let X be
a smooth complex projective surface, and let V ⊂ X be a pure codimensional one
subvariety. We first observe that we may assume that V is a finite union of smooth
curves with normal crossings. Let Q be the set of singular points on V . Then V \Q
is a finite union of smoothly embedded punctured Riemann surfaces in X \ Q. By
successively blowing up X at the points of Q (and at points of the preimages of
Q), it is possible to obtain a new projective surface X̃ and a surjective morphism
σ : X̃ → X such that the preimage (or total transform) Ṽ = σ−1(V ) is a union of
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smoooth curves with normal crossings. That is (X̃, Ṽ ) is locally isomorphic near a
point of intersection on Ṽ to (C2, {x = 0} ∪ {y = 0}).

Hereafter in this section we assume that V has smooth components intersecting
in normal crossing. As before, let Q be the set of intersections of V , and let
V1, . . . , Vk be the irreducible components of V . Since each Vi is smooth there is an
embedded tubular neighborhood T (Vi) ⊂ X so that for i (= j, T (Vi) only intersects
T (Vj) near points in Q where Vi and Vj intersect, and if Vi and Vj intersect at q,
then

N(q) = T (Vi) ∩ T (Vj)

is a neighborhood of q so that (N(q), V, q) is homeomorphic to

({|x| < 1} × {|y| < 1}, {x = 0} ∪ {y = 0}, (0, 0)).

For i = 1, . . . , k, let

V c
i = Vi \

⋃

q∈Q

N(q)

and let T (V c
i ) be the tubular neighborhood given by

T (V c
i ) = T (Vi) \

⋃

q∈Q

N(q).

Let T (V ) =
⋃k

i=1 T (V c
i ), called the tubular neighborhood of V .

Let S(V c
i ) be the circle bundle over V c

i contained in the boundary of T (V c
i ).

Then S(V c
i ) is an oriented 3-manifold with torus boundary components correspond-

ing to the intersections of Vi with other components of V . In particular, if Vi is
isomorphic to P1, then S(V c

i ) is the complement of thickened Hopf links in the
3-sphere. The boundary manifold of V is given by

S(V ) =
k⋃

i=1

S(V c
i ).

This manifold and its embedding in X \ V is uniquely determined up to homeo-
morphisms of X that are isotopic to the identity rel V .

Lemma 3.1. The punctured tubular neighborhood T (V ) \ V has a deformation
retraction to S(V ).

Proof. For each i, T (V c
i )\V c

i has a deformation retract to S(V c
i ) correspond-

ing from the retraction of a punctured disk to its boundary circle. Thus, we have
only to consider what happens near the intersection points q ∈ Q. In N(q) it is
enough to show that

{|x| < 1} × {|y| < 1} \ {x = 0} ∪ {y = 0}
has a deformation retract to {|x| = 1} × {|y| = 1}. Such a retraction is defined by
the map

((x, y), t) +→
(

x

1 + t(|x| − 1)
,

y

1 + t(|y| − 1)

)
.

!
Remark 3.2. By its construction, S(V ) is naturally homeomorphic to a graph

manifold (see, for example, [10] for definitions) over the incidence graph Γ of the
components of V ; this is the bipartite graph with vertices

{vi | i = 1, . . . k}
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corresponding to the components of V , and edges between vi and vj for each q ∈ Q
such that Vi and Vj intersect at q. To each vertex vi associate the manifold S(V c

i )
and to each edge of Γ between vi and vj associate the common torus boundary
component of their associated vertex manifolds.

3.2. Regular neighborhoods and fundamental groups. In this section
we prove an easy variation of the Lefschetz hyperplane theorem [1] and a useful
corollary.

Lemma 3.3. Let p : X → P1 be a smooth projective surface fibered over the
complex projective line, and let V be a fiber. Let C ⊂ X be a pure codimension one
algebraic subset none of whose components are fibers of p. Then V has a regular
neighborhood N(V ) so that

π1(N(V ) \ C) → (X \ C)

induced by inclusion is surjective.

Proof. Let P ⊂ P1 be the set of points p where p restricted to C drops in
cardinality, i.e., at least one intersection point of C and the fiber above p has higher
multiplicity. Let po be the restriction of p to Xo = p−1(P1 \ P ) \ C. Then

po : Xo → P1 \ P

is a fiber bundle, and the Zariski-Van Kampen theorem [18] [4] implies that for a
general fiber V ′ of po

π1(X \ C) / π1(V
′)/K

where K is the subgroup of π1(V ′) generated by the relations γ−1β(γ), where β
ranges over automorphisms of π1(V ′) determined by the action of π1(P1 \P ) on V ′.
In particular, the homomorphism

π1(V
′) → π1(X \ C)

is surjective. Let N(V ) = (po)−1(U) where U is a small neighborhood of p(V ).
Then N(Ṽ ) \ C contains a general fiber of po, and the claim follows. !

