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Digraphs and cycle polynomials for free-by-cyclic groups
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Let � 2 Out.Fn/ be a free group outer automorphism that can be represented by
an expanding, irreducible train-track map. The automorphism � determines a free-
by-cyclic group � D Fn Ì� Z and a homomorphism ˛ 2 H 1.�IZ/ . By work of
Neumann, Bieri, Neumann and Strebel, and Dowdall, Kapovich and Leininger, ˛
has an open cone neighborhood A in H 1.�IR/ whose integral points correspond
to other fibrations of � whose associated outer automorphisms are themselves rep-
resentable by expanding irreducible train-track maps. In this paper, we define an
analog of McMullen’s Teichmüller polynomial that computes the dilatations of all
outer automorphisms in A .

57M20

1 Introduction

There is continually growing evidence of a powerful analogy between the mapping
class group Mod.S/ of a closed oriented surface S of finite type and the group of outer
automorphisms Out.Fn/ of free groups Fn . A recent advance in this direction can be
found in work of Dowdall, Kapovich and Leininger [6] who developed an analog of
the fibered face theory of surface homeomorphisms due to Thurston [16] and Fried [8].
In this paper we develop the analogy further by defining a version of McMullen’s
Teichmüller polynomial for surface automorphisms defined in [12] in the setting of
outer automorphisms.

Fibered face theory for free-by-cyclic groups

A free-by-cyclic group
� D Fn Ì� Z

is a semidirect product defined by an element � 2Out.Fn/. If x1; : : : ;xn are generators
of Fn and �ı 2 Aut.Fn/ is a representative automorphism in the class � , then � has
a finite presentation

hx1; : : : ;xn; s j sxis
�1
D �ı.xi/; i D 1; : : : ; ni:
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There is a distinguished homomorphism ˛� W � ! Z induced by projection to the
second coordinate. That is, ˛� is an element of H 1.�IZ/ and Fn is the kernel of ˛� .

The deformation theory of free-by-cyclic groups started with the work of Neumann [14]
and Bieri, Neumann and Strebel [3], where they showed there is an open cone U in
H 1.�IR/ so that for all rational u2H 1.X;R/, u2U if and only if ker.u/ is finitely
generated. Dowdall, Kapovich and Leininger [6] showed that the deformation can be
understood geometrically in a possibly smaller cone.

More precisely, assume � 2Out.Fn/ is representable by an expanding irreducible train-
track map (see Kapovich [10], Dowdall, Kapovich and Leininger [6] and Section 4.1
for definitions). The outer automorphism � 2 Out.Fn/ may admit many train-track
representatives f and every train-track representative can be decomposed into a se-
quence of folds f (see Stallings [15]) which is also nonunique. Dowdall, Kapovich and
Leininger showed the following (see [6, Theorem A]).

Theorem 1.1 For � 2Out.Fn/ that is representable by an expanding irreducible train-
track map and an associated folding sequence f , there is an open cone neighborhood Af

of ˛� in Hom.�IR/, such that, all primitive integral elements ˛ 2A, are associated
to a free-by-cyclic decomposition

� D Fn˛ Ì�˛ Z;

where ˛ D ˛�˛ and �˛ 2 Out.Fn˛ / is also representable by an expanding irreducible
train-track map.

We call Af a DKL–cone associated to � .

Main result

Our main theorem is an analog of results in McMullen [12] in the setting of the outer
automorphism groups (see below for more on the motivation behind the result). For a
given � , there are many DKL–cones associated to � since Af depends on the choice of
the train-track representative f and folding sequence f . We show that there is a more
unified picture. Namely, there is a cone T� depending only on � that contains every
cone Af . The cone T� is the support of a convex, real analytic, homogenous function L

of degree �1 whose restriction to every cone Af is the logarithm of dilatation function.
Moreover, this function can be computed via specialization of a single polynomial ‚
that also depends only on � .

Our approach is combinatorial. We associate a labeled digraph to the folding sequence f .
This gives a combinatorial description of f and in turn defines a cycle polynomial �
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and the cone T� . We analyze the effect of certain elementary moves on digraphs and
show that their associated cycle polynomial and cone remain unchanged under these
elementary moves. We show that as we pass to different fibrations of � corresponding
to other integral points of Af , the digraph changes by elementary moves, as do the
digraphs associated to different folding sequences f . This establishes the independence
of � and T� from the choice of folding sequences f . The polynomial ‚ is a factor of
the cycle polynomial � determined by the log dilatation and does not depend on the
choice of train track map.

We establish some terminology before stating the main theorem more precisely. For
� 2 Out.Fn/ that is representable by an expanding irreducible train-track map and
a nontrivial 
 2 Fn , the growth rate of cyclically reduced word-lengths of �k.
 / is
exponential, with a base �.�/ > 1 that is independent of 
 and f . The constant �.�/
is called the dilatation (or expansion factor) of � .

Let G be a finitely generated free abelian group of rank k and let

� D
X
g2G

agg; ag 2 Z

be an element of the group ring ZG . For ˛ 2Hom.GIZ/, the specialization of � at ˛
is the single-variable integer polynomial

� .˛/.x/D
X
g2G

agx˛.g/ 2 ZŒx�:

The house of a polynomial p.x/ 2 ZŒx� is defined by

jpj Dmaxfj�j j � 2C;p.�/D 0g:

Recall that, for a polynomial, there is an associated Newton polyhedron defined by a
finite system of inequalities as described in Remark 2.7.

Theorem A Let � 2 Out.Fn/ be an outer automorphism that is representable by an
expanding irreducible train-track map, � D Fn Ì� Z and let G D �ab=torsion. Then
there exists an element ‚ 2 ZG (well-defined up to an automorphism of ZG ) with the
following properties.

(1) There is an open cone T� � Hom.GIR/ dual to a vertex of the Newton poly-
hedron of ‚ so that for any expanding irreducible train-track representative
f W � ! � and any folding decomposition f of f , we have

Af � T� :
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(2) For any integral ˛ 2Af , we have

j‚.˛/j D �.�˛/:

(3) The function
L.˛/D log j‚.˛/j;

which is defined on the primitive integral points of Af , extends to a real analytic,
convex function on T� that is homogeneous of degree �1 and goes to infinity
toward the boundary of any affine planar section of T� .

(4) The element ‚ is minimal with respect to property .2/, that is, if � 2ZG satisfies

j� .˛/j D �.�˛/

on the integral elements of some open subcone of T� , then ‚ divides � .

Remark B In their original paper [6], Dowdall, Kapovich and Leininger also show
that log.�.�˛// is convex and has degree �1 and in the subsequent paper [7], using
a different approach from ours, they give an independent definition of an element
‚DKL 2ZG such that �.�˛/D j‚

.˛/
DKLj for ˛ 2Af . Property (4) of Theorem A implies

that ‚ divides ‚DKL .

Remark C Thinking of G as an abelian group generated by t1; : : : ; tk , we can
identify the elements of G with monomials in the symbols t1; : : : ; tk , and hence ZG

with Laurent polynomials in Z.t1; : : : ; tk/. Thus we can associate to � 2 ZG a
polynomial �.t1; : : : ; tk/ 2 Z.t1; : : : ; tk/. Identifying Hom.GIZ/ with Zk , each
element ˛ D .a1; : : : ; ak/ defines a specialization of � D �.t1; : : : ; tk/ by

� .˛/.x/D �.xa1 ; : : : ;xak /:

For ease of notation, we mainly use the group ring notation through most of this paper.

Motivation from pseudo-Anosov mapping classes on surfaces

Let S be a closed oriented surface of negative finite Euler characteristic. A mapping
class � D Œ�ı� is an isotopy class of homeomorphisms

�ıW S ! S:

The mapping torus X.S;�/ of the pair .S; �/ is the quotient space

X.S;�/ D S � Œ0; 1�=.x; 1/� .�ı.x/; 0/:

Its homeomorphism type is independent of the choice of representative �ı for � .
The mapping torus X.S;�/ has a distinguished fibration �� W X.S;�/! S1 defined by
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projecting S�Œ0; 1� to its second component and identifying endpoints. Conversely, any
fibration �W X ! S1 of a 3–manifold X over a circle can be written as the mapping
torus of a unique mapping class .S; �/, with � D �� . The mapping class .S; �/ is
called the monodromy of � .

Thurston’s fibered face theory [16] gives a parameterization of the fibrations of a
3–manifold X over the circle with connected fibers by the primitive integer points on
a finite union of disjoint convex cones in H 1.X IR/, called fibered cones. Thurston
showed that the mapping torus of any pseudo-Anosov mapping class is hyperbolic, and
the monodromy of any fibered hyperbolic 3–manifold is pseudo-Anosov. It follows
that the set of all pseudo-Anosov mapping classes partitions into subsets corresponding
to integral points on fibered cones of hyperbolic 3–manifolds.

By results of Fried [8] (cf Matsumoto [11] and McMullen [12]) the function log�.�/
defined on integral points of a fibered cone T extends to a continuous convex function

YW T !R

that is a homogeneous of degree �1, and goes to infinity toward the boundary of
any affine planar section of T . McMullen’s Teichmüller polynomial [12] is an ele-
ment ‚Teich in the group ring ZG , defined up to units, where G DH1.X IZ/=torsion.
The group ring ZG can be thought of as a ring of Laurent polynomials in the generators
of G considered as a multiplicative group. Thus we can also think of ‚Teich as a poly-
nomial defined up to multiplication by monomials. The Teichmüller polynomial ‚Teich

has the property that the dilatation �.�˛/ of each mapping class �˛ , for ˛ 2 T , is the
house of a specialization of ‚Teich . Furthermore, the cone T and the function Y are
determined by ‚Teich . Our work is a step towards reproducing this picture in the setting
of Out.Fn/.

Organization of paper

In Section 2 we establish some preliminaries about Perron–Frobenius digraphs D

with edges labeled by a free abelian group G . Each digraph D determines a cycle
complex CD and cycle polynomial �D in the group ring ZG . Under certain extra
conditions, we define a cone T , which we call the McMullen cone, and show that

L.˛/D log j� .˛/
D
j;

which is defined for integral elements of T , extends to a homogeneous function of
degree �1 that is real analytic and convex on T and goes to infinity toward the boundary
of affine planar sections of T . Furthermore, we show the existence of a distinguished
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factor ‚D of �D with the property that

j‚
.˛/
D
j D j�

.˛/
D
j;

and ‚D is minimal with this property. Our proof uses a key result of McMullen
(see [12, Appendix A]).

