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Abstract. This paper analyses Lehmer's problem in the context of Coxeter

systems. The point of view leads to a topological generalization of McKay's

correspondence, and highlights some special properties of the triple (2; 3; 7).

1. Introduction

This paper addresses a long-standing open problem due to Lehmer in which
the triple 2,3,7 plays a notable role. Lehmer's problem asks whether there is a gap
between 1 and the next largest algebraic integer with respect to Mahler measure.
The question has been studied in a wide range of contexts including number theory,
ergodic theory, hyperbolic geometry, and knot theory; and relates to basic questions
such as describing the distribution of heights of algebraic integers, and of lengths
of geodesics on arithmetic surfaces. See, for example, [EW99] and [GH01] for
surveys and references. This paper focuses on Lehmer's problem applied to Coxeter
systems. The analysis leads to a topological version of McKay's correspondence.

We review some properties of Coxeter systems in Section 1, and Coxeter links
in Section 2. Section 3 describes Lehmer's problem, and Section 4 contains some
remarks on McKay's correspondence.

2. Coxeter Systems

A Coxeter system consists of a vector space V with a distinguished ordered
basis e1; : : : ; en, and an inner product

hei; eji = �2 cos
�

mi;j

;

where mi;i = 1, and if i 6= j, mi;j 2 f2; 3; : : : ;1g. Associated to a Coxeter system
is the Coxeter group G � GL(V ) generated by reections S = fs1; : : : ; sng through
hyperplanes perpendicular to e1; : : : ; en respectively. The action of si 2 S on the
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Figure 1. Vertical arrow crosses positively over horizontal arrow.

basis of V is given by

si(ej) = ej � 2 projeiej

= ej � hei; ejiei:

The group G has presentation

G = h s1; : : : ; sn : (sisj)
mi;j = 1 i:

The Coxeter system will be denoted by (G;S).
A Coxeter system is determined by its Coxeter graph �. This is the graph

with vertices �1; : : : ; �n corresponding to the elements of S and edges labeled mi;j

connecting distinct vertices �i and �j whenever mi;j > 2.
The Coxeter element of (G;S) is the product of reections

C = s1 : : : sn;

and is an important invariant of the system (see, for example, [Hum90], Chapter
3.16).

2.1. Coxeter Links. In this section, we show how to associate �bered links
to simply-laced Coxeter systems whose Coxeter graphs are realizable by positive
chord systems. We begin with some preliminary de�nitions.

A Coxeter system is simply-laced if mi;j is either 2 or 3 whenever i 6= j. Since
in this case all edges on the Coxeter graph � are labeled 3, we drop the labeling.

By a chord, we will mean a line segment on a 2-disk D connecting 2 distinct
points on the boundary of D. A chord is oriented once the initial- and end-point
of the chord are speci�ed. Given two distinct oriented chords ` and `0, ` crosses
`0 positively (resp., negatively) if ` and `0 intersect, and the angle � between the
vectors de�ned by `0 and ` is in the open interval (0; �) (resp., in (�; 2�)). Figure 1
gives an example of a positive crossing. The intersection number of ` with `0 is
de�ned to be

I(`; `0) =

8<
:

0 if ` and `0 are disjoint;
1 if ` crosses `0 positively; and
�1 if ` crosses `0 negatively

A chord diagram L is a collection of chords whose endpoints are pairwise dis-
joint. If the chords are oriented, we call L a chord system. A chord diagram or sys-
tem L is ordered if its chords are ordered. An ordered chord system L = f`1; : : : ; `ng
is positive if

I(`i; `j) � 0

whenever i > j.
The intersection matrix for an ordered chord system L is the matrix of inter-

section numbers

A = [I(`i; `j)] :
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From the de�nitions it follows that an ordered chord system L is positive if and
only if the lower diagonal entries of A are non-negative.

