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Abstract

In this paper we �nd a formula for the Alexander polynomial �p1;:::;pk(x) of pretzel

knots and links with (p1; : : : ; pk; -1; : : : ; -1) twists, where p1; : : : ; pk are positive inte-

gers, and -1's appear k � 2 times. The polynomial �2;3;7(x) is the well-known Lehmer

polynomial, which is conjectured to have the smallest Mahler measure among all monic

integer polynomials. We con�rm that �2;3;7(x) has the smallest Mahler measure among

the polynomials arising as �p1;:::;pk(x).
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1 Introduction

The Lehmer polynomial, which is the monic, integer polynomial with smallest knownMahler

measure, appears in geometry in two seemingly di�erent guises. One is as the Alexander

polynomial �2;3;7(x) for a (-2; 3; 7)-pretzel knot ([Reid] p.34), and another is as the denom-

inator of the growth function of the (2; 3; 7)-Coxeter reection group ([Floy], p.483). We

verify that �2;3;7(x) is the polynomial with smallest Mahler measure which arises among

all polynomials �p1;:::;pk(x).

Throughout this paper, all polynomials will have integer coeÆcients. Given a monic

polynomial p(x), the product of the norms of the roots of p(x) outside the unit circle is

called the Mahler measure of p(x) (hence cyclotomic polynomials have Mahler measure 1.)

A palindromic polynomial is a polynomial p(x) whose coeÆcients are the same read from

the left or from the right. Thus, p(x) is palindromic if and only if it satis�es

p(x) = xdp(
1

x
);

where d is the degree of p(x), or equivalently the roots of p(x) are closed under reciprocals.

A long standing open question, posed by Lehmer ([Leh], pp. 476) is whether the Mahler

measure of an irreducible monic polynomial which is not cyclotomic can be made arbitrarily

close to 1. For non-palindromic irreducible monic polynomials, the problem is solved: the

polynomial

S(x) = x3 � x� 1

has the smallest Mahler measure [Smy], but palindromic polynomials can have smaller

Mahler measure.

In [Leh], Lehmer made an extensive search �nding the best (smallest Mahler measure)

irreducible monic palindromic polynomials of degrees 2,4,6 and 8. (An odd degree palin-

dromic polynomial is necessarily reducible.) The 10th degree polynomial

L(x) = 1 + x� x3 � x4 � x5 � x6 � x7 + x9 + x10

found by Lehmer in 1933 ([Leh], pp. 477) is still the best known for arbitrary degree.

Not surprisingly, L(x) and S(x) both have only one root outside the unit circle. Let

� > 1 be any real algebraic integer with all conjugates on or within the unit circle. If

at least one conjugate is on the unit circle, making the minimal polynomial necessarily

palindromic, then � is called a Salem number. Otherwise, � is called a PV number. Thus,

in addition to having smallest knownMahler measure, the Lehmer polynomial is the minimal

polynomial for the smallest known Salem number �L = 1:17628 : : : [Boyd], and the smallest

PV-number, �S = 1:32472 : : : , is a root of S(x).

The �rst appearance of L(x) (actually L(�x)) in the literature may be in K. Reidemeis-

ter's book Knot Theory ([Reid] p.34), where L(�x) is given as the Alexander polynomial

for the (�2; 3; 7)-pretzel knot. In his list of open problems ([Kir], p. 340, problem 5.12), R.

Kirby also draws attention to the connection between the minimality question for Mahler

measure and knot theory. Alexander polynomials of knots and links are a natural place to
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look for examples pertaining to Lehmer's question. It is well known (see [Seif], p. 589, Satz

6, and [Lev]), that a polynomial �(x) is the Alexander polynomial of a knot if and only if

�(x) is palindromic and �(1) = �1. By choosing an orientation on the connected compo-

nents of a link, one can also de�ne a single variable Alexander polynomial for a link with

more than one connected component. This is the same as taking the usual multi-variable

Alexander polynomial for the link, and identifying all variables.

Instead of looking at all knot and link polynomials we will look at a particular family.