In Section 3 we define branched surfaces .X;C;  /, where X is a 2–complex with a
semiflow  , and cellular structure C satisfying compatibility conditions with respect
to  . To a branched surface we associate a dual digraph D and a G–labeled cycle
complex CD , where G D H1.X IZ/=torsion, and a cycle function �D 2 ZG . We
show that �D is invariant under certain allowable cellular subdivisions and homotopic
modifications of .X;C;  /.

In Sections 4 and 5 we study the branched surfaces associated to the train-track map f
and folding sequence f defined in [6], called respectively the mapping torus and
folded mapping torus. We use the invariance under allowable cellular subdivisions
and modifications established in Sections 2 and 3 to show that the cycle functions for
these branched surfaces are equal. The results of Section 2 applied to the mapping
torus for f imply the existence of ‚� and T� in Theorem A. An argument in [6]
implies that further subdivisions of the folded mapping torus give rise to mapping tori
for train-track maps corresponding to �˛ , and we use this to show that �.�˛/D j‚

.˛/

�
j

for ˛ 2Af . We further compare the definition of the DKL–cone Af and T� to show
inclusion Af � T� , and thus complete the proof of Theorem A.

We conclude in Section 6 with an example where Af is a proper subcone of T� .

Acknowledgements The authors would like to thank J Birman, S Dowdall, N Dunfield,
A Hadari, C Leininger, C McMullen and K Vogtman for helpful discussions.

The second author was partially supported by collaboration grant number 209171
from the Simons Foundation, the third author was partially supported by an NSERC
Discovery grant number RGPIN 435885.

2 Digraphs, cycle complexes and eigenvalues of G–matrices

This section contains definitions and properties of digraphs, and a key result of Mc-
Mullen that will be useful in our proof of Theorem A.

2.1 Digraphs, cycle complexes and their cycle polynomials

We recall basic results concerning digraphs (see Gantmacher [9] and Cvetković and
Rowlinson [5] for more details).
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Definition 2.1 A digraph D is a finite directed graph with at least two vertices. Given
an ordering v1; : : : ; vm of the vertices of D , the adjacency matrix of D is the matrix

MD D Œai;j �;

where ai;j D m if there are m directed edges from vi to vj . The characteristic
polynomial PD is the characteristic polynomial of MD and the dilatation �.D/ of D

is the spectral radius of MD :

�.D/Dmaxfjej j e is an eigenvalue of MDg:

Conversely, any square m�m matrix M D Œai;j � with nonnegative integer entries
determines a digraph D with MD DM . The digraph D has m vertices and ai;j

vertices from the i th to the j th vertex.

Definition 2.2 For a matrix M , let am
ij be the ij th entry of M m . A nonnegative

matrix M with real entries is called expanding if

lim sup
m!1

am
ij D1:

A digraph D is expanding if its directed adjacency matrix MD is expanding.

An eigenvalue of M is simple if its algebraic multiplicity is 1. Note that several simple
eigenvalues may have the same norm. The following theorem is well known (see, for
example, [9]).

Theorem 2.3 Let M be a matrix and �.M / the spectral radius of M . If M is
expanding, then it has a simple eigenvalue with norm equal to �.M / and it has an
associated eigenvector that is strictly positive. In addition, for every i and j , we have

lim sup
m!1

.am
ij /

1=m
D �.M /:

Definition 2.4 A simple cycle ˛ on a digraph D is an isotopy class of embeddings
of the circle S1 to D oriented compatibly with the directed edges of D . A cycle
is a disjoint union of simple cycles. The cycle complex CD of a digraph D is the
collection of cycles on D thought of as a simplicial complex, whose vertices are the
simple cycles.

The cycle complex CD has a measure which assigns to each cycle its length in D , that
is, if 
 is a cycle on CD , then its length `.
 / is the number of vertices (or equivalently
the number of edges) of D on 
 , and, if � D f
1; : : : ; 
sg, then

`.�/D

sX
iD1

`.
i/:

Geometry & Topology, Volume 19 (2015)



1118 Yael Algom-Kfir, Eriko Hironaka and Kasra Rafi

Let j� j D s be the size of � . The cycle polynomial of a digraph D is given by

�D.x/D 1C
X
�2CD

.�1/j� jx�`.�/:

Theorem 2.5 (Coefficient theorem for digraphs [5]) Let D be a digraph with m

vertices, and PD the characteristic polynomial of the directed adjacency matrix MD

for D . Then
PD.x/ D xm�D.x/:

Proof Let MD D Œai;j � be the directed adjacency matrix for D . Then

PD.x/D det.xI �MD/:

Let SV be the group of permutations of the vertices V of D . For � 2SV , let fix.�/�V

be the set of vertices fixed by � , and let sign.�/ be �1 if � is an odd permutation
and 1 if � is even. Then

PD.x/D
X
�2SV

sign.�/A� ;

where
(1) A� D

Y
v 62fix.�/

.�av;�.v//
Y

v2fix.�/

.x� av;v/:

There is a natural map †W CD ! SV from the cycle complex CD to the permutation
group SV on the set V defined as follows. For each simple cycle 
 in D passing
through the vertices V
 � V , there is a corresponding cyclic permutation †.
 / of V
 .
That is, if V
 D fv1; : : : ; v`g contains more than one vertex and is ordered according
to their appearance in the cycle, then †.
 /.vi/ D viC1 .mod `/ . If V
 contains one
vertex, we say 
 is a self-edge. For self-edges 
 , †.
 / is the identity permutation.
Let � D f
1; : : : ; 
sg be a cycle on D . Then we define †.�/ to be the product of
disjoint cycles

†.�/D†.
1/ ı � � � ı†.
`/:

The polynomial A� in (1) can be rewritten in terms of the cycles � of CD with
†.�/D � . First we rewrite A� as

(2) A� D
X

��fix.�/

xjfix.�/��j
Y

v 62fix.�/

.�av;�.v//
Y
v2�

.�av;v/:

Let � 2 SV be in the image of †. For a cycle � 2 CD , let �.�/ � V be the subset
vertices at which � has a self-edge.

For � � fix.�/, let

P�;� D f� 2 CD j†.�/D � and �.�/D �g:
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Then we claim that the number of elements in P�� is

(3)
Y

v 62fix.�/

av;�.v/
Y
v2�

av;v:

Let � 2 CD be such that †.�/D � . Then for each v 2 VXfix.�/, there is a choice of
av;�.v/ edges from v to �.v/, and for each v 2 fix.�/ � either contains no self-edge,
or one of av;v possible self-edges at v . This proves (3).

For each � 2 CD , we have

`.�/Dm� jfix.†.�//jC j�.�/j:

Thus the summand in (2) associated to � 2 SVX id and � � fix.�/ is given by

xjfix.�/j�j�j
Y

v 62fix.�/

.�av;�.v//
Y
v2�

.�av;v/D .�1/m�jfix.�/jCj�j
X

�2P�;�

xm�`.�/

D

X
�2P�;�

.�1/`.�/xm�`.�/;

and similarly for � D id we have

A� D
Y
v2V

.x� av;v/D xm
C

X
�2P�;�

.�1/`.�/xm�`.�/:

For each � 2 CD , sign.†.�//D .�1/`.�/�j� j . Putting this together, we have

PD.x/D
X
�2SV

sign.�/A� D xm
C

X
�2SV

X
�2CD j†.�/D�

.�1/`.�/�j� j.�1/`.�/xm�`.�/

D xm
C

X
�2CD

.�1/j� jxm�`.�/:

This completes the proof.

2.2 McMullen cones

Each group ring element partitions Hom.GIR/ into a union of cones defined below.

Definition 2.6 (cf McMullen [13]) Let G be a finitely generated free abelian group.
Given an element � D

P
g2G agg 2 ZG , the support of � is the set

Supp.�/D fg 2G j ag ¤ 0g:

Let � 2 ZG and g0 2 Supp.�/ the McMullen cone of � for g0 is the set

T� .g0/D f˛ 2 Hom.GIR/ j ˛.g0/ > ˛.g/ for all g 2 Supp.�/Xfg0gg:
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Remark 2.7 The elements of G can be identified with a subset of the dual space

5Hom.GIR/ D Hom.Hom.GIR/;R/

to Hom.GIR/. Let � 2 ZG be any element. The convex hull of Supp.�/ in
5Hom.GIR/ is called the Newton polyhedron N of � . Let yN be the dual of N in
Hom.GIR/. That is, each top-dimensional face of yN corresponds to a vertex g 2N ,
and each ˛ in the cone over this face has the property that ˛.g/ > ˛.g0/ where g0 is
any vertex of N with g¤ g0 . Thus the McMullen cones T� .g0/ for g0 2 Supp.�/ are
the cones over the top-dimensional faces of the dual to the Newton polyhedron of � .

2.3 A coefficient theorem for H–labeled digraphs

Throughout this section let H be the free abelian group with k generators and let ZH

be its group ring. Let GDH �hsi, where s is an extra free variable. Then the Laurent
polynomial ring ZH.u/ is canonically isomorphic to ZG , by an isomorphism that
sends s to u.

We generalize the results of Section 2.1 to the setting of H–labeled digraphs.

Definition 2.8 Let C be a simplicial complex. An H–labeling of C is a map

hW C !H

compatible with the simplicial complex structure of H , ie

h.�/D
X̀
iD1

h.vi/;

for � D fv1; : : : ; v`g. An H–complex CH is an abstract simplicial complex together
with a H–labeling.

Definition 2.9 The cycle function of an H–labeled complex CH is the element of ZH

defined by
�CH D 1C

X
�2CH

.�1/j� jh.�/�1:

Definition 2.10 An H–digraph DH is a digraph D along with a map

hW ED !H;

where ED is the set of edge of D . The digraph D is the underlying digraph of DH .
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An H–labeling on a digraph induces an H–labeling on its cycle complex. Let 
 be a
simple cycle on D . Then up to isotopy, 
 can be written as


 D e0 � � � ek�1

for some collection of edges e0; : : : ; ek�1 cyclically joined end to end on D . Let

h.
 /D h.e0/C � � �C h.ek�1/;

and for � D f
1; : : : ; 
`g, let

h.�/D
X̀
iD1

h.
i/:

Denote the labeled cycle complex by CH
D . The cycle polynomial �DH of DH is given

by

�DH .u/D 1C
X

�2CDH

.�1/j� jh.�/�1u�`.�/ 2 ZH Œu�D ZG:

The cycle polynomial of �DH .u/ contains both the information about the associated
labeled complex CH

D and the length functions on cycles on D . One observes the
following by comparing Definitions 2.9 and 2.10.