The incidence graph of a chord system L = f`1; : : : ; `ng is the graph with
vertices �i corresponding to each chord `i, and edges connecting �i and �j whenever
`i and `j meet. An ordered chord system thus gives rise to an ordered graph. We
will call a simply-laced Coxeter system realizable if its Coxeter graph is the incidence
graph of a positive chord system. More will be said about realizable Coxeter systems
in Section 2.2.

We now recall some de�nitions and properties of �bered links. A link K in S3

is �bered with �ber � if � is a surface embedded in S3, K is the boundary of �,
and there is a �bration

S3 nK??y
S1

with general �ber �. The �bration is equivalent to a continuous map

H : �� [0; 1]! S3;

where for some surface homeomorphism

h : �! �

we have

1. H(x; t) = x for all x 2 K;
2. H(x; 1) = H(h(x); 0); and
3. H is otherwise one-to-one.

The surface � is called a Seifert surface for K, and the map h is called the mon-

odromy of the �bration. (See, for example, [BZ85] Ch. 5, and [Lin85] for more
information on �bered links.)

De�ne the positive push-o� map

�+ : �! S3 n�

by

�+(x) = H(x;
1

2
):

Given a basis �1; : : : ; �n of H1(�;R), let V be the matrix de�ned by

V = [link(�; �+�)]

where link(�; ) is the usual linking number in S3. The matrix V is called a Seifert

matrix for the �bered link K. Then the restriction map of the monodromy h,

h� : H1(�;R) ! H1(�;R);

is represented by the matrix

h� = V �1V t(1)

in terms of the basis �1; : : : ; �n. The Alexander polynomial of a �bered link is
the characteristic polynomial of h�. (See [Rol76], Ch. 8, for more information on
Seifert matrices and Alexander polynomials.)

From an ordered chord diagram L = f`1; : : : ; `ng, we de�ne a �bered link KL

with �ber �L by starting with a disk in S3 and doing successive Murasugi sums
[MM82] of Hopf bands as in Figure 2. That is, we embed the disk D in R3 as
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`2

`3
`1

`4

`5

Figure 2. Murasugi sum.

the unit disk on the x; y-plane. Then we successively attach positively twisted
bands �1; : : : ; �n to D, along the thickened arcs `1; : : : ; `n so that �i passes over �j
whenever i > j.

The surface �L � R
3 and its link boundary KL = @�L determine a link in S3

considered as the one point compacti�cation

S3 = R
3
[ f1g:

Stallings shows (see [Sta75]) that the Murasugi sum of two �bered links is
�bered. Since the Hopf link and the unknot are �bered links, the links KL are
�bered with �ber �L.

If the chords `1; : : : ; `n in L are oriented, then we can associate a basis �1; : : : ; �n
for H1(�L;R) by extending each `i to a closed loop running along the band �i. Let
� be the incidence graph of L, and let A be the intersection matrix of L. One
can easily verify that the Seifert matrix for L with respect to this basis is given by
M = I + A+, where A+ is the upper triangular part of A, and hence equation (1)
implies that h� is presented by

h� =M�1M t;(2)

with respect to the basis �1; : : : ; �n.
If the chord system L is positive, with ordered incidence graph �, then the

bilinear form of the simply-laced Coxeter system (G;S) associated to � can be
written as

B =M +M t

and the Coxeter element of (G;S) equals

C = �M�1M t = �h�

by [How82] Theorem 2.1, and (2). We will call the pair (KL;�L) a Coxeter link

associated to (G;S).
The discussion above is completely separate from another study of chord dia-

grams and knots (see, for example, [Fen94]), which has been studied in relation to
Vassiliev invariants.

2.2. Realizable graphs. In this section, we give a brief discussion of some
combinatorics of chord diagrams.

A graph � is realizable if it is the incidence graph of a chord diagram. It is not
hard to check that the following graphs are realizable.

1. Complete graphs;
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b)a)

Figure 3. Non-realizable graphs.

2. cycles;
3. joins of two realizable graphs at one vertex; and
4. trees.

There are, however, obstructions to realizability, as shown in the propositions
below.

