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Abstract

Consider the set of surface-curve pairs (X; C), where X is a normal sur-

face and C is an algebraic curve. In this paper, we de�ne a family F of nor-

mal surface-curve pairs, which is closed under coverings, and which contains

all smooth surface-curve pairs (X; C), where X is smooth and C has smooth

irreducible components with normal crossings. We give a modi�cation of W.

Neumann's de�nition of plumbing graphs, their associated 3-dimensional graph

manifolds, and intersection matrices, and use this construction to describe ra-

tional intersection matrices and boundary manifolds for regular branched cov-

erings.

1. Introduction. Let (X; C) be a surface-curve pair, consisting of a normal surface

X and an algebraic curve C � X. The boundary manifold of a regular neighborhood

M(X; C) of C in X can be simply described by taking any smooth model ( eX; eC) of
(X; C), and using W. Neumann's associated plumbing graphs (X; C) (see [?]). The

intersection matrix S(X; C) of a surface-curve pair (X; C) is the matrix with entries

the pairwise rational intersections of irreducible components of C with respect to

some ordering. When (X; C) is a smooth surface-curve pair, where X is smooth and

C has smooth irreducible components with normal crossings, the intersection matrix

S(X; C) only depends on the combinatorics of C, and thus is also determined by

(X; C). Neumann de�nes the intersection matrix S() for the plumbing graph of a

smooth surface-curve pair (X; C), so that S(X; C) = S((X; C)).

A modi�ed de�nition of plumbing graphs is useful for dealing with branched cov-

erings. A (regular) covering of surface-curve pairs

� : (Y;D)! (X; C)

is a �nite surjective morphism

� : Y ! X

so that D = ��1(C) and the restriction

� : Y n D ! X n C

is a (regular) unbranched covering. Even if (X; C) is a smooth surface-curve pair, the

covering (Y;D) of (X; C) need not be smooth.

1Dedicated to Peter Orlik on his 60th birthyear

1



Let S be the collection of smooth surface-curve pairs. We will de�ne a family F

of normal surface-curve pairs, which contains S and is closed under coverings, in the

sense that: if (X; C) 2 F , and � : (Y;D)! (X; C) is a covering of surface-curve pairs,

then (Y;D) 2 F . We modify Neumann's de�nition of plumbing graphs and their

intersection matrices to describe the local topology of surface-curve pairs in F and

their intersection matrices. This gives a method for studying coverings and computing

intersection matrices without having to pass to smooth models, and generalizes the

results of [?] and [?], where formulas for intersection matrices of abelian coverings are

given.

The reader is reminded of basic de�nitions and properties of graphs of groups

and complexes in Section 2. The modi�ed de�nition of plumbing graphs, and their

associated 3-manifolds and coverings are given in Sections 3. Section 4 contains

a de�nition of normal surface-curve pairs, their associated plumbing graphs, and

associated intersection matrices. Formulas for invariants of the plumbing graph of a

covering of a normal surface-curve pair from covering data are given in Section 5.

2. Graphs of groups and complexes. The concept of plumbing graph comes out

of a more general construction by which �nite CW-complexes and �nitely generated

groups are described in terms of information attached to the nodes and vertices of a

graph. We give the basics of these de�nitions in this section.

By a graph � we mean a collection of vertices V(�) and oriented edges Y(�). For

any y 2 Y(�), we write o(y) for the initial point and t(y) for the terminal point.

We will always assume that graphs are �nite and connected. Furthermore, given

y 2 Y(�), we will assume y 2 Y(�), where

o(y) = t(y); and

t(y) = o(y):

For any vertex v 2 V(�), denote by d(v) the degree of the graph � at v.

A graph of groups G(�) over � is a collection of groups

Gv; v 2 V(�);

Gy; y 2 Y(�);

so that Gy = Gy; and monomorphisms

h : Gy ! Gt(y);

for each y 2 Y(�).

A path on � is an ordered, possibly empty, collection

c = (y1; : : : ; yk);
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where

yi 2 Y(�) for i = 1; : : : ; k;

and

t(yi) = o(yi+1); for i = 1; : : : ; k � 1:

Given a path c = (y1; : : : ; yk) on � and collection r = (r0; : : : ; rk), where r0 2 Go(y1)
,

and ri 2 Gt(yi)
, for i = 1; : : : ; k. Let jc; rj be the word

r0y1r1 : : : ykrk:

Let F (G(�)) be the group of words jc; rj subject to the relations in the vertex and

edge groups Gv and Gy, and the relation

yry = r1;

if and only if r = hy(r1).