Lemma 2.11 The cycle polynomial of the H–labeled digraph DH , and the cycle
function of the labeled cycle complex CH

D are related by

�CH
D
D �DH .1/:

Definition 2.12 An element � 2 ZH is positive, denoted � > 0, if

� D
X
h2H

ahh;

where ah � 0 for all h 2H , and ah > 0 for at least one h 2H . If � is positive or 0

we say that it is nonnegative and write � � 0.

A matrix MH with entries in ZH is called an H–matrix. If all entries are nonnegative,
we write MH � 0 and if all entries are positive we write MH > 0.

Lemma 2.13 There is a bijective correspondence between H–digraphs DH and
nonnegative H–matrices MH

D , so that MH
D is the directed incidence matrix for DH .
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Proof Given a labeled digraph DH , let Eij be the set of edges from the i th vertex to
the j th vertex. We form a matrix MH

D with entries in ZH by setting

aij D

X
e2Eij

h.e/;

where h.e/ is the H–label of the edge e .

Conversely, given an n�n matrix MH with entries in ZH , let DH be the H–digraph
with n vertices v1; : : : ; vn and, for each i; j with mi;j D

P
h2H agg � 0, it has ah

directed edges from vi to vj labeled by h. The directed incidence matrix MH
D

equals M as desired.

The proof of the next theorem is similar to that of the Theorem 2.5 and is left to the
reader.

Theorem 2.14 (Coefficients theorem for H–labeled digraphs) Let DH be an H–
labeled digraph with m vertices, and let PD.u/ 2 ZH Œu� be the characteristic polyno-
mial of its incidence matrix. Then

PD.u/D um�DH .u/:

2.4 Expanding H–matrices

In this section we recall a key theorem of McMullen on leading eigenvalues of spe-
cializations of expanding H–matrices (see [12, Appendix A]). McMullen’s theorem is
stated for Perron–Frobenius matrices, but the proof extends to expanding matrices.

Definition 2.15 A labeled digraph DH is called expanding if the underlying digraph D
is expanding. The H–matrix MH

D is defined to be expanding if the associated labeled
digraph DH is expanding.

For the rest of this section, we fix an expanding H–labeled digraph DH . Consider an
element t 2 Hom.H;RC/. Define MH

D .t/ to be the real valued matrix obtained by
applying t to the entries of MH

D (where t is extended linearly to ZH ). Equivalently,
identify H with the space of monomials in k variables t1; : : : ; tk . This gives a
natural identification of Hom.H;RC/ with Rk

C , where the i th coordinate in Rk
C is

associated to the variable ti . Then MH
D .t/ is the matrix obtained by replacing ti with

i th coordinate of t 2Rk
C D Hom.H;RC/.

Note that, since DH is expanding, for every t 2Rk
C , the real valued matrix MH

D .t/ is
also expanding. Define a function

EW Rk
C!RC; E.t/D �.MH

D .t//:
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Identifying the ring Hom.H;R/ with Rk , there is a natural map

expW Hom.H;R/! Hom.H;RC/;

where, for wD .w1; : : : ; wk/ 2Rk ,

exp.w/D .ew1 ; : : : ; ewk /:

Define
ıW Rk

!R by ı.w/D log E.exp.w//:

Note that the graph of the function ı lives in Rk �R which can be naturally identified
with Hom.GIR/, where we recall that G DH � hsi.

Theorem 2.16 [12, Theorem A.1] For an expanding H–labeled digraph DH , we
have the following.

(1) The function ı is real analytic and convex.

(2) The graph of ı meets every ray through the origin of Rk �R at most once.

(3) For Q.u/ any factor of PD.u/, where Q.E.t// D 0 for all t 2 Rk
C , and for

d D deg.Q/, the set of rays passing through the graph of ı in Rk �R coincides
with the McMullen cone TQ.u

d /.

Definition 2.17 For any expanding H–labeled digraph DH , let d D deg.PD/. We
refer to the cone T D TPD.u

d / as the McMullen cone for the element PD 2 ZG .
Alternatively we refer to it as the McMullen cone for the H–matrix MH

D .

Theorem 2.18 (McMullen [12]) For any expanding H–labeled digraph DH the map

LW Hom.GIZ/!R defined by L.˛/D log jP .˛/
D j;

extends to a homogeneous of degree �1, real analytic, convex function on the McMullen
cone T for the element PD . It goes to infinity toward the boundary of affine planar
sections of T .

Theorem 2.18 summarizes results taken from [12] given in the context of mapping
classes on surfaces. For the convenience of the reader, we give a proof here.

Proof The function L is real analytic since the house of a polynomial is an alge-
braic function in its coefficients. Homogeneity of L.z/ follows from the following
observation: � is a root of Q.xw;xs/ if and only if �1=c is a root of Q.xcw;xcs/.
Thus

L.cz/D log jQ.xcw;xcs/j D c�1 log jQ.xw;xs/j D c�1L.z/:
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By homogeneity of L, the values of L are determined by the values at any level set, one
of which is the graph of ı.w/. To prove convexity of L, we show that level sets of L

are convex, ie the line connecting two points on a level set lies above the level set. Let
� D fz D .w; s/ jL.z/D 1g and � 0 D fz D .w; s/ j s D ı.w/g. We show that � D � 0 .
It then follows that, since � 0 is a graph of a convex function by Theorem 2.16, � is
convex.

We begin by showing that � 0 � � (cf [12, proof of Theorem 5.3]). If ˇ D .a; b/ 2 � 0

then ı.a/D b , hence Q.ea; eb/D 0 and jQ.ea; eb/j � e . Let

r DL.ˇ/D log jQ.ea; eb/j:

Since b D ı.a/, by the convexity of the function ı , we have rb � ı.ra/. On the other
hand, Q.era; erb/D 0 hence erb is an eigenvalue of M.era/ so

rb � log E.era/D ı.ra/:

We get that rb D ı.ra/. The points .a; b/; .ra; rb/ both lie on the same line through
the origin so by Theorem 2.16(2), they are equal. Thus r D 1 D L.ˇ/, and hence
ˇ 2 � .

To show that ��� 0 in T , note that every ray in T initiating from the origin intersects �
because it intersects � 0 by part (3) of Theorem 2.16. Because L is homogeneous, level
sets of L intersect every ray from the origin at most once. Therefore, in T , � D � 0

and is the graph of a convex function.

We now show that if L is a homogeneous function of degree �1, and has convex
level sets then L is convex (cf [12, Corollary 5.4]). This is equivalent to showing that
1=L.z/ is concave on T . Let z1; z2 2 T lie on distinct rays through the origin, and let

z3 D sz1C .1� s/z2:

Let ci , i D 1; 2; 3, be constants so that z0i D c�1
i zi is in the level set L.c�1

i zi/D 1.
Let p lie on the line Œz0

1
; z0

2
� and on the ray through z3 . Then p has the form

p D rz01C .1� r/z02

for 0< r < 1. If
r D

sc1

sc1C .1� s/c2

;

then we have
p D

z3

sc0
1
C .1� s/c0

2

:

Since the level set for L.z/D 1 is convex, p is equal to or above z3=c3 , and we have

(4) 1=.sc1C .1� s/c2/� 1=c3:
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Thus

(5) 1=L.z3/D c3 � sc1C .1� s/c2 D s=L.z2/C .1� s/=L.z3/:

Thus 1=L.z/ is concave, and hence L.z/ is convex.

Let zn be a sequence of points on an affine planar section of T approaching the boundary
of T . Let cn be such that c�1

n zn is in the level set L.z/D 1. Then L.zn/D c�1
n for

all n. But zn is bounded, while the level set L.z/D 1 is asymptotic to the boundary
of T . Therefore, 1=L.zn/ goes to 0 as n goes to infinity.

Remark 2.19 If the level set L.z/D 1 is strictly convex, then L.z/ is strictly convex.
Indeed, if L.z/D 1 is strictly convex, then the inequality in (4) is strict, and hence the
same holds for (5).

2.5 Distinguished factor of the characteristic polynomial

We define a distinguished factor of the characteristic polynomial of a Perron–Frobenius
H–matrix.

Proposition 2.20 Let P be the characteristic polynomial of a Perron–Frobenius H–
matrix. Then P has a factor Q with the following properties.

(1) For all integral elements ˛ in the McMullen cone T ,

jP .˛/
j D jQ.˛/

j:

(2) The polynomial Q is minimal, ie if Q1 2 ZH Œu� satisfies jQ.˛/j D jQ
.˛/
1
j

for all ˛ ranging among the integer points of an open subcone of T , then Q

divides Q1 .

(3) The cones TP .u
d / and TQ.u

r / are equal, where d is the degree of P and r is
the degree of Q as elements of ZH Œu�.

Definition 2.21 Given a Perron–Frobenius H–matrix MH , the polynomial Q is
called the distinguished factor of the characteristic polynomial of MH .

Lemma 2.22 Let F.t/W Rk !R be a function. Then

IF D f� 2 Z.t/Œu� j �.t;F.t//D 0 for all t 2Rk
g

is a principal ideal.

Geometry & Topology, Volume 19 (2015)



1126 Yael Algom-Kfir, Eriko Hironaka and Kasra Rafi

Proof Let Q.t/Œu� be the ring of polynomials in the variable u over the quotient
field Q.t/ of Z.t/. Since Q.t/Œu� is a principal ideal domain, IF generates a principal
ideal xIF in Q.t/Œu�.

Let x�1 be a generator of xIF ; then x�1D�1.t;u/=�.t/ with �12IF . Thus x�1.t;F.t//D0

for all t. If IF is the zero ideal then there is nothing to prove, therefore we suppose it
is not. Let x�1.t;u/D �.t;u/=ı.t/; where � and ı are relatively prime in Q.t/Œu�, a
unique factorization domain. Since �1.t;F.t//D 0 for all t, �.t;F.t//D 0 for all t,
and hence � 2 IF .