Let � be a graph with vertices S. A subgraph �0 � � is an induced subgraph if
for some S0 � S, �0 is the subgraph containing all edges on � whose endpoints are
in S0. We say �0 is induced by the vertex set S0. An induced cycle in � is a cycle
which is an induced subgraph. A subset S0 of the vertices S is disjoint if there is
no edge on � connecting any pair of vertices in S0.

To the author's knowledge, a complete set of suÆcient conditions for a graph
to be realizable is not known. The following two propositions provide obstructions
to realization. Their proofs follow easily from the observation that a cycle has, up
to orientation, only one realization, and will be left to the reader.

Proposition 2.1. A graph � is not realizable if there is a subset S0 � S such

that

1. S0 contains at least three vertices;

2. S0 is disjoint;
3. there is an s 2 S so that s is joined by an edge in � to every vertex in S0;

and

4. there is an induced cycle in � containing S0.

Figure 3 a) is an example of a graph satisfying Proposition 2.1. One can also
check that the graph in Figure 3 b) is not realizable, as implied by the proposition
below.

Proposition 2.2. A graph � is not realizable if there are two subsets S0; S00 �

S such that

1. S0 and S00 are two induced cycles;

2. the induced subgraph of � generated by the vertices in S0 \ S00 is connected

(and hence the induced subgraphs generated by S0 n S00 and S00 n S0 are also

connected);

3. S0 \ S00 contains at least 4 vertices; and

4. S0 n S00 and S00 n S0 each contain at least two vertices.

2.3. Ordering and positivity. In Section 2.1, we saw that a Coxeter graph
� has a corresponding Coxeter link if the graph is realizable as a chord diagram,
and its ordering is compatible with a positive orientation on the chord diagram.

Not all orderings on a realizable graph, however, are realizable by a positive
chord system. For example, one can easily check that for the ordered graph in
Figure 4 any orientation of `1 determines orientations on `2 and `4 which are not
compatible with any orientation of `3.
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1
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3

Figure 4. Ordered graph which cannot be realized by a positive
chord system

=

Figure 5. Coxeter links of trees.

Lemma 2.3. Any chord diagram admits an ordering and orientation which is

positive.

Proof. Choose a direction vector v from the center of the disk and orient the
chords so that their direction vectors have positive inner product with v with respect
to the usual Euclidean metric on R

2 . Now order the chords counter-clockwise
starting with the chord pointing furthest to the right of v.

Given an ordered graph, there is an associated directed graph, where edges are
directed so that they point to the vertex with larger index. As can be seen from
the construction, we have the following.

Proposition 2.4. If two orderings on a chord diagram L have the same di-

rected incidence graph then the resulting �bered links are the same.

Proposition 2.4 is analogous to the following observation by Shi [Shi97].

Proposition 2.5. The Coxeter element of Coxeter system (G;S) depends only
on the directed Coxeter graph � of (G;S).

2.4. Examples. This section contains some examples of links associated to
Coxeter systems.

The case when the incidence graph of L is a tree has been well studied, and
the corresponding link has been called an arborescent link [Con70]. Arborescent
links also appear as slalom links in [A'C98]. Since any tree is realizable, there
exists a Coxeter link associated to any tree. While di�erent realizations can lead
to di�erent Coxeter links, as in Figure 8, once the chord diagram is �xed, one can
easily see that the link is independent of the ordering.

Some useful examples of trees are the star diagrams. In [Hir02], we show that
the star diagram shown in Figure 6, which we will denote by Star(p1; : : : ; pk), gives
rise to the pretzel link Kp1;:::;pk shown in Figure 7, where the twists have orders
p1; : : : ; pk.

It is possible to cook up examples of non-equivalent links associated to the
same ordered Coxeter system using star-diagrams. Take the two realizations of the
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p2

p3

pk

p1

Figure 6. Star diagram and realization.

Figure 7. Coxeter Link for a star graph.

a) b)

Figure 8. Two embeddings of the same tree.

same tree shown in Figure 8. One sees that the link in Figure 8 a) has two knotted
components, while the link in Figure 8 b) has a component which is the unknot.
Hence the links are not equivalent.