Consider the rational function

Rp1;:::;pk(x) = (1� k) + x+ (1� x)

�
1

1� xp1
+ � � � +

1

1� xpk

�
;

depending on k � 1 positive integers p1; : : : ; pk. It is not hard to check that this function

satis�es:

Rp1;:::;pk(x) = xRp1;:::;pk(
1

x
):

Thus, multiplying by [p1] : : : [pk] gives the palindromic polynomial

Qp1;:::;pk(x) = (x� k + 1)[p1][p2] : : : [pk] +

kX
i=1

[p1] : : : c[pi] : : : [pk];
where for any positive integer n, we de�ne [n] to be

[n] = 1 + x+ x2 + � � � + xn�1:

One can observe the following by a simple calculation.

Lemma 1.1 The Lehmer polynomial L(x) is equal to Q2;3;7(�x).

Let Kp1;:::;pk be the pretzel link with k positive twists of orders p1; : : : ; pk and k � 2

negative twists of orders 1. We prove the following Theorem in Section 2.

Theorem 1.2 For any positive integers p1; : : : ; pk, the Alexander polynomial of the Kp1;:::;pk

equals Qp1;:::;pk(�x).

Note (see Section 2), that the (-2; 3; 7)-pretzel knot is equivalent to the (2; 3; 7; -1)-pretzel

knot, i.e., K2;3;7. Furthermore, all the polynomials of low degree with minimal Mahler

measure found by Lehmer occur as irreducible factors of Qp1;:::;pk(x), for some p1; : : : ; pk
(see Section 3).

Theorem 1.3 Among the polynomials of the form Qp1;:::;pk(x), with a Salem factor, L(x)

has the smallest Mahler measure.
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The family Qp1;:::;pk(x) is related to the growth functions of planar Coxeter groups.

Consider the group

h g1; : : : ; gk : (g1g2)
p1 ; : : : ; (gkg1)

pk ; g21 ; : : : ; g
2
k i:

The generators g1; : : : ; gk can be represented as the reections through sides of a compact

k-sided polygon with angles
�

pi
; i = 1; : : : ; k;

in either the hyperbolic plane, Euclidean plane, or sphere, according to whether

�(p1; : : : ; pk) =
1

p1
+ � � �+

1

pk
� k + 2

the orbifold Euler characteristic of the quotient surface by the Coxeter group, is less than,

equal to, or greater than zero.

Cannon and Wagreich ([C-W] Prop. 3.1), and Floyd and Plotnick ([F-P] Theorem 5.1)

show that the growth function of the planar Coxeter groups have the following form (see

also [Bour].)

Theorem 1.4 (Floyd-Plotnick [F-P]) The growth function of the planar Coxeter group

corresponding to the integers p1; : : : ; pk with respect to the standard generators equals

x+ 1

Rp1;:::;pk(x)
;

and its denominator Qp1;:::;pk(x) is a product of cyclotomic polynomials and at most one

Salem polynomial. The Salem polynomial occurs if and only if �(p1; : : : ; pk) < 0.

Theorem 1.3 thus has the following corollary.

Corollary 1.5 Lehmer's Salem number �L is the smallest number arising as the growth

rate of a hyperbolic polygonal reection group.

There is a natural relation between (p1; : : : ; pk)-pretzel knots, where p1; : : : ; pk can be

positive or negative, and the jp1j; : : : ; jpkj-orbifold 2-sphere, which indicates a partial relation

between Q and �. The double branched covering of the 3-sphere branched along the

(�1; p1; : : : ; pk) pretzel knot, �bers over the jp1j; : : : ; jpkj orbifold 2-sphere (cf. [Kaw].)

Thus, the fundamental group of the complement of the pretzel link and the fundamental

group of the orbifold are closely related.

This only partially explains the relation between the polynomials, however, since calcu-

lations show that the Alexander polynomial, and in particular its Mahler measure, is not

preserved when a positively twisted strand is exchanged for a negatively twisted one of the

same order. The seeming coincidence suggests that there may be a bound on the growth

rate of the fundamental group of a knot or link complement in terms of the Mahler measure
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of the Alexander polynomial { a topic for further research, which will not be treated in this

paper.