The fundamental group �1(G(�)) can be de�ned in two ways. The �rst is in terms

of a basepoint v0 2 V(�). A path c = (y1; : : : ; yk) is a closed circuit based at v0, where

v0 2 V(�), if

v0 = o(y1) = t(yk):

The fundamental group �1(G(�); v0) is de�ned to be the set of words jc; rj, where c is

a closed circuit based at v0.

The second way to describe the fundamental group �1(G(�)) is in terms of a

maximal tree inside �. A maximal tree T in � is a subgraph containing all vertices

of �, and such that, given any two distinct vertices v1; v2 2 V(�), there is a unique

path c = (y1; : : : ; yk) in T so that

yi 6= yi+1;

for i = 1; : : : ; k � 1, and v1 = o(y1), v2 = t(yk). The fundamental group �1(G(�); T )

is the group F (G(�)) modulo the normal subgroup generated by the edges in Y(T )

thought of as elements of F (G(�)).

Lemma 0.1 ([?], p. 43) The natural homomorphism

�1(G(�); v0)! �1(G(�); T );

given by including �1(G(�); v0) in F (G(�)) and then taking the quotient by the normal

subgroup generated by Y(T ), is an isomorphism.

Given a maximal tree T of �, there are natural maps

 v : Gv ! �1(G(�); T )

induced by the natural inclusion of Gv in F (G(�)).
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Lemma 0.2 ([?], Theorem 11, Corollary 1) The maps  v are monomorphisms.

The fundamental group ofG(�) can also be considered as the fundamental group of

a naturally associated �nite CW-complex. A graph of complexes �(�), is a collection

of �nite CW-complexes

Xv; v 2 V(�);

and subcomplexes

Xy � Xt(y); y 2 Y(�);

such that the induced maps

�1(Xy)! �1(Xt(y))

are injective, with homeomorphisms

hy : Xy ! Xy;

so that hy = h�1
y
.

Given a graph of complexes �(�), the associated graph complex, which we will

also denote by �(�), is the CW-complex obtained by gluing together the Xv along

the Xy according to the identi�cations hy. Setting Gv = �1(Xv), for v 2 V(�), and

Gy = �1(Xy), for y 2 Y(�), gives a corresponding graph of groups G�(�).

Theorem 1 ([?], Theorem 2.1) The fundamental group of G�(�) is isomorphic to

the fundamental group of �(�).

A morphism between graphs of complexes

	 : �0(�0)! �(�)

is a morphism of graphs

	� : �
0 ! �

and cellular maps

	v : Xv ! X	�(v)
; v 2 V(�0); and

	y : Xy ! X	�(y)
; y 2 Y(�0);

so that

Xy

	y

���! X	�(y)

hy

??y h	�(y)

??y
Xt(y)

	t(y)

���! X	�(t(y))
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commutes, for all y 2 Y(�0).

An (unbranched) covering

� : �0(�0)! �(�)

is a morphism of graph complexes so that

�� : �
0 ! �

is onto, and

�v : Xv ! X��(v)
; v 2 V(�0); and

�y : Xy ! X��(y)
; y 2 Y(�0)

are unbranched coverings. Note that if � is an unbranched covering, then the induced

map

G�0(�0)! G�(�)

on graphs of groups induces a monomorphism of groups

�� : �1(G�0(�); v0)! �1(G�(�); �(v0));

for any v0 2 �0.

An unbranched covering

� : �0(�0)! �(�)

is regular if the maps �v and �y are regular coverings, for all v 2 V(�0) and all

y 2 Y(�0). Regular coverings �0(�0) of �(�) correspond to epimorphisms

 : �1(G�(�))! F;

where F is a �nite group.

Fix a maximal tree in �. A lift

` : T ! �0

of T in the covering graph �0, is a morphism of graphs so that

��(`(v)) = v; v 2 V(T ); and

��(`(y)) = y; y 2 Y(T ):

Identify Gv = �1(Xv) and Gy = �1(Xy) with the corresponding subgroups of

�1(G�(�)) = �1(G�(�); T ):
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For each v 2 V(�), let  v be the restriction of  to Gv, and, for each y 2 Y(�), let

 y be the restriction of  to Gy.

Let

Fv =  v(Gv); v 2 V(�); and

Fy =  y(Gy); y 2 Y(�):

Note that the conjugacy classes of Gv and Gy, and hence Fv and Fy don't depend on

the choice of maximal tree T .