Di�erent orderings on a chord system can give rise to di�erent links when the
graph contains cycles. Consider for example, the 5-cycle. Up to isotopy, there is
only one chord diagram with this incidence graph, but there are two inequivalent
positive orderings as shown in Figure 9. The Coxeter elements for the di�erent
orderings are:

a) 1� t� t4 + t5 b) 1� t2 � t3 + t5:

This implies that the �brations of the corresponding �bered links are non-equivalent;
one can also easily observe from Figure 9 that the links themselves are distinct it-
erated torus links.

For the classical Dynkin diagrams it is not hard to check that the associated
links don't depend on their realization as a chord system. The Dynkin diagrams
and their corresponding Coxeter links are shown in Figure 10.
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Figure 9. Two orderings on the 5-cycle and their resulting Cox-
eter links.

Figure 10. Links associated to Dynkin diagrams.

The simply-laced minimal hyperbolic Coxeter system of smallest dimension is
a triangle with a tail. The Coxeter link (see Figure 11) is uniquely determined in
this case by the requirement of positivity, and equals the mirror of the 10145-knot
in Rolfsen's table [Rol76], which is (22; 3; 3�) in Conway's notation [Con70].

2.5. Remarks on the Geometry of Coxeter systems and Coxeter links.

We will assume throughout this section that Coxeter systems are irreducible, or
equivalently the Coxeter graph is connected.

A Coxeter system is �nite if and only if its associated bilinear form is positive
de�nite ([Hum90], Chapter 6.4). In this case the Coxeter group is a Euclidean
reection group and the Coxeter system is called spherical. A Coxeter group has
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Figure 11. Coxeter link associated to smallest hyperbolic Coxeter system.

a natural representation as an aÆne reection group if and only if the associated
bilinear form is positive semi-de�nite ([Hum90], Chapter 6.5).

A'Campo [A'C76] and Howlett [How82] proved that whether a Coxeter sys-
tem is spherical, aÆne, or neither can be detected by the eigenvalues of the Coxeter
element.

Theorem 2.6. Let � be a Coxeter system and C a Coxeter element. Then

1. the eigenvalues of C lie on R [ S1;

2. � is spherical if and only if C has �nite order; and

3. � is neither aÆne or spherical if and only if C has at least one eigenvalue

with norm greater than one.

Fibered knots and links K in S3 have an analogous classi�cation as torus links,
satellite links, and hyperbolic links [Thu82]. All iterated torus links have Alexander
polynomials with Mahler measure equal to one. This implies the following.

Corollary 2.7. The only Coxeter links, coming from irreducible Coxeter sys-

tems, which are iterated torus links are the ones corresponding to the spherical and

aÆne Coxeter systems.

Theorem 2.6 and Corollary 2.7 imply that the Mahler measure gives a kind of
measure of hyperbolicity for Coxeter links.

Question 2.8. Can one �nd a more precise relation between the Mahler Mea-

sure and geometric invariants for Coxeter links, for example, the entropy?

3. Lehmer's Problem

Let p(x) be a monic integer polynomial, and de�ne its Mahler measure to be

kp(x)k =
Y
�

j�j;(3)

where � runs through all (complex) roots of p(x) outside the unit circle. It is well
known that kp(x)k = 1 if and only if all roots of p(x) are roots of unity.

In 1933, Lehmer [Leh33] asks whether for each Æ > 0, there exists a monic
integer polynomial p(x) such that

1 < kp(x)k < 1 + Æ:

It is an easy exercise to see that for each positive integer d, there is a gap
between 1 and the Mahler measures of monic integer polynomials which are not
products of cyclotomics. Lehmer found polynomials with smallest Mahler measure
for small degrees and states in [Leh33] that the smallest he could �nd for degree
10 or higher is

pL(x) = x10 + x9 � x7 � x6 � x5 � x4 � x3 + x+ 1;



10 ERIKO HIRONAKA

Figure 12. Roots of the Lehmer polynomial

which has Mahler measure

kpL(x)k = 1:17628 : : : :

Boyd [Boy89] and Mossingho� [Mos98] have done searches up to degree 40, but
so far no one has found a monic noncyclotomic integer polynomial with smaller
Mahler measure.