Acknowledgements. The author thanks D. Lind for suggesting the problem of study-

ing the Lehmer question for Alexander polynomials of pretzel knots, and D. Boyd and I.

Vardi for useful comments. The author was supported by the Institutes des Hautes �Etudes

Scienti�ques while this paper was written.

2 Pretzel Knots

A (p1; : : : ; pk)-pretzel link is a union of k-pairs of strands twisted p1; : : : ; pk times and

attached along the tops and bottoms as in Figure 1.

p1 p2 pk

Figure 1. (p1; : : : ; pk)-pretzel link.

The twists are oriented according to whether pi is positive or negative. For example, in

Figure 1, p1 and pk are positive integers, while p2 is a negative integer.

The Alexander polynomial for a p1; : : : ; pk-pretzel link, when p1; : : : ; pk are odd integers,

is well known (see, for example, [Lic] p. 57.) When they are allowed to be even, the link

may have several components: if the number of even twists pi is d > 2, then the number of

components of the knot is d� 1, otherwise the number of components is 1.

Proof of Theorem 1.2. We compute the Alexander polynomial by a standard method

involving Seifert matrices (see, for example, [Rolf], Chapter 5.) Figure 2 is a (-2; 3; 7)-

pretzel knot (drawn as the equivalent (2; 3; 7; -1)-pretzel knot) with an oriented Seifert

surface shaded in.

Let p1; : : : ; pk be positive integers, and consider the link Kp1;:::;pk , the pretzel link with

k positive twists of orders p1; : : : ; pk, and k � 2 negative twists of order 1 (as in the in-

troduction). In order to de�ne a single variable Alexander polynomial, we need to choose

orientations on the components of the link. Our choice will be to orient the link so that the

top strand connecting the twist pi to pi+1 points right if i is even, left if i is odd, and the

bottom strand points left if i is even, and right if i is odd. Thus, we get an oriented Seifert
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Figure 2. Seifert surface for K2;3;7.

surface for the link with disks spanning pairs of twists and the strands that connect them

as in Figure 2.

The Seifert matrix of an oriented link is given by choosing generating loops for the �rst

homology of the Seifert surface, and seeing how their positive pushouts into the complement

of the Seifert surface in the three sphere S3 intersect with the original loops. This is seen

in Figure 3, where the original loops are drawn with a dashed line, and the pushouts are

drawn with a solid line.

+ � + �

Figure 3. Generating loops for K2;3;7.

In general, for Kp1;:::;pk , we obtain a p1 + � � � + pk � k + 1 dimensional square Seifert
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matrix of the form

SK =

2
66664

Ap1 0

Ap2

: : :

Apk 0

1 0 : : : 0 1 0 : : : 0 : : : 1 0 : : : 0 1

3
77775

where Ap is the p� 1� p� 1 matrix

Ap =

2
66664

1 -1 0 : : : 0

0 1 -1 0 : : : 0

: : :

0 : : : 0 1 -1

0 : : : 0 1

3
77775

If L is an oriented link and SL is its Seifert matrix, then the Alexander polynomial �(x)

is the characteristic polynomial of the Alexander matrix AL given by the matrix product

AL = SL � Transpose(S�1L ):

The orientation on the link determines an in�nite cyclic covering of the link complement in

S3. The matrix AL represents the action of a generator of the covering group on the �rst

homology considered as a module over the ring of Laurent polynomials.