For y 2 Y(�), let s(y) =  (y), where we identify Y(�) with its natural image in

�1(G�(�); T ).

The following propositions and corollaries follow from elementary properties of

coverings.

Proposition 2 For v 2 V(�), the identi�cation

[�Fv] = �`(v)

gives a one-to-one correspondence between elements in the preimage ��1(v) cosets of

Fv in F . Furthermore, for v0 2 ��1(v), the covering

�0
v0 ! �v

has de�ning map

 v : �1(�v) = Gv ! Fv:

Corollary 3 The number of vertices in ��1(v) is

#j��1(v)j = [F : Fv]

where [F : Fv] is the index of Fv in F . For v0 2 ��1(v), the degree of the covering

�0
v0 ! �v

is #jFvj, the order of Fv.

Similarly, for the edges, we have the following.

Proposition 4 For y 2 Y(�), the identi�cation

�`(y) = [�Fy]
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gives a one to one correspondence between the edges in ��1(y) and cosets of Fy in F

so that

t(�`(y)) = �(s(y)`(t(y)) = [�s(y)Ft(y)]:

Furthermore, the covering

�0
y0 ! �y

has de�ning map

 y : �1(�y) = Gy ! Fy:

Corollary 5 For y 2 Y(�),

#j��1(y)j = [F : Fy];

for y0 2 ��1(y), the covering

�0
y0 ! �y

has degree #jFyj; and, if t(y) = v and v0 2 ��1(v), we have

#fy0 2 ��1(y) : t(y0) = v0g =
#Fv

#Fy
:

3. Plumbing graphs. In [?], F. Waldhausen de�nes a 3-dimensional graph manifold

to be a manifold with a torus decomposition into Seifert �bered pieces, noting that this

gives the manifold an underlying graph structure. Neumann distills the information

using plumbing graphs in [?], and develops a calculus for determining the topological

equivalence of two graph manifolds. In this section, we review the part of his de�nition

of graph manifold which applies to smooth surface-curve pairs, and then de�ne a

modi�cation which we later show applies to normal surface-curve pairs.

A plumbing graph = h�; g; ei is a �nite connected graph �, together with maps

g : V(�)! Z�0

e : V(�)! Z

Given a plumbing graph , there is an associated graph of complexes M() given as

follows. For each vertex v 2 V(�), let Sv be an oriented surface of genus g(v), with

d(v) boundary components, labeled by the edges y 2 Y(�), where t(y) = v; and let

fv :Mv ! Sv be an S
1-bundle map, with trivializations at the boundary components

of Sv, so that fv has Euler number e(v).

Let h : S1 � S1 ! S1 � S1 be the automorphism de�ned by h(a; b) = (b; a). We

can think of h as being induced by the action of

H =

�
0 1

1 0

�
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on �1(S
1 � S1), with respect to the natural identi�cation

�1(S
1 � S1) = Z� Z:

Let Ty 2 Mt(y) be the boundary component of Mt(y) associated to the oriented

edge y. The local trivialization of fv at Ty, canonically identi�es Ty with S
1 � S1 so

that fvjTy is projection onto the second component.

The graph of complexes associated to consists of the manifolds

Xv = Mv; v 2 V(�); and

Xy = Ty; y 2 Y(�):

with gluing maps

Ty
hy

���! Ty


 



S1 � S1

h

���! S1 � S1

The graph of complexes M() is a graph manifold.

Let (S1 � S1) be the set of �nite unbranched coverings of S1 � S1 to itself. A

modi�ed plumbing graph = h�; g; e;mi is a plumbing graph with maps

m : Y(�)! (S1 � S1)

so that

(1) the induced maps

m(y)� : Z� Z! Z� Z

are non-negative upper triangular matrices in M2(Z),

m(y)� =

�
a(y) b(y)

0 c(y)

�
;

where 0 � b(y) < a(y) and c(y) > 0; and

(2) the matrices m(y)� and Hm(y)� have the same image in Z� Z.

Given a modi�ed plumbing graph = h�; g; e;mi, we de�ne an associated graph

manifold M() to have vertex and edge manifolds as for = h�; g; ei, except that we

identify Ty with S
1 � S1 so that if R is the element of (2;Z) giving

m(y)�R = Hm(y)�;
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then hy : Ty ! Ty is the map induced by R. We thus have a commutative diagram

Ty
hy

���! Ty

m(y)

??y m(y)

??y
S1 � S1

h

���! S1 � S1

:

Since h = h�1, it follows that hy = h�1
y
.