One observes immediately that pL(x) is reciprocal, that is

pL(x) = xdpL(
1

x
);

where d is the degree of pL(x) (in this case d = 10).
Smyth [Smy71] shows

pS(x) = x3 � x+ 1

solves Lehmer's problem for non-reciprocal polynomials, that is, if p(x) is monic
and non-reciprocal, then

kp(x)k � kpS(x)k = 1:32472 : : : :

Since

kpS(x)k > kpL(x)k;

it remains to determine whether there is a similar minimum for Mahler measures
of reciprocal monic integer polynomials.

A Salem number is an algebraic integer whose algebraic conjugates lie on or
within the unit circle, with at least one conjugate on the unit circle (making the
minimal polynomial necessarily reciprocal). As shown in Figure 12, pL(x) has only
one root, �L = 1:17628 : : : , which we'll call Lehmer's number, outside the unit
circle. Thus, the Mahler measure of pL(x) is �L, and �L is a Salem number.
(Analogously, the Mahler measure of pS(x) is its largest root �S , and Smyth's
theorem implies that �S is the smallest P-V number, that is, an algebraic integer
all of whose conjugates lie strictly within the unit circle.) It is not known whether
there exist Salem numbers smaller than �L. Furthermore, it is not known whether
Lehmer's question can be answered by resolving the minimization problem for Salem
numbers.

It has been observed in various contexts that Lehmer's polynomial pL(x) is
related to the triple (2; 3; 7) and more abstractly to the notion of minimal hyper-
bolicity. Before going to examples, it is worth remarking that the triple (2; 3; 7)
has the simple distinguishing property that, among all k-tuples of positive integers
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(p1; : : : ; pk), (2; 3; 7) gives the minimal positive value for

k � 2�

kX
i=1

1

pk

(see, for example, [Hir01] Lemma 3.1.) This property comes into play in the
minimality of Lehmer's number �L among the series of Salem numbers and algebraic
numbers which we describe below in this section.

3.1. Growth rates and the (2; 3; 7)-triangle group. Consider any pair
(G;S), where G is a group and S is a set of generators. Let

wn = number of words of minimal word length n in S:

The growth series of (G;S) is the formal power series

f(G;S) =

1X
n=1

wnt
n

and the growth rate � equals

� =
1

radius of convergence of f(G;S)

:

Another way to say this is that wn grows like �n as n gets large.
Let G = Tp1;:::;pk be a polygonal reection group acting on S2, E2 or H 2 . The

group G has presentation

G = h s1; : : : ; sk : (sks1)
pk ; and (sisi+1)

pi ; for i = 1; : : : ; k � 1 i:

Let [p] denote the polynomial [p] = 1 + x+ � � �+ xp�1, and let

�p1;:::;pk(x) = (x� k + 1)

kY
i=1

[pi] +

kX
i=1

[p1] � � � c[pi] � � � [pk]:
For (G;S) as above Floyd and Plotnick [FP88] show the following. (See also,
[CW92].)

Theorem 3.1. The growth series for (G;S) is the rational function

f(G;S)(x) =
[2][p1] � � � [pk]

�p1;:::;pk(x)
:

Furthermore, �p1;:::;pk(x) is a reciprocal monic integer polynomial with at most one

root, necessarily a Salem number, outside the unit circle. This root occurs if and

only if
1

p1
+ � � �+

1

pk
< k � 2:

Thus, the growth rate �p1;:::;pk of (G;S) is a Salem number if and only if the orbifold
Euler characteristic

� =
1

p1
+ � � �+

1

pk
� (k � 2)

of the quotient space by G is negative, and otherwise �p1;:::;pk = 1. The polynomial
�2;3;7(x) equals Lehmer's polynomial pL(x), and hence the triangle group T2;3;7
has growth rate equal to �L.

