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PENNER SEQUENCES AND
ASYMPTOTICS OF MINIMUM DILATATIONS

FOR SUBFAMILIES OF THE MAPPING CLASS GROUP

ERIKO HIRONAKA

Abstract. Let Fm ⊂ Mod(Sm) be a collection of subsets of the
mapping class group of a compact oriented surface Sm of genus
gm, where gm is unbounded. We say F =

⋃
m Fm admits asymp-

totically small dilatations if there exists a sequence φm ∈ Fm of
pseudo-Anosov elements so that λ(φm)gm is bounded. In this pa-
per, we describe Penner’s construction for producing sequences of
pseudo-Anosov mapping classes whose normalized dilatations con-
verge and apply the construction to the setting of handlebody map-
ping class groups and mapping classes with trivial homological di-
latation.

1. Introduction

Let Sg be a closed oriented surface of genus g, and let Mod(Sg) be its
mapping class group. Robert C. Penner [16] shows that for each genus g,
the minimum dilatation δg of pseudo-Anosov mapping classes in Mod(Sg)
satisfies

log δg �
1

g
.(1.1)

There are several naturally defined subgroups and subcollections of the
mapping class group for which this asymptotic behavior on minimum di-
latations does not hold (see, for example, [4], [3], [18]). Let gm be a
strictly monotone increasing sequence of integers gm ≥ 2. A collection
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F =
⋃
m Fgm of subsets Fgm ⊂ Mod(Sg) admits asymptotically small di-

latation pseudo-Anosov maps if there is a sequence φgm ∈ Fgm of pseudo-
Anosov mapping classes that satisfy

log(λ(φgm)) � 1

gm
.

In this paper, we describe a generalization of Penner’s construction of
small dilatation mapping classes and apply it to find two “naturally de-
fined” collections of mapping classes that admit asymptotically small di-
latation pseudo-Anosov maps.

Our first example is the handlebody subgroups. A mapping class φ
on a surface S is a handlebody mapping class if there is an identifica-
tion of S with the boundary of a handlebody H so that φ extends to H.
Howard Masur [12] shows that the limit set of the handlebody subgroup
has measure zero in Thurston’s sphere of measured foliations. Thus, these
subgroups are small in this sense. On the other hand, the following the-
orem shows that the handlebody subgroups are large in the sense of the
range of dilatations of pseudo-Anosov elements.

Theorem 1.1. Let Hg ⊂ Mod(Sg) be the set of handlebody mapping
classes on a genus g surface. Then Hg admits asymptotically small di-
latation pseudo-Anosov maps.

Our second example is the collection of mapping classes with trivial
homological dilatation. In [4], Benson Farb, Christopher J. Leininger, and
Dan Margalit prove that the set of dilatations of pseudo-Anosov mapping
classes in the Torelli subgroup of Mod(Sg) is bounded from below by a
constant greater than one. Thus, mapping classes that act trivially on
first homology do not admit small dilatations. If we look, however, at
mapping classes whose action on first homology has spectral radius equal
to one, the behavior of minimum dilatations is different.

Theorem 1.2. Let Fg ⊂ Mod(Sg) be the subcollections of mapping classes
whose homological dilatation equals one. Let gm = 2m range over the even
numbers ≥ 2. Then Fgm admits asymptotically small dilatation pseudo-
Anosov maps.

Dilatations of pseudo-Anosov mapping classes φg ∈ Mod(Sg), where g
is the genus of Sg, are bounded from below by the following inequality
[16] (see also [14, p. 44])

log(2)

12g − 12
≤ log(λ(φg)).

Thus, to prove statements like Theorem 1.1 and Theorem 1.2, it suffices
to find a sequence of pseudo-Anosov mapping classes φgm : Sgm → Sgm ,
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so that the genus-normalized dilatation

Lgenus(Sm, φm) = λ(φgm)gm

is bounded.
In [16], Penner developed techniques for constructing sequences of this

kind which are sometimes known as Penner sequences (see also [2], [18],
[19]). Penner sequences have the following useful properties:

(i) φm is pseudo-Anosov,
(ii) the genus of Sm is linear in m, and
(iii) Lgenus(Sm, φm) is bounded.

We define generalized Penner sequences in section 2 and use this in
section 3 to prove Theorem 1.1 and Theorem 1.2 using explicit construc-
tions. Section 4 contains further questions about small dilatation mapping
classes.

2. Generalized Penner Sequences

In this section, we define a generalization of Penner’s example in [16],
which we will use in section 3. This generalization is a special case of the
ones studied in [19] and [8].

Let S be a compact surface of finite type with negative topological
Euler characteristic. A simple closed curve on S is the image of an em-
bedded circle on S. A relative closed curve is the image of an interval on
S whose endpoints lie on the boundary of S. A simple closed or relative
closed curve on S is essential if it does not bound a disk on S and it is
not homotopic to a curve on the boundary of S. A multi-curve on S is
a finite union of pairwise disjoint essential closed curves on S. A relative
multi-curve on S is a finite union of pairwise disjoint closed and relative
closed curves on S.