Since IF is not the zero ideal then xIF is not the zero ideal, hence x�1¤ 0 which implies
that � ¤ 0. Let � 2 IF be any polynomial. Since x�1 divides � , then � divides �ı .
Since � and ı are relatively prime, � divides � . We’ve shown that � divides all
elements of IF . Thus � is a principal generator.

Proof of Proposition 2.20 The proposition follows from Lemma 2.22 by declaring Q

to be the generator of IL for LW T !R defined in Theorem 2.18.

3 Branched surfaces with semiflows

In this section we associate a digraph and an element �X ;C; 2ZG to a branched surface
.X;C;  /. We show that this element is invariant under certain kinds of subdivisions
of C.

3.1 The cycle polynomial of a branched surface with a semiflow

Definition 3.1 Given a 2–dimensional CW–complex X , a semiflow on X is a contin-
uous map  W X �RC!X satisfying:

(i)  . � ; 0/W X !X is the identity.

(ii)  . � ; t/W X !X is a homotopy equivalence for every t � 0.

(iii)  . .x; t0/; t1/D  .x; t0C t1/ for all t0; t1 � 0.

A cell-decomposition C of X is  –compatible if the following hold.

(1) Each 1–cell is either contained in a flow line (vertical), or transversal to the
semiflow at every point (transversal).

(2) For every vertex p 2 C.0/ , the image of the forward flow of p ,

f .p; t/ j t 2R>0g;

is contained in C.1/ .
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A branched surface is a triple .X;C;  /, where X is a 2–complex with semiflow  

and a  –compatible cellular structure C.

Remark 3.2 We think of branched surfaces as flowing downwards. From this point of
view, property (2) implies that every 2–cell c 2 C.2/ has a unique top 1–cell, that is, a
1–cell e such that each point in c can be realized as the forward orbit of a point on e .

Definition 3.3 Let e be a 1–cell on a branched surface .X;C;  / that is transverse to
the flow at every point. A hinge containing e is an equivalence class of homeomorphisms
�W Œ0; 1�� Œ�1; 1� ,!X so that:

(1) The half segment �D f.x; 0/ j x 2 Ig is mapped onto e .

(2) The image of the interior of the � intersects C.1/ only in e .

(3) The vertical line segments fxg � Œ�1; 1� are mapped into flow lines on X .

Two hinges �1; �2 are equivalent if there is an isotopy rel � between them. The 2–cell
on .X;C;  / containing �.Œ0; 1�� Œ0; 1�/ is called the initial cell of � and the 2–cell
containing the point �.Œ0; 1�� Œ�1; 0�/ is called the terminal cell of � .

An example of a hinge is illustrated in Figure 1.

Figure 1: A hinge on a branched surface

Definition 3.4 Let .X;C;  / be a branched surface. The dual digraph D of .X;C;  /
is the digraph with a vertex for every 2–cell and an edge for every hinge � from the
vertex corresponding to its initial 2–cell to the vertex corresponding to its terminal
2–cell. The dual digraph D for .X;C;  / embeds into X

D ,!X

so that each vertex is mapped into the interior of the corresponding 2–cell, and each
directed edge is mapped into the union of the two-cells corresponding to its initial and
end vertices, and intersects the common boundary of the 2–cells at a single point. The
embedding is well-defined up to homotopies of X to itself.
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An example of an embedded dual digraph is shown in Figure 2. In this example, there
are three edges emanating from v with endpoints at w1; w2 and w3 . It is possible that
wi D wj for some i ¤ j , of that wi D v for some i . These cases can be visualized
using Figure 2, by identifying the corresponding 2–cells.

v

w1
w2

w3

Figure 2: A section of an embedded dual digraph

Let GDH1.X IZ/=torsion, thought of as the integer lattice in H1.X;R/. The embed-
ding of D in X determines a G–labeled cycle complex CG

D
where for each � 2 CG

D

and g.�/ is the homology class of the cycle � considered as a 1–cycle on X .

Definition 3.5 Given a branched surface .X;C;  /, the cycle function of .X;C;  /
is the group ring element

�X ;C; D 1C
X
�2CG

D

.�1/j� jg.�/�1
2 ZG:

Then we have
�X ;C; D �CG

D
.1/;

where �CG
D
.u/ is the cycle polynomial of CG

D
.

3.2 Subdivision

We show that the cycle function of .X;C;  / is not invariant under certain kinds of
cellular subdivisions.

Definition 3.6 Let p 2 C.1/ be a point in the interior of a transversal edge in C.1/ .
Let x0 D p and inductively define xi D  .xi�1; si/, for i D 1; : : : ; r , so that

si Dminfs j  .xi�1; s/ has endpoint in C.1/g:

The vertical subdivision of X along the forward orbit of p is the cellular subdivision C0

of C obtained by adding the edges  .xi�1; Œ0; si �/, for i D 1; : : : ; r , and subdividing
the corresponding 2–cells. If xr is a vertex in the original skeleton C.0/ of X , then
we say the vertical subdivision is allowable.
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Figure 3: An allowable vertical subdivision, and effect on the directed dual digraph

Proposition 3.7 Let .X;C0;  / be obtained from .X;C;  / by allowable vertical
subdivision. Then the cycle function �X ;C; and �X ;C0; are equal.

We establish a few lemmas before proving Proposition 3.7.

Lemma 3.8 Let .X;C0;  / be obtained from .X;C;  / by allowable vertical subdi-
vision. Let D0 and D be the dual digraphs for .X;C0;  / and .X;C;  /. There is a
quotient map qW D0!D that is induced by a continuous map from X to itself that is
homotopic to the identity, and in particular the diagram

H1.D
0IZ/

&&

q�
// H1.DIZ/

��
H1.X IZ/

commutes.

Proof Working backwards from the last vertically subdivided cell to the first, each
allowable vertical subdivision decomposes into a sequence of allowable vertical subdi-
visions that involve only one 2–cell. An illustration is shown in Figure 4.

w0

v

w1
w2

w3

w0
0

v0
1 v0

2

w01
w02

w0
3

D D0

Figure 4: Vertical subdivision of one cell

Let v be the vertex of D corresponding to the cell c of X that contains the new edge.
The digraph D0 is constructed from D by the following steps:
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(1) Each vertex u ¤ v in D lifts to a well-defined vertex u0 in D0 . The vertex
v 2D lifts to two vertices v0

1
; v0

2
in D0 .

(2) For each edge " of D neither of whose endpoints u and w equal v , the quotient
map is one-to-one over ", and hence there is only one possible lift �0 from u0

to w0 .

(3) For each edge " from w ¤ v to v there are two edges "0
1
; "0

2
where "0i begins

at w0 and ends at v0i .

(4) For each outgoing edge " from v to w (where v and w are possibly equal),
there is a representative � of the hinge corresponding to " that is contained in
the union of two 2–cells in the C0 . This determines a unique edge "0 on D0 that
lifts ".

There is a continuous map homotopic to the identity from X to itself that restricts to
the identity on every cell other than c or cw , where cw corresponds to a vertex w with
an edge from w to v in D . On c [ cw the map merges the edges "0

1
; "0

2
so that their

endpoints v0i merge to the one vertex v .

Lemma 3.9 The quotient map q WD!D0 induces an inclusion

q�W CD ,! CD0

which preserves lengths, sizes, and labels, so that for � 2 CD , q.q�.�//D � .

Proof Again we may assume that the subdivision involves a vertical subdivision of
one 2–cell c corresponding to the vertex v 2D and then use induction. It is enough
to define lifts of simple cycles on D to a simple cycle in D0 . All edges in D from u

to w with w ¤ v have a unique lift in D0 . Thus, if 
 does not contain v then there is
a unique 
 0 in D0 such that q.
 0/D 
 . Suppose that 
 contains v . If 
 consists of a
single edge ", then " is a self-edge from v to itself, and " has two lifts: a self-edge
from v0

1
to v0

1
and an edge from v0

1
to v0

2
, where v0

1
is the vertex corresponding to

the initial cell of the hinge containing ". Thus, there is a well-defined self-edge 
 0

lifting 
 (see Figure 5).

Now suppose 
 is not a self-edge and contains v . Let w1; : : : ; w`�1 be the vertices
in 
 other than v in their induced sequential order. Let "i be the edge from wi�1

to wi for i D 2; : : : ; `� 1. Then since none of the "i have initial or endpoint v , they
have unique lifts "0i in D0 . Since the vertical subdivision is allowable, there is one
vertex, say v0

1
, above v with an edge "0

1
from v0

1
to w0

2
. Let "0

`
be the edge from w0

`�1

to v0
1

(cf Figure 4). Let 
 0 be the simple cycle with edges "0
1
; : : : ; "0

`
.
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v
v2

v1

Figure 5: Vertical subdivision when digraph has a self edge

Since the lift of a simple cycle is simple, the lifting map determines a well-defined
map q�W CD ! CD0 that satisfies q ı q� D id and preserves size. The commutative
diagram in Lemma 3.8 implies that the images of � and q�.�/ in G are the same, and
hence their labels are the same.

e1
e3

e4

e2

Figure 6: A switching locus

Lemma 3.10 Let D0 be obtained from D by an allowable vertical subdivision on a
single 2–cell. The set of edges of each � 2CD0Xq�.CD/ contains exactly one matched
pair.

Proof Since � 0 62 q�.CD/, the quotient map q is not injective on � 0 . Thus q.� 0/

must contain two distinct edges "1; "2 with endpoint v , and these have lifts "0
1

and "0
2

on � 0 . Since � 0 is a cycle, "0
1

and "0
2

must have distinct endpoints, hence one is v0
1

and one is v0
2

. There cannot be more than one matched pair on � 0 , since � 0 can pass
through each v0i only once.

Definition 3.11 Let D0 be obtained from D by an allowable vertical subdivision on
a single 2–cell. Let v be the vertex corresponding to the subdivided cell, and let v0

1

and v0
2

be its lifts to D0 .

For any pair of edges "0
1
; "0

2
with endpoints at v0

1
and v0

2
and distinct initial points w0

1

and w0
2

, there is a corresponding pair of edges �0
1
; �0

2
from w0

1
to v0

2
and from w0

2
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to v0
1

. Write

opf"01; "
0
2g D f�

0
1; �
0
2g:

We call the pair f"0
1
; "0

2
g a matched pair, and f�0

1
; �0

2
g its opposite. (See Figure 6).

