
QUOTIENT FAMILIES OF MAPPING CLASSES

ERIKO HIRONAKA

Abstract. We define quotient families of mapping classes parameterized by rational
points on an interval generalizing an example of Penner. This gives an explicit construc-
tion of families of mapping classes in a single flow-equivalence class of monodromies of a
fibered 3-manifold M . The special structure of quotient families helps to compute useful
invariants such as the Alexander polynomial of the mapping torus, and (in the case when
M is hyperbolic) the Teichmüller poliynomial of the associated fibered face. These in turn
give useful information about the homological and geometric dilatations of the mapping
classes in the quotient family.

1. Introduction

In [Pen2] Penner explicitly constructed a sequence of pseudo-Anosov mapping classes,
sometimes called Penner wheels, with asymptotically small dilatations. In this paper we
define a generalization of Penner wheels called quotient families, and put them in the frame-
work of the Thurston-Fried-McMullen fibered face theory [Thu1] [Fri] [McM1]. Specifically,
we show that each quotient family corresponds naturally to a linear section of a fibered face
of a 3-manifold. Putting quotient families in the fibered face context helps to determine
their Nielsen-Thurston classification, and in the pseudo-Anosov case makes it possible to
compute dilatations via the Teichmüller polynomial.

1.1. Pseudo-Anosov mapping classes, dilatations, and fibered faces. Let S be a
connected oriented surface of finite type with negative Euler characteristic χ(S). A mapping
class φ : S → S is an orientation preserving homeomorphism modulo isotopy. The Nielsen-
Thurston classification states that mapping classes are either periodic, reducible, or pseudo-
Anosov, where (S, φ) is pseudo-Anosov if φ preserves a pair of transverse measured singular
stable and unstable foliations (F±, ν±) and φ∗(ν±) = λµ± for some λ > 0 [Thu2]. The
constant λ is uniquely determined by (S, φ) and is called its dilatation. The singularities
of F± are called the the singularities of φ (see also [FM]).

In [Pen2], Penner constructed a sequence of pseudo-Ansoov mapping classes (Rg, ψg),
for g ≥ 3, where Rg is a closed surface of genus g ≥ 2 and λ(ψg)

g ≤ 11. Using this he
showed that the minimum expansion factor lg for pseudo-Anosov mapping classes of genus
g behaves like log(lg) � 1

g .
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Since then, fibered face theory (recalled below) has been applied to show that pseudo-

Anosov mapping classes with bounded normalized dilatation L(S, φ) := λ(φ)|χ(S)| are com-
monplace: such families can be found in the set of monodromies of any hyperbolic fibered
3-manifold that has first Betti number greater than or equal to two [McM1]. Furthermore,
the Universal Finiteness Theorem of Farb-Leininger-Margalit implies that any family of
pseudo-Anosov mapping classes with bounded normalized dilatations is contained in the
set of monodromies of a finite set of fibered 3-manifolds up to fiber-wise Dehn fillings
[FLM].

1.2. Penner wheels. Penner wheels are defined as follows. Consider the genus g surface
Rg as a surface with rotational symmetry of order g fixing two points, as drawn in Figure 1,
and let ζg be the counterclockwise rotation by the angle 2π

g . For a simple closed curve γ on

a surface, let δγ be the right Dehn twist centered at γ. Let ηg = δcgδ
−1
bg
δag be the product of

Dehn twists centered along the labeled curves ag, bg, cg drawn in Figure 1. Then Penner’s
sequence consists of the pairs (Rg, ψg), where ψg = ζgηg.

Figure 1. Penner wheel on a surface of genus g with rotational symmetry
fixing two points, one of which is marked in the figure as a central dot.

To define quotient families, consider a triple (S̃, ζ̃, η̃) satisfying the following:

(1) S̃ is an oriented surface of infinite type with a properly discontinuous, orientation-
preserving, fixed-point free infinite cyclic action generated by

ζ̃ : S̃ → S̃;

(2) S̃/ζ̃ is a surface of finite genus and number of punctures; and

(3) the action of ζ̃ has a fundamental domain Σ0, a compact, connected, oriented
surface of finite type, so that the support of η̃ is strictly contained in

Σ0 ∪ ζ̃Σ0 ∪ · · · ∪ ζ̃m0Σ0.
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We say that the triple (S̃, ζ̃, η̃) forms a template of width m0.
Let Im0(Q) be the rational points on the open interval Im0 = (0, 1

m0
). From a template

(S̃, ζ̃, η̃) with width m0 we define an associated quotient family Q(S̃, ζ̃, η̃) parameterized
by Im0(Q) as follows. For c ∈ Im0(Q), where c = k

n is in reduced form, define a mapping
class (Sc, φc) as follows. Let η̃n be the composition