Corollary 3.4. Let C ⊂ C2 be an algebraic curve, and let V ⊂ C2 be a line
not contained in C. Then we can include C2 as a Zariski open subset of a smooth
projective surface X, and find a sequence of blowups σ : X̃ → X such that

(1) σ is an isomorphism over C2 \ C; and
(2) the total transform Ṽ of the closure of V in X has a regular neighborhood

N(Ṽ ) in X̃ such that the map on fundamental groups induced by inclusion

π1(N(Ṽ ) ∩ C2 \ C) → π1(C2 \ C)

is surjective.

Proof. Let p : C2 → C be a linear projection so that V is a fiber. Then we
can define completions C2 ⊂ P1 ×P1 and C ⊂ P1, so that p extends to a projection

p : P1 × P1 → P1

so that the closure V of V in P1 × P1 is a fiber. Let C be the union of the closure
of C in P1 × P1, and the two lines in P1 × P1 \ C2.

Let σ : P̃1 × P1 → P1 be sequence of blowups over points of C∩V such that the
total transform Ṽ = σ−1(V ) and the proper transform Ĉ over C meet in normal
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crossings. Let N(Ṽ ) be a regular neighborhood of Ṽ as in Lemma 3.3. Then the
homomorphism

π1(N(Ṽ ) \ Ĉ) → π1(P̃1 × P1 \ Ĉ)

induced by inclusion is surjective.
Since σ is an isomorphism outside the preimage of C∩V , we have a commutative

diagram

Ṽ

!!

"" N(Ṽ )

!!
V "" N(V )

where the vertical arrows are quotient maps that contract the exceptional curves
(or 1-dimensional fibers) over points on V ∩ C. It follows that the retraction of
N(Ṽ ) \ Ĉ to Ṽ \ Ĉ descends to a retraction of N(V ) \ C to V \ C, and hence
N(V ) \ C is a regular neighborhood of V \ C. Finally, P 1 × P1 \ C = C2 \ C, so
setting N(V ) = N(V ) ∩ C2, it follows that N(V ) is a regular neighborhood of V
and the homomorphism

π1(N(V ) \ C) → π1(C2 \ C)

defined by inclusion is surjective. !
Corollary 3.4 is used in our discussion of connectivity of augmented deformation

space in Section 4.4.

Remark 3.5. The boundary manifold S(Ṽ ) associated to N(Ṽ ) in the previous
proof has the structure of a boundary manifold over the incidence graph of the
irreducible components of Ṽ (cf. Remark 3.2). Furthermore, each component of Ṽ
is isomorphic to a line, each vertex manifold is an S1 fiber bundle over S2 with a
finite set of thickened fibers removed.

4. Application to the Main Example

Let F ∈ Per4(0)∗, and let f, ι : (S2, A) → (S2, B) be the underlying branched
covering and identification of domain and range so that A is the periodic 4 cycle,
and B = A ∪ {v} where v is the extra critical point. We study the inclusion
Df,ι ⊂ ADf,ι by looking at their images Vf,ι and AVf,ι in Mf and AMf .

4.1. Parameterization of moduli space. We begin by embedding Mf in
P1 × P1 as follows. Consider an element of Mf represented as a commutative
diagram

A

f |A
!!

! " i "" P1

F
!!

B ! " j "" P1.

By applying automorphisms of P1 on the right side, we can assume that

i(B) = {0, 1,∞, y, z} j(A) = {0, 1,∞, x},

where

(i) ∞ and z are the critical values of f ;
(ii) 0 is a critical point in A with f(0) = ∞; and
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(iii) f(∞) = 1, f(x) = 0.

The above data completely determines F : P1×P1 as a rational function in the
variable t:

F (t) =
(t − x)(t − r)

t2
r =

x + y − 1

x − 1
.

It follows that in this example z is determined by x and y:

z = − (1 − 2x + x2 − y)2

4x(x − 1)(x + y − 1)
.(4.1)

We have the following (see also, [11]).

Lemma 4.1. There is an identification

Mf = P1 × P1 \ L ∪ Z,

assigning (i, j, F ) to (x, y), where

L = {x = 0} ∪ {y = 0} ∪ {x = 1} ∪ {y = 1} ∪ {x = ∞} ∪ {y = ∞}

and Z is the closure in P1 × P1 of the affine union of curves

{1 − 2x + x2 − y = 0} ∪ {x2 + y = 1} ∪ {x + y = 1} ∪ {2xy + x2 − y − 2x + 1 = 0}

Figure 1. Picture of L∪Z in the affine plane. The lines in L are
shown here as the two horizontal lines y = 0 and y = 1, and two
vertical lines x = 0 and x = 1.