Lemma 3.12 If � 0 2 CD0 contains a matched pair, the edge-path obtained from � 0 by
exchanging the matched pair with its opposite is a cycle.

Proof It is enough to observe that the set of endpoints and initial points of a matched
pair and its opposite are the same.

Define a map rW CD0!CD0 to be the map that sends each � 2CD0 to the cycle obtained
by exchanging each appearance of a matched pair on � 0 2 CD0 with its opposite.

Lemma 3.13 The map r is a simplicial map of order two that preserves length and
labels. It also fixes the elements of q�.CD/, and changes the parity of the size of
elements in CD0Xq�.CD/.

Proof The map r sends cycles to cycles, and hence simplices to simplices. Since op
has order 2, it follows that r has order 2. The total number of vertices does not change
under the operation op. It remains to check that the homology class of � 0 and r.� 0/ as
embedded cycles in X are the same, and that the size switches parity.

There are two cases. Either the matched edges lie on a single simple cycle 
 0 or on
different simple cycles 
 0

1
; 
 0

2
on � 0 .

In the first case, r.f
 0g/ is a cycle with 2 components f
 0
1
; 
 0

2
g. As 1–chains we have

(6) ˇ D r.� 0/� � 0 D 
 01C 

0
2� 


0
D �01C �

0
2� "

0
1� "

0
2:

In X , ˇ bounds a disc (see Figure 6), thus g.
 0/D g.
 0
1
/Cg.
 0

2
/, and hence

(7) g.� 0/D g.r.� 0//:

The simple cycle 
 0 is replaced by two simple cycles 
 0
1

and 
 0
2

, and hence the size
of � 0 and r.� 0/ differ by one.

Now suppose � 0 contains two cycles 
 0
1

and 
 0
2

, one passing through v0
1

and the other
passing through v0

2
. Then r.� 0/ contains a simple cycle 
 0 in place of 
 0

1
C 
 0

2
, so the

size decreases by one. By (6) we have (7) for � 0 of this type.
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Proof of Proposition 3.7 By Lemma 3.9, the quotient map qW D0!D induces an
injection of q�W CD ,! CD0 defined by the lifting map, and this map preserves labels.
We thus have

�X ;C; D 1C
X
�2CD

.�1/j� jg.�/�1
D 1C

X
� 02q�.CD/

.�1/j�
0jg.� 0/�1:

The cycles in CD0Xq�.CD/ partition into � 0; r.� 0/, and by Lemma 3.13 the contribu-
tions of these pairs in �X ;C0; cancel with each other. Thus, we have

�X ;C0; D 1C
X

� 02CD0

.�1/j�
0jg.� 0/�1

D 1C
X

� 02q�.CD/

.�1/j�
0jg.� 0/�1

D �X ;C; :

Definition 3.14 Let .X;C;  / be a branched surface and c a 2–cell. Let p; q be
two points on the boundary 1–chain @c of c that do not lie on the same 1–cell of C.
Assume that p and q each have the property that

(i) it lies on a vertical edge, or

(ii) its forward flow under  eventually lies on a vertical 1–cell of .X;C/.

The transversal subdivision of .X;C;  / at .cIp; q/ is the new branched surface
.X;C0;  / obtained from C by doing the (allowable) vertical subdivisions of C defined
by p and q , and doing the additional subdivision induced by adding a 1–cell from p

to q .

Lemma 3.15 Let .X;C;  / be a branched surface, and let .X;C0;  / be a transversal
subdivision. Then the corresponding cycle functions are the same.

Proof By first vertically subdividing C along the forward orbits of p and q if necessary,
we may assume that p and q lie on different vertical 1–cells on the boundary of c . Let v
be the vertex of D corresponding to c . Then D0 is obtained from D by substituting
the vertex v by a pair v0

1
; v0

2
that are connected by a single edge. Each edge " from

w ¤ v to v is replaced by an edge "0 from w0 to v0
1

and edge " from v to u¤ v is
replaced by an edge from v0

2
to u0 . Each edge from v to itself is substituted by an edge

from v2 to v1 . The cycle complexes of D and D0 are the same, and their labelings
are identical. Thus the cycle function is preserved.

3.3 Folding

Let .X;C;  / be a branched surface with a flow. Let c1 and c2 be two cells with the
property that their boundaries @c1 and @c2 both contain the segment e1e2 , where e1
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is a vertical 1–cell and e2 is a transversal 1–cell of C. Let p be the initial point of e1

and q the end point of e2 . Then p and q both lie on vertical 1–cells, and hence
.c1Ip; q/ and .c2Ip; q/ define a composition of transversal subdivisions C1 of C.
For i D 1; 2, let ei

3
be the new 1–cell on ci , and let �.e1; e2; e

i
3
/ be the triangle ci

bounded by the 1–cells e1; e2 and ei
3

.

Definition 3.16 The quotient map F W X ! X 0 that identifies �.e1; e2; e
1
3
/ and

�.e1; e2; e
2
3
/ (see Figure 7) is called the folding map of X . The quotient X 0 is

endowed with the structure of a branched surface .X 0;C0;  0/ induced by .X;C1;  /.

e1
3

e1

e2
3

e2 e2

D e1
3

e1

e2

e2
3 e3 e1

e2

Figure 7: The left and middle diagrams depict the two 2–cells sharing the
edges e1 and e2 ; the right diagram is the result of folding.

The following proposition is easily verified (see Figure 7).

Proposition 3.17 The quotient map F associated to a folding is a homotopy equiva-
lence, and the semiflow  W X �RC!X induces a semiflow  0W X �RC!X .

Definition 3.18 Given a folding map F W X ! X 0 , there is an induced branched
surface structure .X 0;C0;  0/ on X given by taking the minimal cellular structure
on X 0 for which the map F is a cellular map and deleting the image of e2 if there are
only two hinges containing e2 on X .

Remark 3.19 In the case that c1; c2 are the only cells above e2 , folding preserves
the dual digraph D .

Lemma 3.20 Let F W X !X 0 be a folding map, and let .X 0;C0;  0/ be the induced
branch surface structure of the quotient. Then

�X ;C; D �X 0;C0; 0 :

Proof Let D be the dual digraph of .X;C;  / and D0 the dual digraph of .X 0;C0;  0/.
Assume that there are at least three hinges containing e2 . Then D0 is obtained from D

by gluing two adjacent half edges (see Figure 8), a homotopy equivalence. Thus,
CDG D CD0G , and the cycle polynomials are equal.
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e2

e1

e1

e2

e1

Figure 8: Effect of folding on the digraph

4 The branched surface of an automorphism

Throughout this section, let � 2 Out.Fn/ be an element that can be represented
by an expanding irreducible train-track map f W � ! � . Let � D Fn Ì� Z, and
G D �ab=torsion. We shall define the mapping torus .Yf ;C;  / associated f , and
prove that its cycle polynomial �Yf ;C; has a distinguished factor ‚ with a distinguished
McMullen cone T . We show that the logarithm of the house of ‚ specialized at integral
elements in T extends to a homogeneous of degree �1, real analytic concave function L

on an open cone in Hom.G;R/, and satisfies a universality property.

4.1 Free group automorphisms and train-track maps

In this section we give some background definitions for free group automorphisms, and
their associated train-track representatives following [6]. We also recall some sufficient
conditions for a free group automorphism to have an expanding irreducible train-track
map due to work of Bestvina and Handel [2].

Definition 4.1 A topological graph is a finite 1–dimensional cellular complex. For
each edge e , an orientation on e determines an initial and terminal point of e . Given
an oriented edge e , we denote by xe , the edge e with opposite orientation. An edge
path on a graph is an ordered sequence of edges e1 � � � e` , where the endpoint of ei

is the initial point of eiC1 , for i D 1; : : : ; `� 1. The edge path has back-tracking if
ei D xeiC1 for some i . The length of an edge path e1 � � � e` is `.

Definition 4.2 A graph map f W � ! � is a continuous map from a graph � to itself
that sends vertices to vertices, and is a local embedding on edges. A graph map assigns
to each edge e 2 � an edge path f .e/D e1 � � � e` with no backtracking. Identify the
fundamental group �1.�/ with a free group Fn . A graph map f represents an element
� 2 Out.Fn/ if � is conjugate to f� as an element of Out.Fn/.

Remark 4.3 In many definitions of a graph map one is also allowed to collapse an
edge, but for this exposition, graph maps send edges to nonconstant edge-paths.
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Definition 4.4 A graph map f W � ! � is a train-track map if:

(i) f k.e/ has no back-tracking for all edges e of � and k � 1.

(ii) f is a homotopy equivalence.

Definition 4.5 Given a train-track map f W � ! � , let fe1; : : : ; ekg be an ordering
of the oriented edges of � , and let Df be the digraph whose vertices ve correspond
to the undirected edges e of � , and whose edges from ei to ej correspond to each
appearance of ej and xej in the edgepath f .ei/. The transition matrix Mf of Df is
the directed adjacency matrix

Mf D Œai;j �;

where ai;j is equal to the number of edges from vei
to vej .

Definition 4.6 If f W � ! � be a train-track map, the dilatation of f is given by the
spectral radius of Mf

�.f /Dmaxfj�j j � is an eigenvalue of Mf g:

Definition 4.7 A train-track map f W � ! � is irreducible if its transition matrix Mf

is irreducible, it is expanding if the lengths of edges of � under iterations of f are
unbounded.

Remark 4.8 A Perron–Frobenius matrix is irreducible and expanding, but the converse
is not necessarily true.

Example 4.9 Let � be the rose with four petals a; b; c and d . Let f W � ! � be the
train-track map associated to the free group automorphism

(8)
a 7! cdc; b 7! cd;

c 7! aba; d 7! ab:

The train-track map f has transition matrix

Mf D

2664
0 0 2 1

0 0 1 1

2 1 0 0

1 1 0 0

3775 ;
which is an irreducible matrix, and hence f is irreducible. The train-track map is
expanding, since its square is block diagonal, where each block is a 2 � 2 Perron–
Frobenius matrix. On the other hand, f is clearly not PF, since no power of Mf is
positive.
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Definition 4.10 Fix a generating set � D f!1; : : : ; !ng of Fn . Then each 
 2 Fn

can be written as a word in �,

(9) 
 D !
r1

i1
� � �!

r`
i`
;

where !i1
; : : : ; !i` 2� and rj 2 f1;�1g. The word is reduced if there are no cancela-

tions, that is !rj
ij
¤!