In our situation, the matrix AL is of the form

AL =

2
66666666666666666664

Bp1

0

0

-1

: : : : : :

Bpk

0

0

-1

1 0 : : : 0 1 0 : : : 0 : : : 1 0 : : : 0 1 0 : : : 0 1� k

3
77777777777777777775

where Bp is the p� 1� p� 1 matrix

Bp =

2
66664

0 -1 0 : : : 0

0 0 -1 0 : : : 0

: : :

0 : : : 0 -1

1 : : : 1 1

3
77775 :
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Let N = p1 + � � � + pk � k + 1. If one identi�es C N with the linear subspace V � C N+k

given by the image of the map

(X1;1; : : : ;X1;p1�1; : : : ;Xk;1; : : : ;Xk;pk�1; Y )

7! (X1;1; : : : ;X1;p1�1;�X1;1 � � � � �X1;p1�1;

: : : ;

Xk;1; : : : ;Xk;pk�1;�Xk;1 � � � � �Xk;pk�1; Y );

then AK is equivalent to the restriction to V of the matrix �EK , where EK is given by:

EK =

2
666666666666664

Cp1

0

0

1

: : : : : :

Cpk

0

0

1

1 -1 0 : : : 0 1 -1 0 : : : 0 : : : 1 -1 0 : : : 0 1 -1 0 : : : 0 k � 1

3
777777777777775

where Cp is the p� p permutation matrix

Cp =

2
66664

0 1 0 : : : 0

0 0 1 0 : : : 0

: : :

0 : : : 0 1

1 0 : : : 0 0

3
77775 :

The eigenvalues of EK are thus the negatives of the eigenvalues of AK, together with 1

counted with multiplicity k. The characteristic polynomial of EK is

ChEK (x) = (xp1 � 1) : : : (xpk � 1)(x� k + 1) + (x� 1)

kX
i=1

(xp1 � 1) : : : \(xpi � 1) : : : (xpk � 1)

(This can be seen, for example, by cofactor expansion with respect to the last column.)

Dividing by (x� 1)k, gives

ChEK (x)

(x� 1)k
= [p1] : : : [pk](x� k + 1) +

kX
i=1

[p1] : : : c[pi] : : : [pk]
= Qp1:::;pk(x)

The claim follows.
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By de�nition, a pretzel link depends only on the cyclic ordering of its twists. Theorem

1.2 implies the following stronger statement.

Corollary 2.1 The Alexander polynomial for the Kp1;:::;pk does not depend on the ordering

of p1; : : : ; pk.

Example: Theorem 1.2 implies that for the (p; q;�2) pretzel knot, where p; q are odd

integers, the Alexander polynomial is given by

�p;q;2(x) =
1 + 2x+ x1+p + x1+q � x3 � xp+q + xp+2 + xq+2 + 2xp+q+2 + x3+p+q

(1 + x)3
:

3 Minimality of L(x)

In this section, we give some properties of the functions Rp1;:::;pk(x) and Qp1;:::;pk(x), and

prove Theorem 1.3.

First we verify that Lehmer's examples of degrees 2,4,6,8 (see [Leh]), are all factors of

Qp1;:::;pk(x), for some p1; : : : ; pk:

Q2;2;2;2;2(x) = (1� 3x+ x2)(1 + x)3

Q4;4;4(x) = (1� x� x2 � x3 + x4)(1 + x2)2(1 + x)2

Q3;3;4(x) = (1� x2 � x3 � x4 + x6)(1 + x+ x2)

Q2;4;5(x) = 1� x3 � x4 � x5 + x8:

The Lehmer polynomial L(x) equals Q2;3;7(x).

The real roots of Qp1;:::;pk(x) can be described in terms of the value

�(p1; : : : ; pk) = Rp1;:::;pk(1)

=
1

p1
+ � � � +

1

pk
� k + 2

as seen in the following proposition.

Lemma 3.1 The triple (2; 3; 7) gives the maximum negative value of

�(p1; : : : ; pk) = (2� k) +
1

p1
+ � � �+

1

pk

for any p1; : : : ; pk � 2.

Proof. For k � 5, we have

2� k +
1

p1
+ � � � +

1

pk
� 2� k +

k

2
= 2�

k

2
� �

1

2
:
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For k = 3 and k = 4, the best possible are

�(2; 3; 7) = �
1

42

and

�(2; 2; 2; 3) = �
1

6
;

respectively. Thus, �(2; 3; 7) is the largest possible.

The following two Lemmas follow from Theorem 1.4, but since they can be simply

veri�ed, we include proofs here.