For the family of polynomials �p1;:::;pk (x), Lehmer's problem is decided by the
following theorem.
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Figure 13. The pretzel link K2;3;7.

Theorem 3.2. Among the polynomials

�p1;:::;pk(x);

the one with smallest Mahler measure is Lehmer's polynomial �2;3;7(x).

Proof. See [Hir01], Theorem 1.3.

This result is suggestive since among hyperbolic orbifold spheres

(S2; p1; : : : ; pk);

the one with maximal orbifold Euler characteristic � and minimal hyperbolic area
is (S2; 2; 3; 7).

3.2. Alexander polynomials and the (2; 3; 7;�1) pretzel knot. In his
book, published around the time of Lehmer's question, Reidemeister remarks that
the (�2; 3; 7)-pretzel knot shown in Figure 13 has Alexander polynomial pL(�x)
[Rei32]. This fact is also noted in Kirby's collection of Problems [Kir97], and was
pointed out to the author by D. Lind in private conversation.

One can easily observe that the (�2; 3; 7) pretzel knot is equivalent to the
(2; 3; 7;�1) pretzel knot. Let Kp1;:::;pk be the (p1; : : : ; pk;�1; : : : ;�1)-pretzel link,
where the number of \�1"s is k � 2. The theorem below gives a relation between
the Alexander polynomial of Kp1;:::;pk and the denominator of the growth series of
Tp1;:::;pk de�ned in Section 3.1.

Theorem 3.3. The pretzel link Kp1;:::;pk is �bered and has Alexander polyno-

mial

�p1;:::;pk (�x);

where �p1;:::;pk(x) is the denominator for the growth series of the polygonal reec-

tion group Tp1;:::;pk .

Proof. The links Kp1;:::;pk are �bered since they are the Coxeter links associ-
ated to Star(p1; : : : ; pk) (see Section 2.4). The rest follows from [Hir01] Theorem
1.2.

Thus, Theorem 3.2 implies the following.

Corollary 3.4. Among pretzel links Kp1;:::;pk , the Mahler measure of the

Alexander polynomial is minimized by K2;3;7.

We will describe a natural topological relation between the pretzel links and
the polygonal reection groups in Section 4.
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Figure 14. E10-Coxeter graph

3.3. E10 diagram. One observes that the CoxeterE10 diagram can be thought
of as the Star(2; 3; 7) Coxeter graph by comparing Figure 14 with Figure 6. The
link K2;3;7 is thus the Coxeter link for the E10 diagram.

McMullen observes [McM02] that the characteristic polynomial of the Coxeter
element is Lehmer's polynomial pL(x), and its leading eigenvalue is �L. Further-
more, he shows the following.

Theorem 3.5. Let C be the Coxeter element of a Coxeter system, and let �(C)
be the spectral radius of C. Then among non-spherical and non-aÆne Coxeter sys-

tems, �(C) achieves its minimum when (G;S) is the Coxeter system corresponding

to the E10 diagram.

This solves Lehmer's problem for Coxeter elements of Coxeter systems, and
as a consequence also for the Alexander polynomials of Coxeter links, generalizing
Corollary 3.4.

Corollary 3.6. Let p(x) be the characteristic polynomial of the Coxeter ele-

ment of a non-spherical or non-aÆne Coxeter system. Then

kp(x)k � kpL(x)k:

Corollary 3.7. Let �(x) be the Alexander polynomial of a non-algebraic Cox-

eter link. Then

k�(x)k � kpL(x)k:

4. Correspondence between stars and polygons

In the previous section, we showed the equality of

1. the growth rate of the polygonal reection group Tp1;:::;pk ;
2. the Mahler measure of the Alexander polynomial of Kp1;:::;pk ; and
3. the spectral radius of the Coxeter system Star(p1; : : : ; pk).