�rjC1

ijC1
for j D 1; : : : ; `�1. The word length `�.
 / is the length `

of a reduced word representing 
 in Fn . The cyclically reduced word length `�;cyc.
 /

of 
 represented by the word in (9) is the minimum word length of the elements


j D !
rj
ij
!

rjC1

ijC1
� � �!

r`
i`
!

r1

i1
� � �!

rj�1

ij�1
;

for j D 1; : : : ; `� 1.

Proposition 4.11 Let � 2 Out.Fn/ be represented by an expanding irreducible train-
track map f , and let 
 2 Fn be a nontrivial element. Then either � acts periodically
on the conjugacy class of 
 in Fn , or the growth rate satisfies

��;cyc.
 /D lim
k
`�;cyc.�

k.
 //1=k
D �.f /;

and in particular, it is independent of the choice of generators, and of 
 .

Proof See, for example [2, Remark 1.8].

In light of Proposition 4.11, we make the following definition.

Definition 4.12 Let � 2 Out.Fn/ be an element that is represented by an expanding
irreducible train-track map f . Then we define the dilatation of � to be

�.�/D �.f /:

Remark 4.13 An element � 2 Out.Fn/ is hyperbolic if Fn Ì� Z is word-hyperbolic.
It is atoroidal if there are no periodic conjugacy classes of elements of Fn under
iterations of � . By a result of Brinkmann [4], � is hyperbolic if and only if � is
atoroidal.

Definition 4.14 An automorphism � 2Out.Fn/ is reducible if � leaves the conjugacy
class of a proper free factor in Fn fixed. If � is not reducible it is called irreducible.
If �k is irreducible for all k � 1, then � is fully irreducible.

Theorem 4.15 (Bestvina and Handel [2]) If � 2 Out.Fn/ is irreducible, then � can
be represented by an irreducible train track map, and if � is fully irreducible, then it
can be represented by a PF train track map.
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Remark 4.16 Theorem A deals with an automorphism � that can be represented
by an irreducible and expanding train-track map. It does not follow that for such
an automorphism every train-track representative is expanding and irreducible. For
example, consider the automorphism � from Example 4.9. Let � 0 be a graph constructed
from an edge e with two distinct endpoints v and w by attaching at v two loops
labeled a and b and attaching at w two loops c and d . The map f 0W � 0! � 0 defined
by (8) and e 7! xe represents the same automorphism � as in Example 4.9. However,
since e is invariant, the map is not irreducible and not expanding.

If we assume that � is fully irreducible, then all train-track representatives are expanding.
Indeed, let f 0W � 0! � 0 be a train-track representative of � . Then f 0 is irreducible
because an invariant subgraph will produce a �–invariant free factor. It is now enough
to show that some edge is expanding. Let ˛ be an embedded loop in � 0 . We can think
of ˛ as a conjugacy class in Fn . Then by Proposition 4.11 either ˛ is periodic or ˛
grows exponentially. However, ˛ cannot be periodic since ˛ represents a free factor
of Fn . Therefore, ˛ grows exponentially, hence some edge grows exponentially and
because f 0 is irreducible, all edges grow exponentially.

4.2 The mapping torus of a train-track map

In this section we define the branched surface .Xf ;Cf ;  f / associated to an irreducible
expanding train-track map f .

Definition 4.17 The mapping torus .Yf ;  f / associated to f W � ! � is the branched
surface where Yf is the quotient of � � Œ0; 1� by the identification .t; 1/� .f .t/; 0/,
and  f is the semiflow induced by the product structure of � � Œ0; 1�. Write

qW � � Œ0; 1�! Yf

for the quotient map. The map to the circle induced by projecting � � Œ0; 1� to the
second coordinate induces a map �W Yf ! S1 .

Definition 4.18 The  f –compatible cellular decomposition Cf for Yf is defined as
follows. For each edge e , let ve be the initial vertex of e (the edges e are oriented
by the orientation on � ). The 0–cells of Cf are q.ve � f0g/, the 1–cells are of the
form se D q.ve � Œ0; 1�/ or te D q.e � f0g/, and the 2–cells are ce D q.e � Œ0; 1�/,
where e ranges over the oriented edges of � . For this cellular decomposition of Yf ,
the collection V of se is the set of vertical 1–cells and the collection E of 1–cells te
is the set of horizontal 1–cells.

By this definition .Yf ;Cf ;  f / is a branched surface. Let �Yf ;Cf ; f be the associated
cycle function (Definition 3.5).
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Proposition 4.19 The digraph Df for the train-track map f and the dual digraph of
.Yf ;Cf ;  f / are the same, and we have

�.�/D
ˇ̌
�
.˛/

Yf ;Cf ; f

ˇ̌
;

where ˛W �! Z is the projection associated to � .

Proof Each 2–cell c of .Yf ;Cf ;  f / is the quotient of one that can be drawn as
in Figure 9, and hence there is a one-to-one correspondence between 2–cells and
edges of � . One can check that for each time f .e/ passes over the edge ei , there is
a corresponding hinge between the cell q.e � Œ0; 1�/ and the cell q.ei � Œ0; 1�/. This
gives a one-to-one correspondence between the directed edges of Df and the edges of
the dual digraph.

te

se c

te1
te2
� � � tek

q

Yf

Figure 9: A cell of the mapping torus of a train-track map

Recall that �.�/D�.f / is the spectral radius of Mf (Definition 4.12). By Theorem 2.5,
the characteristic polynomial of Df satisfies

PDf .x/D xm�Df .x/:

Each edge of Df has length one with respect to the map ˛ , and hence for each cycle
� 2 CDf , the number of edges in � equals `˛.�/. It follows that �Df .x/ is the
specialization by ˛ of the cycle function �Yf ;Cf ; f , and we have

�PF.Df /D jPDf j D j�Df j D
ˇ̌
�
.˛/

Yf ;Cf ; f

ˇ̌
:

In the following sections, we study the behavior of j� .˛/
Yf ;Cf ; f

j as we let ˛ vary in
Hom.�IR/.

4.3 Application of McMullen’s theorem to cycle polynomials

Fix a train-track map f W �! � . Recall: �f D �Yf ;Cf ;�f D 1C
P
�2CG

Df

.�1/j� jg.�/�1 .
Thus the McMullen cone T�f .1/ is given by

T�f .1/D f˛ 2 Hom.GIR/ j ˛.g/ > 0 for all g 2 Supp.�/g

D f˛ 2 Hom.GIR/ j ˛.g/ > 0 for all g 2G such that ag ¤ 0g
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(see Definition 2.6). We write Tf D T�f .1/ for simplicity when the choice of cone
associated to �f is understood.

Proposition 4.20 Let Tf be the McMullen cone for �f . The map

ıW Hom.GIR/!R

defined by
ı.˛/D log j‚.˛/j;

extends to a homogeneous of degree �1, real analytic, convex function on Tf that goes
to infinity toward the boundary of affine planar sections of Tf . Furthermore, �f has a
factor ‚ with the properties:

(1) For all ˛ 2 Tf , ˇ̌
�
.˛/

f

ˇ̌
D j‚.˛/j:

(2) The polynomial Q is minimal, ie if � 2 ZG satisfies j� .˛/j D j� .˛/
f
j for all ˛

ranging among the integer points of an open subcone of Tf , then ‚ divides � .

To prove Proposition 4.20 we write GDH �hsi and identify �f with the characteristic
polynomial Pf of an expanding H–matrix Mf . Then Proposition 4.20 follows from
Theorem 2.18.

Let
G DH1.Yf IZ/=torsionD �ab=torsion;

and let H be the image of �1.�/ in G induced by the composition

� ! � � f0g ,! � � Œ0; 1�
q
! Yf :

Let ��W G! Z be the map corresponding to �W Yf ! S1 .

Lemma 4.21 The group G has decomposition as G DH � hsi, where ��.s/D 1.

Proof The map �� is onto Z and its kernel equals H . Take any s 2 ��1
� .1/. Then

since s 62H , and G=H is torsion free, we have G DH � hsi.

We call s a vertical generator of G with respect to � , and identify ZG with the ring
of Laurent polynomials ZH.u/ in the variable u with coefficients in ZH , by the map
ZG! ZH.u/ determined by sending s 2 ZG to u 2 ZH.u/.

Definition 4.22 Given � 2 ZG , the associated polynomial P� .u/ of � is the image
of � in ZH.u/ defined by the identification ZG D ZH.u/.
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The definition of support for an associated polynomial P� is analogous to the one
for � .

Definition 4.23 The support of an element P� 2 ZH.u/ is given by

Supp.P� /D fhur
j h; r are such that .h; sr / 2 Supp.�/g:

Let P�f 2ZH.u/ be the Laurent polynomial associated to �f . Instead of realizing P�f
directly as a characteristic polynomial of an H–labeled digraph, we start with a more
natural labeling of the digraph Df .

Let C1 D ZV[E be the free abelian group generated by the positively oriented edges
of Yf , which we can also think of as 1–chains in C.1/ (see Definition 4.18). Let
Z1 � C1 be the subgroup corresponding to closed 1–chains. The map � induces a
homomorphism ��W C1! Z.

Let �W Z1!G be the quotient map. The map � determines a ring homomorphism

��W ZZ1! ZG;X
g2Z1

agg 7!
X
g2J

ag�.g/:

This extends to a map from ZZ1.u/ to ZG.u/.

Let K1�Z1 be the kernel of ��jZ1
W Z1!Z. Then H is the subgroup of G generated

by �.K1/. Let �H be the restriction of � to K1 . Then �H similarly defines

�H
� W ZK1! ZH;

the restriction of �� to ZK1 , and this extends to

�H
� W ZK1.u/! ZH.u/:

Proposition 4.24 There is a Perron–Frobenius K1 –matrix M K1

f
, whose characteristic

polynomial PK1

f
.u/ 2 ZK1Œu� satisfies

P�f .u/D u�m�H
� P

K1

f
.u/:

To construct M K1

f
, we define a K1 –labeled digraph with underlying digraph Df .