Lemma 3.2 If

�(p1; : : : ; pk) � 0;

then Qp1;:::;pk is a product of cyclotomic polynomials.

Proof. When k = 1; 2, we have

Qp(x) = 1 + x+ � � �+ xp�1

and

Qp;q(x) = 1 + x+ � � � + xp+q�1

so the Mahler measure is always one.

For any k, we have

�(1; p2; : : : ; pk) = �(p2; : : : ; pk)

so we can assume that all the pi are greater than 1. If k � 4, then we have

1

p1
+ � � �+

1

pk
�
k

2
� k � 2;

with equality only for (2; 2; 2; 2). Let �n(x) denote the nth cyclotomic polynomial, that is,

the minimal polynomial for the nth root of unity. If k = 3 or 4, the only possibilities are

Q2;2;n(x) = (1 + xn+1)(1 + x)

Q2;3;3(x) = (1� x2 + x4)(1 + x+ x2) = �12(x)�(x)

Q2;3;4(x) = (1� x3 + x6)(1 + x) = �18(x)�2(x)

Q2;3;5(x) = 1 + x� x3 � x4 � x5 + x7 + x8 = �30(x)

Q2;3;6(x) = (1 + x)(1 � x)2(1 + x+ x2)(1 + x+ x2 + x3 + x4)

Q2;4;4(x) = (x� 1)2(1 + x)2(1 + x2)(1 + x+ x2)

Q3;3;3(x) = (x� 1)2(1 + x)(1 + x+ x2)2

Q2;2;2;2(x) = (x� 1)2(x+ 1)3:

In all the above examples, the Mahler measure is one.
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Lemma 3.3 If

�(p1; : : : ; pk) < 0:

Then Qp1;:::;pk(x) has exactly one real root greater than 1.

Proof. Since

Rp1;:::;pk(0) = 1

and

Rp1;:::;pk(1) = �(p1; : : : ; pk) < 0;

the function Rp1;:::;pk must have a real root strictly between 0 and 1.

For all integers p > 1,

d

dx

1� x

1� xp
=

(1� p)xp + pxp�1 � 1

(x� 1)2p
:

On the interval [0; 1], the numerator is increasing and the denominator is decreasing:

d

dx
(1� p)xp + pxp�1 � 1 = p(p� 1)xp�2(1� x) > 0;

and
d

dx
(x� 1)2p = 2p(x� 1)2p�1 < 0:

Therefore, Rp1;:::;pk(x) is strictly decreasing and concave up on [0; 1], and the root is unique.

Since Qp1;:::;pk(x) is palindromic, it follows that Rp1;:::;pk , and hence Qp1;:::;pk has exactly

one root greater than 1.

We are now ready to prove the main result of this section.

Proof of Theorem 1.3.

Observe that for x > 0 (and any k), the values of Rp1;:::;pk(x) strictly decrease if one

increases any of the p1; : : : ; pk.

By Lemma 3.2 and 3.3, we know that Qp1:::;pk(x) has a single root �p1;:::;pk outside the

unit circle if and only if �(p1; : : : ; pk) < 0. In the proof of Lemma 3.3 it was shown that

the graph of Rp1;:::;pk(x) is concave up on [0; 1]. Thus, the zero x0 2 [0; 1] of Rp1;:::;pk(x) is

strictly less than the x-intercept of the line joining (0; 1) and (1;Rp1;:::;pk(1)), giving

x0 <
1

1� �(p1; : : : ; pk)
;

and

�p1;:::;pk =
1

x0
> 1� �(p1; : : : ; pk):
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When k � 4, Lemma 3.1 implies that aside from the case (2; 2; 2; 3) we have

�p1;:::;pk > 1� �(2; 2; 2; 4) =
5

4
= 1:25 > �2;3;7:

The remaining case (2; 2; 2; 3), for k = 4, can be checked by computer:

�2;2;2;3 = 1:72208 � � � > �2;3;7;

as can the minimal cases for k = 3, which �nishes the proof:

�3;3;4 = 1:40127 � � � > �2;3;7

�2;4;5 = 1:28064 � � � > �2;3;7:
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