Here we give a topological relation between the polygonal reection groups and
Star-Coxeter systems. Let P denote the sphere S2, the Euclidean plane E2 , or the
hyperbolic plane H 2 . Let T (P ) be the unit tangent bundle of P . Let G be the
(p1; : : : ; pk)-polygonal reection group Tp1;:::;pk acting on P . It is not hard to see
that the induced action of G on T (P ) makes T (P ) a branched cover over S3 with
branching index 2 on a link K.

The covering T (P )! S3 factors through an unbranched covering T (P )!M ,

induced by the action of the orientation preserving subgroup G(2) � G, and a
double branched cover M ! S3 with branch locus K.
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T (P )
�

����! P

G(2)

??y G(2)

??y
M

f
����! S2

Z2

??y
S3:

(4)

The horizontal arrows are the natural S1-bundle � : T (P ) ! P , and a Seifert
�bration f : M ! S2 with singular �bers of orders p1; : : : ; pk. The following
proposition is not hard to verify from the de�nitions.

Proposition 4.1. The branch locus K of the action of Tp1;:::;pk on T (P ) is the
Star(p1; : : : ; pk)-Coxeter link Kp1;:::;pk .

In general, any Seifert �bration over S2 admits a double covering of S3 branched
along a link, called aMontesinos link, and to each k-tuple, p1; : : : ; pk, there are sev-
eral possible links with varying Alexander polynomials and Mahler measures. (For
a survey of Montesinos links see [BZ85], Chapter 12, and references therein). In
particular, given a k-tuple p1; : : : ; pk, there are several Montesinos links associated
to p1; : : : ; pk whose Alexander polynomial does not have Mahler measure equal to
the growth rate of Tp1;:::;pk .

Question 4.2. What special properties distinguish the Coxeter links Kp1;:::;pk

from general Montesinos links?

The above discussion generalizes a phenomenon appearing in the theory of
isolated hypersurface singularities. For a beautiful exposition on Klein singularities
and McKay's correspondence, the reader is referred to [Slo83].

Briey the correspondence goes as follows. Let eG be a �nite subgroup of SU(2)
acting in the usual way on C

2 . The quotient X is a hypersurface in C
3 with

isolated singularity called a Klein singularity. The resolution diagrams of these
singularities give rise to all the Coxeter graphs (or Dynkin diagrams) of the simply-
laced spherical Coxeter systems. The correspondence between �nite subgroups of
SU(2) and the Dynkin diagrams is known as McKay's correspondence [McK80].

Coxeter links can be used to give a topological description of the correspon-

dence. Let eG be a �nite subgroup of SU(2). Then eG is the binary extension of a

�nite subgroupG(2) of SO(3) which in turn (with the exceptional case of G(2) = Zn)

is an index 2 subgroup of a (p; q; r)-triangle group G = Tp;q;r. The group G
(2) = Zn

corresponds to the (2; n)-triangle group. Note, that all the Dynkin diagrams are
star-diagrams. Relating each group Tp;q;r with the corresponding Star(p; q; r) dia-
gram gives the McKay correspondence shown in the table below.

Zn T2;n Star(2; n) = An+1

Dn T2;2;n Star(2; 2; n) = Dn+2

S3 T2;3;3 Star(2; 3; 3) = E6
S4 T2;3;4 Star(2; 3; 4) = E7
A5 T2;3;5 Star(2; 3; 5) = E8
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For the triples p; q; r in the above table, the (p; q; r)-star Coxeter link K is
algebraic. The induced branched covering of the link M of the singularity X ,
M ! S3, branched overK, is the restriction of a double branched coveringX ! C

2 .
This gives the following commutative diagram.

RP
3 = T (S2)

Z2
 ���� S3 � C

2

G(2)

??y eG

??y
M

�
����! X

Z2

??y �

??y
S3

�
����! C

2 :

For the general situation of Proposition 4.1, M is also the link of an isolated
surface singularity, but the branched covering M ! S3 is not induced by an al-
gebraic map, since as noted in Corollary 2.7, in general the links Kp1;:::;pk are not
algebraic links.
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