By this parameterization, the image V of Df,ι in Mf equals the diagonal

V = {(x, y) ∈ P1 × P1 \ L ∪ Z | x = y}.

Figure 1 gives a picture2 of the real part of L ∪ Z in the affine open subset C2 ⊂
P1 × P1, and Figure 2 gives a picture near (∞,∞).

2This figure was provided courtesy of Sarah Koch.
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Figure 2. Picture of L∪Z in P1×P1 near (∞,∞). The lines x =
∞ and y = ∞ are the horizontal and vertical lines, respectively,
and V is the diagonal line x = y.

4.2. The quotient of augmented deformation space. Let AMf be the
quotient of AT f by the action of Lf , and let AVf,ι be the image of ADf,ι in AMf .
Our goal in this section is to concretely describe a subspace X ⊂ AVf,ι satisfying
the properties in Proposition 2.10.

First we recall that the elements of AVf,ι are the elements of AMf that equalize
the two maps

pL, pU : AMf → AM(S2,A).

Each stratum of AMf is described by a partition of {0, 1,∞, y, z} into two or three
sets by an admissible multi-curve γ, as in Figure 3. Here, the empty multi-curve
corresponds to the principal stratum Mf ⊂ AMf . The corresponding stable curves

Figure 3. Possible partitions of five points by an admissible
multi-curve.

are shown in Figure 4, with each P1, homeomorphic to S2, is drawn as a line.

Figure 4. The three types of stable curves for (S2, B) where B
has five elements. The two left define one-dimensional strata, and
the right defines a point stratum.

For AM(S2,A) there are only two isomorphism types (shown in Figure 5). The
left picture depicts points belonging to the main component M(S2,A) ⊂ AM(S2,A),
which is isomorphic to a thrice punctured sphere, while the right picture depicts
one of the three single point boundary points.
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Figure 5. The two topological homeomorphism types of stable
curves for (S2, A) where A has four elements.

The elements α ∈ AMf that lie in positive dimensional strata must be of the
form (1) or (2) in Figure 4. Those of type (1) lie in Mf = P1 × P1 \ L ∪ Z and
map under both pU and pL to elements of AM(S2,A) of type (I). Those of type (2)
divide into four subtypes: those that correspond to a partition of the form

(2a) {a, b, z} ∪ {c,∞};
(2b) {a,∞, z} ∪ {b, c};
(2c) {a, b, c} ∪ {∞, z}; or
(2d) {a, b,∞} ∪ {c, z}.

For types (2a) and (2b), pL maps α to an element in AM(S2,A) of type (II),
while for types (2c) and (2d), pL maps α to one of type (I). For types (2a) and (2d)
pU maps α to an element of type (II), while for type (2b) and (2c) α could apriori
map to an element of type (I) or (II). This is because the critical values ∞ and z
lie in the same component. Thus the rational map F : CU → CL must have two
isomorphic irreducible components in CU lying over the unramified component in
CL upon which the distinguished points will be distributed.

From this we can reduce the types that can be in AV to (2a), (2d), as well as
(2b) and (2c) under the condition that the preimage under F of the distinguished
points in the unramified component lie on the same component of CU . In the
allowable case of types (2a) and (2b), we see that for pL(α) and pU (α) to be equal
the images of the two maps in AM(S2,A) must give the partition

{0, 1} ∪ {x,∞}.

Thus, the partition given in (2a) can only be

{0, 1, z} ∪ {y,∞}
and for (2b) it can only be

{∞, y, z} ∪ {0, 1}.

For type (2c), pL(α) and pU (α) must be equal, and F defines the isomorphism on
stable curves. Taking into account the combinatorics of f , this implies equality of
the cross ratios: (0,∞; 1, x) and (∞, 1; x, 0), which is false under the assumption
that x /∈ {0, 1,∞}.

Let A1, A2 ⊂ AMf be the subsets corresponding to the partitions

A1 : {∞, y, z} ∪ {0, 1},

and
A2 : {0, 1, z} ∪ {y,∞}.

Then each of these is isomorphic to Mod0,4 × Mod(0,3). Furthermore, the closures
of A1 and A2 in AMf intersect at the point corresponding to the partition

{0, 1} ∪ {z} ∪ {y,∞}.