A pair of multi-curves a and b fills S if
(i) a and b intersect minimally, and
(ii) the complementary components of a ∪ b are either open disks or

boundary parallel annuli.
Given a multi-curve a, let δa be the composition of right Dehn twists
centered at the components of a. (See, for example, [5] for definition and
properties of Dehn twists.)

Let a and b be multi-curves, let c be a simple closed curve that is
disjoint from b, and assume that the pair of multi-curves a and b ∪ c fills
S. Let d ⊂ S be a relative closed multi-curve. Assume the following:

(i) c is connected,
(ii) d is disjoint from a and b,
(iii) S \ d is connected, and
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(iv) the algebraic intersection of c and d is zero.
We call d the cutting curve.

Lemma 2.1. The mapping class φ : S → S defined by φ = δcδ
−1
a δb is

pseudo-Anosov.

Proof. This follows from Penner’s semi-group criterion [15].

Let α : π1(S) → Z be the map sending loops on S to their algebraic
intersection with d. By composing with the quotient map Z → Z/mZ,
we have regular m-cyclic coverings ρm : Sm → S. Let Σ be the surface
with boundary obtained by cutting S along d and let Σ0 be the closure
of a lift of the interior of Σ to Sm.

Let d+ and d− be the loci on the boundary of Σ corresponding to
the two sides of d in S and let d±0 be their lifts to Σ0. Then there is a
generator rm of the group of deck transformations of Sm over S so that
rm(d−0 ) = d+0 . Let Σi = rim(Σ0) and d±i = rim(d±0 ). Then Sm is the union

Sm =

m−1⋃
i=0

Σi,

where Σi is attached to Σi+1 by gluing d+i to d−i+1, the sum “i+ 1” being
taken modulo m.

By construction, each of a, b, and c has m disjoint lifts in Sm. Let
a(0) and b(0) be the lifts of a and b that are strictly contained in Σ0, and
let c(0) be the lift of c that intersects Σ0, but does not intersect Σm−1.
Define the Penner sequence φm : Sm → Sm associated to (S, a, b, c, d) to
be the mapping class

φm = rmδc(0)δ
−1
a(0)

δb(0) .

Theorem 2.2. Let (Sm, φm) be a Penner sequence associated to
(S, a, b, c, d). Then

(1) the topological Euler characteristic of Sm satisfies

χ(Sm) = mχ(S),

(2) the mapping class φm is pseudo-Anosov,
(3) the χ-normalized dilatations Lχ(Sm, φm) = λ(φm)|χ(Sm)| form a

convergent sequence

lim
m→∞

Lχ(Sm, φm) = Lχ(S, φ),

and
(4) the genus normalized dilatations Lgenus(Sm, φm) are bounded.
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Proof. The topological Euler characteristic of Σ is given by

χ(Σ) = χ(S)− χ(d).

The covering Sm contains m copies of d and m copies of the interior of
Σ, and hence

χ(Sm) = mχ(d) +m(χ(S)− χ(d)) = mχ(S).

The mapping classes φm lie in the Penner semigroup generated by negative
Dehn twists on a and positive Dehn twists on b∪c. By Penner’s semigroup
criterion, it follows that φm is pseudo-Anosov [15], proving (2). William
P. Thurston’s fibered face theory [17] gives a correspondence between
pseudo-Anosov mapping classes on surfaces and rational points on fibered
faces of hyperbolic 3-manifolds. In [8], it is shown that each Penner
sequence (Sm, φm) corresponds to a convergent sequence on a fibered face
whose limit is the point associated to (S, φ). By a result of David Fried
[6] (see also [13], [14]), the normalized dilatation extends to a continuous
(and convex) function on fibered faces, implying (3).

Let rm be the number of boundary components of Sm. Then, since
rm ≥ 0, we have |χ(Sm)| = 2gm + rm − 2 ≥ 2gm − 2. Thus,

Lgenus(Sm, φm) = λ(φm)gm ≤ λ(φm)|χ(Sm)|/2+1 = L(Sm, φm)
1
2λ(φm).

Since, by Theorem 2.2(3), λ(φm) and L(Sm, φm) are bounded,
Lgenus(Sm, φm) is bounded.

Remark 2.3. That the normalized dilatations Lχ(Sm, φm) are bounded
was proved for a special case in [16] and generalized in [19]. Theorem 2.2
is stronger because it also gives information about the limiting value of
L(Sm, φm).

Let (Sm, φm) be a Penner sequence. Let Sm be the closed surface
obtained by filling each boundary component of Sm with a disk. Let φm
be the mapping class on Sm induced by φm. We call (S, φm) the closures
of (Sm, φm).

By the construction, the multi-curves a and b ∪ c divide S into disk
or boundary parallel annular regions bounded by polygons whose sides
alternate between lying on a and lying on b∪c, and each polygon bounding
a disk is even-sided with at least four sides.