Morphisms and coverings of modi�ed plumbing graphs are morphisms and cover-

ings of the associated graph manifolds

	 :M() !M(0)

such that the following diagram commutes:

Ty
m(y)

���! S1 � S1

	y

??y 



T	�(y)

m(	�(y))

�����! S1 � S1

:

Given a plumbing graph , one can associate a modi�ed plumbing graph , by

setting all maps m(y) to be the identity. One can easily verify that, in this case, the

de�nitions for the associated graph manifold, and morphisms are the same.

4. Normal surface-curve pairs. Let X be a normal complex projective surface,

and let C � X be an algebraic curve. We will assume for simplicity that C is connected.

Let jCj be the set of irreducible curves in C, and let P = Sing(C). Let F be the family

of surface-curve pairs (X; C) satisfying the following conditions:

(1) each C 2 jCj is unibranched;

(2) Sing(X) \ C � P; and

(3) for each p 2 Sing(C), there is a locally de�ned �nite covering of surface-curve

pairs

�p : (X; C)! (C 2 ; fx = 0g [ fy = 0g))

de�ned near the germ (X; p).

A surface-curve pair (X; C) 2 F is call a normal surface-curve pair.

The following is immediate.

Lemma 5.1 The family of normal surface-curve pairs is closed under coverings of

surface-curve pairs.
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The fundamental group �1(C
2 n fx = 0g [ fy = 0g) is canonically isomorphic to

the integer lattice Z � Z, with natural generators given by meridian loops around

fx = 0g and fy = 0g. Thus, �nite coverings correspond to 2-dimensional lattices

of �nite index. Given p 2 P, and C;D 2 C containing p, let a; b; c be non-negative

integers so that (a; 0) and (b; c) generate the sublattice, and 0 � b < a. Note that

the numbers a; b; c are uniquely determined given the ordering of C and D. Changing

the ordering corresponds to changing the order of the canonical basis for Z� Z, and

hence corresponds to switching columns of the matrix�
a b

0 c

�
;

and column-reducing to get �
a0 b0

0 c0

�
=

�
a b

0 c

�
R;

where 0 � b0 < a and R 2 (2;Z).

The matrix R can be obtained from a continued fraction expansion [m1; : : : ; mk]

for a

b
, where

a

b
= m1 �

1

m2 �
1

� � �
1

mk

:

Lemma 5.2 The matrix R is given by

R = HM1H � � �HMkH;

where

Mi = (Mi)
�1 =

�
1 mi

0 �1

�
;

for i = 1; : : : ; k. Furthermore,

R�1 = HMkH � � �HM1H:

One proof of this lemma comes from a study of the singularity (X; p) (see Theorem

??).

Theorem 6 ([?], [?]) The germ (X; p) is smooth if and only if b = 0. In this case,

C must have a normal crossing at p. Otherwise, the germ (X; p) can be desingularized

by replacing p by exceptional curves E1; : : : ; Ek, with self-intersections

E2

i
= �mi; for i = 1; : : : ; k;

where [m1; : : : ; mk] is the continued fraction expansion for a

b
.
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Note that reversing the order of the pair of curves C and D passing through to

p simply reverses the order of E1; : : : ; Ek. The exceptional curves and the proper

transforms of C and D are arranged as in the graph of Figure ??,

figs/exceptional.ps not found

Figure 1.

where all edges in the graph correspond to normal crossing intersections.

Given a surface-curve pair (X; C) 2 F , with speci�ed maps �p for p 2 Sing(X),

there is a canonically associated modi�ed plumbing graph = (X; C) given as follows.

Let ( eX; eC) be a minimal desingularization of (X; C) obtained from the �p as in [?].

For each C 2 jCj, let eC 2 C 0 be the proper transform of C.

(1) The graph � for has vertices and edges

V (�) = f vC : C 2 jCj g; and

Y(�) = f yp;C : p 2 P \ C g;

where t(yp;C) = vC ; and for each p 2 P, if C;D 2 jCj is the pair of curves so

that p 2 C \D, then we have

yp;C = yp;D;

(2) for each C 2 jCj, let

g(vC) = g( eC) = g(C); and

e(VC) = e( eC) = eC2;

and

(3) for each y = yp;C 2 Y(�), let

m(yp;C) : S
1 � S1 ! S1 � S1

be the �nite unbranched covering induced by the matrix�
a(y) b(y)

0 c(y)

�
;

where (a(y); 0) and (b(y); c(y)) generate the image of

(�p)� : �1(X n C [D)! �1(C
2 n fx = 0g [ fy = 0g);

and 0 � b(y) < a(y), 0 < c(y).
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Let M(X; C) be the boundary of a regular neighborhood of C in X.