η̃n := ◦
r∈Z

ζ̃rnη̃ζ̃−rn,

which is well-defined on S̃ since n > m0, and hence the supports of ζ̃rnη̃ζ̃−rn are disjoint

for distinct r. The map η̃n is invariant under conjugation by ζ̃n, and thus defines a well-

defined map ηn on the quotient space Sc = S̃/ζn. Similarly, ζ̃ defines a map ζn on the
quotient space Sc. Let

φc := (ζn)kn ◦ ηn,
where knk = 1(mod n). The quotient family associated to the template (S̃, ζ̃, η̃) is defined
by

Q(S̃, ζ̃, η̃) := {(Sc, φc) | c ∈ Im0(Q)}.
For example, the surfaces R0

g obtained from Penner’s sequence by removing the two

centers of rotation is a sequence in a quotient family where (S̃, ζ̃) has fundamental domain
Σ0 homeomorphic to a torus with one boundary component and the copies ζrΣ0 are at-
tached along disjoint arcs on the boundary of each copy of Σ0. The map η̃ is defined by

η̃ = δc̃δ
−1

b̃
δã, where ã, b̃, and c̃ are simple closed curves so that ã∪ b̃∪ c̃ is a lift of ag∪bg∪cg

drawn in Figure 1 for each g.

1.3. Fibered faces and parameterizations of flow-equivalence classes. Let MCG(S)
be the group of mapping classes defined on S. Thurston’s fibered face theory [Thu1] gives
a way to partition the set of all mapping classes

MCG = {(S, φ) φ ∈ MCG(S), S a connected orientable surface of finite type}
into families with related dynamics. Each mapping class (S, φ) defines (up to isotopic
equivalence)

(1) a mapping torus M = [0, 1]× S/(x, 1) ∼ (φ(x), 0);
(2) a distinguished fibration ρ : M → S1 induced by projection onto the second coor-

dinate with monodromy (S, φ); and
(3) a one-dimensional oriented suspension flow, or foliation, L on M whose leaves are

the images of the leaves R×{x} under the cyclic covering map R×S →M defined
by ρ∗ : π1(M)→ Z.

Two mapping classes are said to be flow-equivalent if they determine the same isotopy class
of pairs (M,L). The induced homomorphism ρ∗ : H1(M ;Z) → Z determines an element
α ∈ H1(M ;R), called a fibered element.

Thurston defined a semi-norm || || on H1(M ;R) with a convex polygonal unit norm ball.
Each cone VF over an open top-dimensional face F is either fibered if all primitive integral
elements are fibered, or contains no fibered elements. The primitive integral elements of
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any fibered cone are in one-to-one correspondence with rational points on the fibered face
F .

It follows from this discussion that the set of all mapping classes on arbitrary connected
orientable surfaces of finite type is parameterized by the union of rational points on fibered
faces of 3-manifolds. Explicitly, for α a fibered element in a fibered cone VF , let α be its
projection onto F along the rational ray, and let (Sα, φα) be its monodromy. For each
fibered 3-manifold M and fibered face F ⊂ H1(M ;R) define

fF : F (Q) → MCG

α 7→ (Sα, φα)

taking each α to the monodromy (Sα, φα), where α ∈ VF is the primitive integral element
α ∈ VF that is a positive multiple of α. Let C be the set of all flow-equivalence classes, and
let C be the set of all fibered faces. Then we have a bijection

c : C → C

taking fibered faces to corresponding flow-equivalence classes, and parameterizations of the
elements of each flow equivalence class F ∈ C by the set of rational points on F = c(F).

Our first result characterizes quotient families in terms of the above parameterization of
MCG.

Theorem A. Each quotient family Q is contained in some flow equivalence class F. Let
F = c−1(F). Then there is an embedding

ι : Im0 ↪→ F,

such that

(1) the image ι(Im0) is a linear section of F in H1(M ;R),
(2) ι restricts to a map Im0(Q)→ F (Q), and
(3) for all c ∈ Im0(Q),

(Sc, φc) = fF (ι(c)).

Now consider the set of pseudo-Anosov mapping classes P ⊂ MCG. By a theorem
of Thurston [Thu2] the mapping torus M of (S, φ) is hyperbolic if and only if (S, φ) is
pseudo-Anosov.

Thus, Theorem A has the following immediate corollary:

Corollary 1.1. Let Q be a quotient family. Then Q is contained in P if and only if
Q ∩ P 6= ∅.

1.4. Fibered faces and bounded normalized dilatations. Let M be a hyperbolic
3-manifold with fibered face F ⊂ H1(M ;R). Fried [Fri] showed that the function

α 7→ log λ(φα)

defined for α a primitive integral element of the cone VF = F ·R+ extends to a continuous
convex function on VF that is homogeneous of degree −1 and goes to infinity toward the
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boundary of VF . The Thurston norm || || on H1(M ;R) has the property that ||α|| = |χ(Sα)|
for all integral elements α on a fibered cone [Thu1], and hence

L(Sα, φα) = λ(φα)||Sα||.

Noting that L is the composition of Fried’s function with the exponential function, we have
the following.