Proposition 2.4. Let (S, a, b, c, d) have the additional property that each
boundary parallel disk in the complement of a∪b∪c is bounded by a polygon
with at least four sides. Then the closures (Sm, φm) are pseudo-Anosov
mapping classes with

λ(Sm, φm) = λ(Sm, φm),

and the genus-normalized dilatations Lgenus(Sm, φm) are bounded.
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Proof. For the covering Sm two things can happen locally. If a comple-
mentary component is homeomorphic to a disk, then the number of sides
of the bounding polygon stays the same. If the complementary compo-
nent is a boundary parallel annulus, the number of sides of the polygon
either stays the same or increases. It follows (see [15]) that φm can-
not have any one-pronged boundary components, and hence (Sm, φm) is
pseudo-Anosov with the same dilatation as (Sm, φm) (see, for example,
[9, Lemma 2.6]).

Since the genus of Sm and of Sm are the same, we have

Lgenus(Sm, φm) = Lgenus(Sm, φm).

The rest follows from Theorem 2.2(4).

3. Applications

Here, we prove the theorems stated in the introduction using families of
examples that satisfy the conditions of Theorem 2.2 and Proposition 2.4.

3.1. Handlebody mapping classes.

We now construct Penner sequences consisting of handlebody mapping
classes and prove Theorem 1.1.

Let (S, a, b, c, d) be the surface and curves shown in Figure 1. Then
S is a closed genus-2 surface and b is the empty curve. Let p : S → H
be the inclusion of S as the boundary of the genus-2 handlebody. Then
(S, a, ∅, c, d) defines a Penner sequence φm : Sm → Sm with no boundary
components.

Figure 1. Pair of multi-curves a and c and cutting curve
d on the surface S.

By Theorem 2.2, we have

log λ(φm) � 1

m
.

Figure 2 gives a picture of the mapping classes φm : Sm → Sm. One
observes that Sm has genus g = m + 1, and φm is a union of Dehn
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twists that bound disks in the interior of the handlebody. This proves
Theorem 1.1.

Figure 2. The mapping class (Sm, φm).

Using the theory of fibered faces, it is possible to compute the dilata-
tions of the mapping classes in these examples explicitly.

By studying the action of φ on the curves a and c (and the associated
train track defined in the proof of Penner’s semi-group criterion), one can
find the dilatation λ(φ) as the largest eigenvalue of[

1 8
8 65

]
.

Thus, λ(φ) is the largest root of the characteristic polynomial

x2 − 66x+ 1 = 0.

By Theorem 2.2, we have

lim
m→∞

Lχ(Sm, φm) = λ(φ)2 ≈ (65.98)2 ≈ 4353.99.

Remark 3.1. Using the McMullen polynomial [14], one can also find the
dilatations of each of the mapping classes (Sm, φm): the dilatations of φm
is the largest root of

x2m − 16xm+1 − 34xm − 16xm−1 + 1 = 0.

(See [8] for more detailed descriptions of the computational techniques.)
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3.2. Mapping classes with homological dilatation
equal to one.

Consider the surface and curves shown in Figure 3 where a = a1 ∪
a2. (The base example shown in Figure 3 also appears in [5, Figure
14.1] and [11, Lemma 5.1].) Then (S, a, b, c, d) satisfies the conditions of
Theorem 2.2 and gives rise to Penner sequence (Sm, φm) where Sm has
genus 2m.

Figure 3. Example generating a Penner sequence with
trivial homological dilatation.

The mapping classes δ−1a2 δb, δa1 , and δc are all elements of the
Torelli subgroup of Mod(S3), as are their lifts to Sm (see Figure 4).

Figure 4. Penner sequence of pseudo-Anosov mapping
classes with trivial homological dilatation on even genus
surfaces.

The rotation rm is a rotation by “two clicks” and has order m = gm/2.
Since φm is a composition of an element in the Torelli group and a rotation

φm = rmδc(0)δ
−1
a
(0)
1

δ−1
a
(2)
2

δb(0)
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it has trivial homological dilatation. This completes the proof of Theo-
rem 1.2.

4. Further Questions

Let P =
⋃
g P(Sg), where P(Sg) is the set of pseudo-Anosov mapping

classes on the closed surface Sg of genus g. The smallest known accumu-
lation point for the genus-normalized dilatation

Lgenus(φg) = λ(φg)
g

equals

µ = γ20 ,

where γ0 is the golden mean (see [7], [1], [10]).

Question 4.1. Is µ the smallest accumulation point for Lgenus on P?

The results of this paper lead to the following more specific questions.

Question 4.2. What is the smallest accumulation point for genus-normal-
ized dilatation restricted to handlebody mapping classes or to mapping
classes with trivial homological dilatation?

For example, one would expect the smallest accumulation point for
handlebody subgroups to relate to the geometry of fibered 4-dimensional
manifolds, and perhaps this further restriction gives a lower bound for
normalized dilatation that is higher than µ.

Question 4.3. Can the smallest accumulation point for genus-normalized
dilatations of pseudo-Anosov mapping classes be achieved as the limit of
dilatations for closures of a generalized Penner sequence?

So far there is no known example of a Penner sequence whose genus-
normalized dilatations converge to µ.
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