Let s be a vertical generator relative to �� . Choose any element s0 2Z1 mapping to
the vertical generator s 2G . Write each se 2 V as se D s0ke , where ke 2K1 . Label
edges of the digraph Df by elements of C1 as follows. Let f .e/D e1 � � � er . Then
for each i D 1; : : : ; r , there is a corresponding hinge �i whose initial cell corresponds
to e and whose terminal cell corresponds to ei . Take any edge � on Df emanating
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from ve . Then � corresponds to one of the hinges �i , and has initial vertex ve and
terminal vertex vei

. For such an �, define

g.�/D sete1
� � � tei�1

D s0kete1
� � � tei�1

D s0k.�/;

where k.�/ 2K1 . This defines a map from the edges Df to C1 giving a labeling DC1

f
.

It also defines a map from edges of Df to K1 by � 7! k.�/. Denote this labeling
of Df by DK1

f
.

Definition 4.25 Given a labeled digraph DG , with edge labels g."/ for each edge "
of the underlying digraph D , the conjugate digraph yDG of DG is the digraph with
same underlying graph D , and edge labels g."/�1 for each edge " of D .

Let yDK1

f
be the conjugate digraph of DK1

f
, and let �M K1

f
be the directed adjacency

matrix for yDK1

f
.

Lemma 4.26 The cycle function �f 2ZG and the characteristic polynomial yPf .u/ 2
ZK1Œu� of �MK1 satisfy

�H
� .
yPf .u//D umP�f .u/:

Proof By the coefficient theorem for labeled digraphs (Theorem 2.14) we have

yPf .u/D um�
DK1
f

D um

�
1C

X
�2CDf

.�1/j� jk.�/�1u�`.�/
�
:

Since g.�/D k.�/s`.�/ , a comparison of yPf with �f gives the desired result.

Proof of Proposition 4.20 Let Mf be the matrix with entries in ZH given by
taking �MK1 and applying �H to its entries. Then the characteristic polynomial Pf
of Mf is related to the characteristic polynomial yPf of �MK1 by

Pf .u/D �
H
� .
yPf .u//:

Thus, Lemma 4.26 implies
Pf .u/D umP�f .u/;

and hence the properties of Theorem 2.16 applied to yPf also hold for �f .

5 The folded mapping torus and its DKL-cone

We start this section by defining a folded mapping torus and stating some results of
Dowdall, Kapovich and Leininger on deformations of free group automorphisms. We
then proceed to finish the proof of the main theorem.
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5.1 Folding maps

In [15] Stallings introduced the notion of a folding decomposition of a train-track map.

Definition 5.1 (Stallings [15]) Let � be a topological graph, and v a vertex on � .
Let e1; e2 be two distinct edges of � meeting at v , and let q1 and q2 be their other
endpoints. Assume that q1 and q2 are distinct vertices of � . The fold of � at v , is
the image �1 of a quotient map f.e1;e2Wv/W � ! �1 where q1 and q2 are identified as a
single vertex in �1 and the two edges e1 and e2 are identified as a single edge in �1 .
The map f.e1;e2Wv/ is called a folding map.

It is not hard to check the following.

Lemma 5.2 Folding maps on graphs are homotopy equivalences.

Definition 5.3 A folding decomposition of a graph map f W �! � is a decomposition

f D hfk � � � f1;

where fi W �i�1 ! �i for i D 1; : : : ; k are folding maps on a sequence of graphs
�0; : : : ; �k , where �0 is obtained by edge subdivision from � , and hW �k ! �k is a
homeomorphism. We denote the folding decomposition by .f1; : : : ; fk I h/.

e1

e2

v

e

e1

e2

v

e

Figure 10: Two examples of folding maps

Lemma 5.4 (Stallings [15]) Every homotopy equivalence of a graph to itself has a
(nonunique) folding decomposition. Moreover, the homeomorphism at the end of the
decomposition is uniquely determined.
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Decompositions of a train-track map into a composition of folding maps gives rise to a
branched surface that is homotopy equivalent to Yf .

Let f W � ! � be a train-track map with a folding decomposition f D .f1; : : : ; fk I h/,
where fi W �i�1! �i is a folding map, for i D 1; : : : ; k , � D �0 D �k , and hW � ! �

is a homeomorphism.

For each i D 0; : : : ; k , define a 2–complex Xi and semiflow  i as follows. Say fi

is the folding map on � folding e1 onto e2 at their common endpoint v . Let q be
the initial vertex of both e1 and e2 , and qi the terminal vertex of ei . Let Xi be the
quotient of �i�1 � Œ0; 1� obtained by identifying the triangles

Œ.q; 0/; .q; 1/; .q1; 1/� on e1 � Œ0; 1�

with
Œ.q; 0/; .q; 1/; .q2; 1/� on e2 � Œ0; 1�:

The semiflow  i is defined by the second coordinate of �i�1� Œ0; 1�. By the definitions,
the image of �i�1 � f1g in Xi under the quotient map is �i .

Let Xf be the union of pieces X0[� � �[Xk so that the image of �i�1�f1g in Xi�1 is
attached to the image of �i � f0g in Xi by their identifications with �i , and the image
of �k � f1g in Xk is attached to the image of �0 � f0g in X0 by h.

Each Xi has a semiflow induced by its structure as the quotient of �i � Œ0; 1�. This
induces a semiflow  f on Xf . The cellular structure on Xf is defined so that the 0–cells
correspond to the images in Xi of .q; 0/; .q; 1/; .q1; 1/ and .q2; 1/. The transversal
1–cells of Cf correspond to the images in Xi of edges Œ.q; 0/; .qi ; 1/�, for i D 1; 2.
The vertical 1–cells of Cf are the forward flows of all the vertices of Xf . The vertical
and transversal 1–cells form the boundaries of the 2–cells of Cf .

Definition 5.5 (cf [6]) A folded mapping torus associated to a folding decomposi-
tion f of a train-track map is the branched surface .Xf ;Cf ;  f/ defined above.

Lemma 5.6 If .Xf ;Cf ;  f/ is a folded mapping torus, then there is a cellular decom-
position of Xf so that the following holds:

(i) The 1–skeleton C
.1/
f is a union of oriented 1–cells meeting only at their end-

points.

(ii) Each 1–cell has a distinguished orientation so that the corresponding tangent
directions are either tangent to the flow (vertical case) or positive but skew to the
flow (diagonal case).

(iii) The endpoint of any vertical 1–cell is the starting point of another vertical 1–cell.
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Proof The cellular decomposition of Xf has transversal 1–cells corresponding to the
folds, and vertical 1–cells corresponding to the flow suspensions of the endpoints of
the diagonal 1–cells.

5.2 Simple example

We give a simple example of a train-track map, a folding decomposition and their
associated branched surfaces.

Consider the train-track in Figure 11, and the train-track map corresponding to the free
group automorphism � 2 Out.F2/ defined by

a 7! ba;

b 7! bab:

a b

Figure 11: Two petal rose

Then the corresponding train-track map f W �! � sends the edge a over b and a, and
the edge b over b then a then b . The corresponding mapping torus is shown on the
left of Figure 12.

a b

b a b a b

a b

b a b a b

2

1

1

2

1

2

2

Figure 12: Mapping torus and folded mapping torus

A folding decomposition is obtained from f by subdividing the edge a twice and the
edge b three times. The first fold identifies the entire edge a with two segments of
the edge b . This yields a train-track that is homeomorphic to the original. The second
fold identifies the edge b to one segment of the edge a. The resulting folded mapping
torus is shown on the right of Figure 12. Here cells labeled with the same number are
identified.
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5.3 Dowdall–Kapovich–Leininger’s theorem

We first recall that the elements ˛ 2H 1.Xf IR/ can be represented by cocycle classes
zW H1.Xf IR/!R.

Definition 5.7 Given a branched surface X D .Xf ;Cf ;  f/, orient the edges of Cf

positively with respect to the semiflow  f . The associated positive cone for X in
H 1.X IR/, denoted Af , is given by

Af D f˛ 2H 1.Xf IR/ j there is a z 2 ˛ so that z.e/ > 0 for all e 2 C
.1/
f g:

Theorem 5.8 (Dowdall, Kapovich and Leininger [6]) Let f be an expanding irre-
ducible train-track map, f a folding decomposition of f and .Xf ;Cf ;  f/ the folded
mapping torus associated to f . For every integral ˛ 2 Af there is a continuous map
�˛W Xf ! S1 with the following properties.

(1) Identifying �1.Xf/ with � and �1.S
1/ with Z, .�˛/� D ˛ .

(2) The restriction of �˛ to a semiflow line is a local diffeomorphism. The restriction
of �˛ to a flow line in a 2–cell is a nonconstant affine map.

(3) For all simple cycles c in Xf oriented positively with respect to the flow,
`.�˛.c//D ˛Œc�/ where Œc� is the image of c in G .

(4) Suppose x0 2 S1 is not the image of any vertex, denote �˛ WD �˛�1.x0/. If ˛
is primitive �˛ is connected, and �1.�˛/Š ker.˛/.

(5) For every p 2 �˛ \ .Cf/
.1/ , there is an s � 0 so that  .p; s/ 2 .Cf/

.0/ .

(6) The flow induces a map of first return f˛W �˛ ! �˛ , which is an expanding
irreducible train-track map.

(7) The assignment that associates to a primitive integral ˛ 2 Af the logarithm of
the dilatation of f˛ can be extended to a continuous and convex function on Af .

Proof This is a compilation of results of [6].

5.4 The proof of main theorem

In this section, we prove Theorem A. A crucial step to our proof is that the mapping
torus YD .Yf ;Cf ;  f / and the folded mapping torus XD .Xf ;Cf ;  f/ both have the
same cycle polynomial.

Proposition 5.9 The cycle functions �Y of .Yf ;Cf ;  f / and �X of .Xf ;Cf ;  f/ coin-
cide.
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Proof We observe that .Xf ;Cf ;  f/ can be obtained from the mapping torus of the train-
track map .Yf ;Cf ;  f / by a sequence of folds, vertical subdivisions and transversal
subdivision, as defined in Sections 3.2 and 3.3. The reverse of these folds is shown in
Figure 13.

e2
.p; 0/

e1

.q; 1/
e3

e2
.p; 0/

e1

.q; 1/ e3

e2
.p; 0/

e1

.q; 2/ e3

Figure 13: Vertical unfolding

The proposition now follows from Proposition 3.7 and Lemmas 3.15 and 3.20.