Theorem 7 The graph manifold M((X; C)) is homeomorphic to M(X; C).

Proof. For the case when X is smooth see [?], p. 333. When X has a singularity at

p, since (X; C) is a normal surface-curve pair, there are exactly two curves C;D 2 C

so that p 2 C \ D. The link Sp of the singularity (X; p) is a lens space, and X n C

looks locally like a cone over S3 nL near p, where L is an oriented Hopf link. Let TC
and TD be the torus boundary components of MC and MD near p. Then

Mp = Sp n U(Cp);

where U(Cp) is a regular neighborhood of C in X, is homeomorphic to a thickened

torus with boundary components TC and TD. Identifying Mp with the product of a

torus and an interval determines a homeomorphism of TC to TD, which we will now

describe.

Let y = yp;C (so we have o(y) = D and t(y) = C), and suppose

m(y)� =

�
a(y) b(y)

0 c(y)

�
:

Then (X; p) can be desingularized as in Figure 1.

Give TC and TD trivializations so thatMC andMD have Euler number equal to the

self intersections of the proper transforms eC and eD in the minimal desingularization

( eX; eC) of (X; C).
Consider the plumbing graph of ( eX; eC) over p, which is shown in Figure ??. The

vertices corresponding to the Ei have corresponding vertex manifolds which are thick-

ened tori with two boundary components. If we give these boundary components

trivializations so that the Euler number of the associated S1-bundle is �mi, then the

boundary components are identi�ed via the product structure by the map

S1 � S1 ! S1 � S1

corresponding to Mi.

The gluing map

hy : TC ! TD

can be thought of as a composition of the gluing maps for the plumbing graph of

( eX; eC) over p. Thus, hy is the map corresponding to

(hy)� = HM1H � � �HMkH

as in Lemma ??.
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By the construction,

h Æm(y) = m(y) Æ hy;

and it is also easy to see that Mi =M�1
i
, for i = 1; : : : ; k, and

(hy)� = HMkH � � �HM1H:

Given a non-modi�ed plumbing graph , and an ordering of the vertices v1; : : : ; vk 2

V(�), the associated intersection matrix S() is the k�k matrix with entries ai;j, where

ai;j =

�
e(vi) if i = j

n(i; j) otherwise

where n(i; j) is the number of y 2 Y(�), with o(y) = vi and t(y) = vj.

When is modi�ed, then we de�ne the intersection matrix S() to be the matrix

with entries ai;j given by

ai;j =

8>>>>>>>><
>>>>>>>>:

e(vi) +
X

y2Y(�)
t(y)=vi

b(y)

a(y)
if i = j

X
y2Y(�)

o(y)=vi;t(y)=vj

gcd(a(y); b(y))

a(y)
otherwise

Note that the intersection matrices for the modi�ed and non-modi�ed plumbing

graphs agree if and only if b(y) = 0 for all y 2 Y(�).

Theorem 8 If (X; C) is a normal surface-curve pair, then the intersection matrix

S((X; C)) equals S(X; C).

Proof. The formula for intersection numbers of distinct pairs follows directly from

[?] (see Lemma 3.5 and Lemma 3.7). For the self intersections, recall that, for any

C 2 jCj, the pull-back C of C in the minimal desingularization is de�ned to be the

divisor equal to the proper transform eC of C plus the unique rational multiples of

the exceptional curves, determined by the condition that

C:E = 0;
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for any exceptional curve E (see [?]). This implies that for each p 2 P \ C, we need

only be concerned with the coeÆcient rp of the unique exceptional curve Ep over p

which intersects eC. That is,
C2 = (C)2

= eC:
 eC +

X
p2P\C

rpEp

!

= ( eC)2 + X
p2P\C

rp:

The rest follows from the calculations in [?] (see Lemma 3.7).

5. Applications to computations on coverings. Let (X; C) be a normal surface-

curve pair, and let = (X; C) be its modi�ed plumbing graph. Let

� : (Y;D)! (X; C)

be a regular covering de�ned by the epimorphism

� : �1(X; C)! F:

In this section, we describe the intersection matrix and modi�ed plumbing data for

the covering (Y;D) in terms of , and the induced de�ning map

 : �1(G(); T )! F

where T is a maximal tree in �.