We have shown the following.
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Proposition 4.2. The pure 1-dimensional algebraic set V ∪ A1 ∪ A2 ⊂ AMf

is contained in AVf,ι, and its complement is a finite set of points (possibly empty).

Remark 4.3. We leave the question of whether AVf,ι is connected (in this
case, and in general) to future study.

4.3. Blowups. In this section, we find a connected pure 1-dimensional alge-
braic subset X ⊂ AV that contains V , and whose complement in AV is finite.

Let

σ : P̃1 × P1 → P1 × P1

be sequence of blowups defined as follows. First blowup the points (0, 0), (1, 1)
and (∞,∞) to get the exceptional curves E0, E1, E∞. Next blowup the point of
intersection q ∈ E∞ ∩ L̂y, where L̂y is the proper transform of {y = ∞}. Let Eq

be the exceptional divisor. The union of curves is drawn in Figure 6 (compare
Figure 1).

Figure 6. The proper transform of V is drawn as a dotted line.

Lemma 4.4. The map σ has the following properties:

(1) σ restricts to an isomorphism on P̃1 × P1 \ σ−1(Q); and

(2) the total transform Ṽ and the proper transform L̂ ∪ Z meet in normal
crossing singularities.

(3) inclusion induces a surjection on fundamental groups

π1(N (Ṽ) ∩ Mf ) → π1(Mf ).

Proof. Properties (1) and (2) follow from the definitions, and property (3)
follows from Lemma 3.3. !

Let

X = (V̂ ∪ E∞ ∪ Eq) \ L̂ ∪ Z.

Then X is connected since the punctures of Ṽ at intersections with L̂ ∪ Z occur
only in smooth points of Ṽ. Since σ is an isomorphism over V , there is a natural
inclusion ν : V ↪→ X.

Lemma 4.5. The inclusion V ↪→ AV induced by Df,ι ↪→ ADf,ι factors as ξ ◦ ν
for some embedding

ξ : X ↪→ AV.
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Proof. Recall from Proposition 4.2 the subset V ∪ A1 ∪ A2 ⊂ AV. In what
follows we define embeddings

κ∞ : E∞ \ L̂ ∪ Z → A1

κq : Eq \ L̂ ∪ Z → A2

that together with the projection V̂ → V extend to define ξ.
When α ∈ Mf approaches a general point of L∪Z, it corresponds to two points

in {0, 1,∞, y, z} coming together. For the lines (y = 0, y = 1 and y = ∞, the pairs
{y, 0}, {y, 1} and {y,∞} approach each other, while simultaneously {x, 1}, {1,∞}
and {1, 0} approach each other. Near the lines x = 0, x = 1, x = ∞ the pairs
{x, 0}) (and {0,∞}), {x, 1} (and {0, y}) and {x,∞} (and {0, 1}) approach each
other. For z approaching 0, 1,∞ or y, we have

{z, 0} near 1 − 2x + x2 − y = 0; x (= 0, 1; x + y (= 1

{z, 1} near x2 + y = 1; x (= 0; x + y (= 1

{z,∞} near x = 0, x = 1, or x + y = 1

{z, y} near 2xy + x2 − y − 2x + 1 = 0

We choose local coordinates for a neighborhood of E∞ as follows. Let x = 1/x
and y = 1/y be coordinates for an open neighborhood of p∞ = (∞,∞) in P1 × P1,
so that in the coordinates (x, y) we have p∞ = (0, 0). Let u (and u = 1

u ) be

coordinates for E∞. Then a neighborhood of E∞ in P̃1 × P1 is isomorphic to the
algebraic subset of C2 × P1 defined by

{(x, y) × u ∈ C2 × P1 |x = uy},

and

E∞ = {(x, y) × u ∈ C2 × P1 | x = y = 0}.

With respect to the x, y coordinates, we have

z = − x4y2(1 − 2x + x2 − y)2

4x4y2x(x − 1)(x + y − 1)

= − (x2y − 2xy + y − x2)2

4xy(1 − x)(y + x − xy)

Using the identity x = uy, we have

z = − (u2y2 − 2uy + 1 − u2y)2

4uy(1 − uy)(1 + u(1 − y))
.

To each (u, y), associate the point in AM(S2,B) defined by

([u,∞; y, z], ∗)

where the first component is the cross ratio of the points u,∞, y, z and the second
component is the unique triple of points in P1 up to automorphism. This defines a
point in AM(S2,B).