Proposition 5.10 Let �f be the cycle polynomial of the DKL mapping torus. Then

Af � T�f .1/:

Proof We need to show that, for every � 2 CXf with j� j D 1, we have ˛.g.�// > 0.
Then for all nontrivial g 2 Supp.�f/, we have ˛.g/ > 0, and hence ˛ 2 T�f .1/D T .
Let c be a closed loop in D . The embedding of D in Xf described in Definition 3.4
induces an orientation on the edges of D that is compatible with the flow  . For each
edge � of c , item (2) in Theorem 5.8 implies `.�˛�//> 0 and item (3) in Theorem 5.8
implies

˛.Œc�/D `.�˛.c//D
X
�2c

`.�˛.�// > 0:

Proposition 5.11 Let .Xf ;Cf ;  f/ be the folded mapping torus, �f its cycle polynomial
and Af the DKL–cone. For all primitive integral ˛ 2Af , we have

�.�˛/D
ˇ̌
�
.˛/
f

ˇ̌
:

Proof Embed �˛ in Xf transversally as in Theorem 5.8(4), and perform a vertical
subdivision so that the intersections of �˛ with .Xf/

.1/ are contained in the 0–skeleton
(we can do this by Theorem 5.8(5)). Perform transversal subdivisions to add the edges
of �˛ to the 1–skeleton. Then perform a sequence of foldings and unfoldings to move
the branching of the complex into �˛ , and remove the extra edges. Denote the new
branched surface by

X
.˛/
f D .Xf ;C

.˛/
f ;  f/:
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These operations preserve the cycle polynomials of the respective 2–complexes, there-
fore we denote all of these polynomials by � (in particular �f D � ).

Let f˛W �˛ ! �˛ be the map induced by the first return map, and D˛ its digraph.
Then f˛ defines a train-track map representing �˛ , and �.�˛/D �.D˛/.

The (unlabeled) digraph D
.˛/
f of the new branched surface .Xf ;C

.˛/
f ;  f/ is identical

to D˛ . For a cycle c in D˛ , let `.c/ be the number of edges in c . Then `.c/ equals
the number of 1–cells in �˛ \ .X

.˛
f /.1/ , and by Theorem 5.8, items (4) and (3),

`.c/D `.�˛.c//D ˛.Œc�/:

Thus `.�/D ˛.g.�// for every � 2 CD˛ . Let P˛.x/ be the characteristic polynomial
of the directed incidence matrix associated to D˛ . By the coefficients theorem for
digraphs (Theorem 2.5) we have

P˛.x/D xm
C

X
�2CD

.�1/j� jxm�`.�/
D xm

�
1C

X
�2CD˛

.�1/j� jx˛.g.�//
�
D xm� .˛/:

Therefore
�.�˛/D jP˛j D j�

.˛/
j:

We are now ready to prove our main result.

Proof of Theorem A Choose an expanding train-track representative f of � , and a
folding decomposition f of f . As before, let YD .Yf ;Cf ;  f / be the mapping torus
of f , and XD .Xf ;Cf ;  f/ the folded mapping torus. By Proposition 5.9 their cycle
function �Y; �X are equal, and we will call them � .

Let ‚ be the minimal factor of � defined in Proposition 4.20, and let T D T‚.1/ be the
McMullen cone. By Proposition 5.10, Af�T , and by Proposition 5.11, �.�˛/Dj‚.˛/j.
By Proposition 4.20, j‚.˛/� j D j‚

.˛/j in T so we have �.˛/D j‚.˛/� j for all ˛ 2Af .
Item (2) of Proposition 4.20 implies part (2) of Theorem A. If f 0 is another folding
decomposition of another expanding irreducible train-track representative f 0 of � ,
we get another distinguished factor ‚f0 . Since the cones Tf and Tf0 must intersect, it
follows by the minimality properties of ‚f and ‚f0 in Proposition 4.20 that they are
equal. Item (3) of Proposition 4.20 completes the proof.

6 Example

In this section, we compute the cycle polynomial for an explicit example, and compare
the DKL– and McMullen cones.
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Consider the rose with four directed edges a; b; c; d and the map

f D

�
a! B! adb;

c!D! cbd:

Capital letters indicate the relevant edge in the opposite orientation to the chosen one.
It is well known (see eg the first and third authors [1, Proposition 2.6]) that if f W �! �

is a graph map, and � is a graph with 2m directed edges, and for every edge e of � , the
path f 2m.e/ does not have back-tracking (see Definition 4.1), then f is a train-track
map. One can verify that f is a train-track map.

a b

cd

Figure 14: Four petal rose with directed edges

The train-track transition matrix is given by

Mf D

2664
0 1 0 0

1 1 0 1

0 0 0 1

0 1 1 1

3775 :
The associated digraph is shown in Figure 15.

a b

cd

Figure 15: Digraph associated to the train-track map f

The matrix Mf is nonnegative and M 3
f

is positive. Thus Mf is a Perron–Frobenius
matrix and f is a PF train-track map. By Theorem 1.1, ˛� has an open cone neigh-
borhood, the DKL–cone Af � Hom.�IR/, whose primitive integral elements of
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Af correspond to free group automorphisms that can be represented by expanding
irreducible train-track maps.

Remark 6.1 The outer automorphism � represented by f is reducible. Consider the
free factor hbA; ad; aci. Then

f .bA/D BDAb; f .ad/D BDBC D aBDAaBCA; f .ac/D BD D bAad:

Therefore this factor is invariant up to conjugacy. Although � is reducible, f is
expanding and irreducible, and we can apply both Theorem 5.8 and Theorem A.

Identifying the fundamental group of the rose with F4 we choose the basis a; b; c; d

of F4 . The free-by-cyclic group corresponding to Œf�� has the presentation

� D ha; b; c; d; s0 j as0
D B; bs0

D BDA; cs0
DD; d s0

DDBC i:

Let G D �ab and for w 2 � we denote by Œw� its image in G . Then

Œa�D�Œb�D Œd �D�Œc�:

Thus G D Z2 D ht; si where t D Œa� and s D Œs0�. We decompose f into four folds

� D �0

f1
�! �1

f2
�! �2

f3
�! �3

f4
�! �4 Š �;

where all the graphs �i are roses with four petals. f1 folds all of a with the first third
of b , to the edge a1 of �1 , the other edges will be denoted b1 , c1 , d1 . f1 folds the
edge c1 with the first third of the edge d1 . With the same notation scheme, f2 folds
the edge c2 with half of the edge b2 and f3 folds the edge a3 with half of the edge d3 .
Figure 16 shows the folded mapping torus Xf for this folding sequence.

a b c d

x x

y y

z z

w w

B B D A D D B C

Figure 16: The complex X

The cell structure Cf has 4 vertices, 8 edges: s1; s2; s3; s4;x;y; z; w , and four 2–cells:
cx; cy ; cz; cw . The 2–cells are sketched in Figure 17.
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x

s2

s3

s4w

s3

s2

s1
y

s3
z

s2
w

x

s2

z

s4

s1
x

s4

s3

s2

s1

s4
z

s4

s1

y

s3

w

s1

s2
y

s1

s4

s3

s2

s1

s4

s3

1

2

3
4

Figure 17: The discs in X

Let C1 be the free abelian group generated by the edges of Xf , and let F be the maximal
tree consisting of the edges s1; s2; s3 , then Z1 � C1 is generated by x;y; z; w and
s1C s2C s3C s4 . The quotient homomorphism �W Z1!G is given by collapsing the
maximal tree and considering the relations given by the two cells. The map is given by
�.s1C s2C s3C s4/D s and

�.x/D t; �.y/D �.z/D�t; �.w/D t C s:

1

2

3

4

!13

!0
13

!34

!24

!0
24

g.!13/D s2 g.!024/D s2

g.!24/D st�1 g.!0
13
/D st

g.!34/D s2

Figure 18: The dual digraph is on the left and the labeled cycle complex is
on the right.

The dual digraph D to X is shown on the left of Figure 18. There are five cycles: !13

and !0
13

the two distinct cycles containing 1 and 3, !24 and !0
24

the two distinct
cycles containing 2 and 4, and !34 is the cycle containing 3 and 4. The cycle complex
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is shown on the right of Figure 18:

�f D 1� .s�2
C s�1t�1

C s�2
C s�1t C s�2/C .s�3t C s�2

C s�3t�1
C s�4/

D 1C s�4
� 2s�2

� s�1t�1
� s�1t C s�3t C s�3t�1:

Note that ‚� might be a proper factor of this polynomial. However, for the sake of
computing the support cone (and the dilatations of �˛ for different ˛ 2Af ) we may
use �f .

Computing the McMullen cone In order to simplify notation, for ˛ 2 Hom.G;R/
and g 2G we denote g˛ D ˛.g/. The cone T� in H 1.G;R/ is given by

T�Df˛ 2 Hom.G;R/ j g˛ < 0˛ for all g 2 Supp.�f /g

Df˛2Hom.G;R/ j .�4s/˛.�2s/˛.�s�t/˛<0; .�sCt/˛.�3sCt/˛.�3s�t/˛<0g:

Therefore, the McMullen cone is

(10) T� D f˛ 2 Hom.G;R/ j s˛ > 0 and jt˛j< s˛g:

t�

s�

Figure 19: The McMullen cone T (outer) and DKL–cone Af (inner)

Computing the DKL–cone We now compute the DKL–cone Af . A cocycle a rep-
resents an element in ˛ 2Af if it evaluates positively on all edges in Xf . We use the
notation a.e/D ea . Thus for a a positive cocycle we have

sa1; s
a
2; s

a
3 > 0;

sa4 > 0D) sa� sa1C sa2C sa3 > 0D) sa > sa1C sa2C sa3 > 0:
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Now by considering the cell structure given by all edges in Figure 19 and recalling that
Œa�D Œd �D t and Œb�D Œc�D�t we have

x D t C s1; w D t C s4; y D s2� t; z D s3� t:

The diagonal edges x; w give us

0< xa
D taC sa1 and 0<wa

D taC sa4;

so
t˛ �

sa
1
C sa

4

2
> �

s˛

2
:

The other diagonal edges give us

0< za D sa3� ta and 0< ya
D sa2� ta;

hence
t˛ <

sa
2
C sa

3

2
<

s˛

2
:

We obtain the cone

(11)
n
s˛ > 0 and jt˛j< s˛

2

o
:

If ˛ is in this cone there is a positive cocycle representing ˛ . Therefore Af is equal to
the cone in (11) and is strictly contained in the cone T� (see (10) and Figure 19).
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