Let Fv =  (Gv), Fy =  (Gy), and let Iv =  (Zv), where Zv is the subgroup of

Gv = �1(Mv) generated by the �ber of the S1-bundle Mv. For each y 2 Y(�), let

s(y) =  (y), where y is considered as an element of �1(G(); T ). (This s(y) is called

the twisting data in [?] and [?])

Let �0 be the graph consisting of vertices

V(�0) = f[�Fv] : v 2 V(�); � 2 Fg

and edges

Y(�0) = f[�Fy] : y 2 Y(�); � 2 Fg;

where, if y0 = [�Fy], let y0 = [�Fy], and let t(y0) = v0 where v0 = [�s(y)Fv].
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Lemma 8.1 The graph �0 is the underlying graph of the covering, and the map

�� : �
0 ! �

is given by

��([�Fv]) = v; v 2 V(�); and

��([�Fy]) = y; y 2 Y(�):

Note that this presentation of the graph �0 contains within it a natural lifting of a

maximal tree T in �. Giving an identi�cation of V(�0) with jDj requires some extra

information. Choose a section

� : T !M(X; C):

This amounts to choosing base-points in Mv and My, for all v 2 V(�) and y 2 Y(�),

and connecting paths, for each y 2 Y(�), connecting the base-point in My to the

base-point in Mt(y). The section � lifts to the boundary manifold M(Y;D) and gives

a natural identi�cation of jDj with the vertices in V(�0) so that the lift of �(v) lies on

D 2 jDj if and only if

v�D = [�Fv�(D)
];

for all � 2 F . We will call such an identi�cation a compatible identi�cation of jDj

with V(�0).

The genus associated to vertices in �0, and hence to the components of D are given

as follows.

Lemma 8.2 For v0 2 V(�0), and ��(v
0) = v, the genus g(v0) is given by

g(v0) =
1

2

0
BB@2� #Fv

#Iv
(2� 2g(v)� d(v))�

X
y2Y(�)
t(y)=v

#Fv

#Fy

1
CCA :

Proof. The formula follows from additive properties of the topological Euler charac-

teristic, Corollary ??, and Corollary ??.

15



The map m : Y(�0)! (S1�S1) can also be written in terms of the covering data

and the modi�ed plumbing graph of the base.

Lemma 8.3 For y0 2 Y(�0), and y = ��(y
0), m(y0) is the composition

m(y0) = m(y) Æ �y;

where �y 2 (S1 � S1) is the unique map induced by

 y : Z� Z = Gy ! Fy;

such that

m(y0)� =

�
a0(y) b0(y)

0 c0(y)

�
;

where 0 � b0(y) < a0(y) and 0 < c0(y).

Proof. This lemma is a consequence of the de�nitions of modi�ed plumbing graphs

and Proposition ??, noting that the form of m(y0) can be arranged by composing

with an automorphism of the domain of  y.

Lemma ??, leads to the following formulas for intersection matrices of coverings,

generalizing the results of [?].

Theorem 9 The intersection matrix S(Y;D), with respect to a compatible identi�-

cation of jDj with V(�0), is given by

[�Fv]:[�Fw] =
X

y2Y(�)

o(y)=v

t(y)=w

#(�Fv \ �s(y)
�1Fw)

#(Iv + Iw)

gcd(a0(y); b0(y))

a0(y)
;

when v; w 2 V(�) are distinct pairs, and

[�Fv]:[�Fv] =
# (�Fv \ �Fv)

(#Iv)2
:

Proof. The �rst formula follows from Theorem ??, and Proposition ??, while the

second formula follows from [?] (see Lemma 3.3).
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The second formula in Theorem ?? leads to the following formula for the Euler

numbers attached to vertices of �0.

Lemma 9.1 Given v0 2 V(�0), and v = �(v0), the Euler number e(v0) is given by

e(v0) =
#Fv

(#Iv)2
�
X

y2Y(�)
t(y)=v

b0(y)

a0(y)

#Fv

#Fy
:

Proof. The formula follows from Theorem ?? and Theorem ??.

This completes the description of the covering modi�ed plumbing graph.

Note that the above formulas depend only on the map  restricted to Gv, Gy,

Zv, and Y(�). This leads to the question of which de�ning maps for the boundary

manifold  are induced by global de�ning maps on �1(XnC), and thus to the question

of the relation between �1(X n C) and �1(M(X n C)).

In general (when C supports an ample divisor), the fundamental group of the

boundary manifold of C in X surjects onto the fundamental group of X nC under the

map induced by inclusion. To understand the kernel of this map is a harder problem

and includes the problem of understanding the e�ect of locations of singularities on

C on the fundamental group of the complement.
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