Since cross ratio is preserved under automorphisms of P1 we have

[u,∞ : y, z] = [uy,∞, 1, zy].
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As y approaches 0, the cross ratio approaches

[0,∞; 1,− 1

4u(1 + u)
]

and is degenerate only when u = 0 (x = ∞), u = −1 (z = ∞), u = − 1
2 (z = y), or

u = ∞ (y = ∞).
We thus have a well-defined embedding:

κ∞ : E∞ \ ̂{L ∪ Z} → A1

u +→ ([u,∞; y, z], ∗).
Here u corresponds to a line through (∞,∞) in P1 × P1, and we can think of the
contracting curve γ as a small loop on this line around (∞,∞).

The intersection of E∞ with Eq occurs at the point on E∞ corresponding to
(y, u) = (0, 0), and Eq has a neighborhood parameterized by ((y, u), v) ∈ C2 × P1

where y = vu. Then x = uy = v and

z = − (1 − 2x + x2 − y)2

4x(x − 1)(x + y − 1)

= − (u(1 − 2v + v2) − v)2

4v(v − 1)(v + uv − 1)

and as u goes to 0,

z = − v

4(v − 1)2
= − v

4(1 − v)2
.

Then we have

[v, 0; 1, z] = [1, 0; v, vz] = [1, 0; v,− 1

4(1 − v)2
].

The cross ratio is degenerate when v = ∞ (where ̂{y = ∞} meets Eq), v = 1 (where
E∞ and Eq intersect), and where z = 0 and z = 1 (corresponding to two distinct

values of v not equal to 1 or ∞). The points correspond to v ∈ Eq \ L̂ ∪ Z except
at the point where v = 1.

For this point, consider the 2-component multicurve γ on S2 \B determined by

two loops on the planes defined by E∞ and ̂{y = ∞} around (y, u) = (0, 0). The
corresponding point α0 ∈ AMf corresponds to the partition

{y,∞} ∪ {z} ∪ {0, 1}.

Define

κq : Eq \ ̂{L ∪ Z} → A2

v +→
{

([0, 1;∞, v], ∗) if v (= 1
α0 if v = 1

Then κ∞ and κq extend to a morphism ξ : X → AV. !
Proof of Theorem 1.3. Fix d0 ∈ Df,ι, and let D0 be the connected compo-

nent of Df,ι that contains d0. Let D0 be the closure of D0 in ADf,ι. Then D0 maps

to V̂ under the projection from AT f → AMf . Let D̂0 ⊂ AT f be the connected

component of the preimage of V̂ that intersects D0. Then, since V̂ is closed in X
and X is connected, we can find a connected component Y0 of the preimage of X
in AT f that contains D̂0, and D̂0 is the closure in Y0 of D0. That is, D̂0 = D0.
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We claim that there is an element

g ∈ Sf,ι ∩ Image(π1(N(X) ∩ Mf ) → π1(Mf )) \ Image(π1(V̂ ) → π1(Mf )).

Let v0 be the image of d0 in V , and let γ be a close path starting at v0 and passing
along X to a point near an intersection of Ẑ with E∞ ∪ Eq, forming a small loop
around that intersection point, and returning along the original path back to v0.
Then γ is not homotopic in AMf to an closed path on V̂ since Ẑ and V̂ do not
intersect. Let g be the image of γ in π1(Mf ) after pushing off the boundary of
AMf into Mf .

Since g /∈ Image(π1(V̂ ) → π1(Mf )), g does not preserve D̂0, and hence g(D̂0)

and D̂0 are disjoint. These are the closures of D0 and g(D0) in ADf,ι and the claim
follows. !

4.4. Connectivity of augmented deformation space. We finish this pa-
per by giving a sufficient condition for ADf,ι to be connected in the Per4(0)∗ case.

By Corollary 3.4, we know that Ṽ has a regular neighborhood U in P̃1 × P1 so
that

π1(U ∩ Mf ) → π1(Mf )

is surjective.

As a closure of Mf , P̃1 × P1 is birationally equivalent to AMf (but not isomor-
phic). By the birational theory of complex projective surfaces, there is a minimal

smooth surface Z with birational morphisms to AMf and P̃1 × P1

Z

**((
((
((
((
(

%%)
))

))
))

)

AMf P̃1 × P1.

Lifting U to Z and projecting to AMf gives a regular neighborhood U ′ of V ∪ K,
where K is a union of boundary curves in AMf . Since Mf is a smooth subset of

both AMf and P̃1 × P1 the two projections of Z are isomorphisms over Mf . Thus

U ′ ∩ Mf = U ∩ Mf

and hence

π1(U
′) → π1(Mf )

is surjective. It follows that U ′ has a connected preimage in AT f and that the
preimage of V ∪ K in AT f is connected.

We have thus shown the following sufficient condition for ADf,ι to be connected.

Proposition 4.6. If AV is connected and is Zariski dense in V∪K, then ADf,ι

is connected.
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