Proposition 1.2 (Fried). Given a flow-equivalence class F ⊂ P with F = c(F), the function

L : F (Q) → R
α 7→ L(Sα, φα)

extends uniquely to a continuous convex function L : F → R that goes to infinity toward
the boundary of F and satisfies

1 < cK ≤ L(α) < CK

for any compact subset K ⊂ F , where cK is the minimum of L on F .

Farb-Leininger-Margalit’s [FLM] Universal Finiteness Theorem states conversely that
for any C > 0, there is a finite set of fibered 3-manifolds Ω such that for any pseudo-
Anosov map (S, φ) with L(S, φ) < C, there is some M ∈ Ω such that M is the mapping
torus for (S0, φ0), where (S0, φ0) is the mapping class obtained from (S, φ) by removing
the singularities of the φ.

1.5. Behavior of normalized dilatations and stability. Our second result deals with
the behavior of the normalized dilatations of a quotient family with pseudo-Anosov ele-

ments. We say Q = Q(S̃, ζ̃, η̃) is a stable family if, for some m1,

(ζ̃ η̃)m+1(x) = ζ̃(ζ̃ η̃)m(x),

for each x ∈ Σ0 ∪ · · · ζ̃m0(Σ0), and all m ≥ m1. Consider the function defined by

φ̃ : S̃ → S̃

x 7→ ζ̃r−m1(ζ̃ η̃)m1 ζ̃−r,

where r is the greatest integer such that ζ̃−r(x) ∈ Σ0. If Q is stable, then φ̃ is a well-defined
homeomorphism (see Lemma 2.11).

Theorem B. The following are equivalent for a quotient family Q:

(1) Q is stable;

(2) the map φ̃ defines a mapping class on S̃ that commutes with the action of Z, and

hence defines a mapping class (S, φ), where S = S̃/ζ and φ is the mapping class

on S induced by φ̃;
(3) the map ι extends to 0 so that ι(0) lies in the interior of F ; and
(4) the value of the normalized stretch-factor L(Sc, φc) is bounded as c approaches 0.
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By Fried’s theorem, it follows that if Q is stable then,

lim
c→0

L(Sc, φc) = L(S, φ);

and if Q is not stable, then limc→0 ι(c) lies on the boundary of F and

lim
c→0

L(Sc, φc) =∞.

Remark 1.3. Up to now explicit examples and partial generalizations of Penner wheels
have been studied without putting them in the context of fibered faces (see [Bau] [Tsa]
[Val]). One benefit of seeing quotient families as elements of a single fibered face is the possi-
bility of getting explicit defining equations for the geometric and homological stretch-factors
via the Teichmüller and Alexander polynomials. We carry out some explicit calculations
in Section 3.

1.6. Outline of proofs and organization. To prove Theorem A, we start with (S̃, ζ̃, η̃)

and construct a 3-manifold M̃ of infinite type with one dimensional foliation L̃ preserved
by a properly discontinuous, fixed-point free action of the rank 2 free abelian group H =

Z× Z on M̃ . Setting M = M̃/H, defines a 3-manifold, with first Betti number satisfying

b1(M) ≥ 2, equipped with a foliation L. We show that the quotient family Q = Q(S̃, ζ̃, η̃)
is contained in the flow equivalence class defined by L, and is associated to rational points
on a linear segment contained in the associated fibered face F . This defines the map
ι : Im0 → F . We complete the proof of Theorem A in Section 2.3.

By fibered face theory, there are two possible behaviors for (Sc, φc) as c→ 0, depending
on whether ι(c) converges to the boundary of F or to an interior point of f as c approached
0. In Section 2.4, we show that the bounded case occurs if and only ifQ is stable Theorem B.
In Section 3, we illustrate how the results can be applied to explicit examples.

1.7. Acknowledgements. Work on this paper began during a visit at Tokyo Institute of
Technology in 2012. The author is grateful for the stimulating discussions and support
of the department members during this period. Since then, this paper has gone through
several revisions and has been substantially streamlined. We thank B. Farb, S. Fenley, C.
McMullen, H. Sun, D. Valdivia, and the referee of an earlier version of this paper, for their
helpful comments.

2. Construction of a one-dimensional flow-equivalence class

In this section, we prove Theorem A by starting with a template (S̃, ζ̃, η̃), and building a

3-manifold M̃ of infinite type, a one-dimensional foliation L̃, and a properly discontinuous,

fixed-point free action of a group H = Z× Z on M̃ with the following properties:

(1) H preserves the leaf structure of L̃;
(2) there is an open cone V in Hom(H;R) so that for all primitive integral α ∈ V

(a) the kernel Kα preserves the fibers of a fibration πα : M̃ → R; and

(b) the leaves of L̃ are sections of πα.
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The above properties imply that πα and L̃ define a trivialization M̃ = S̃α × R. Setting

M = M̃/H and L = L̃/H, the fibrations πα descend to fibrations of M whose fibers,

homeomorphic to Sα := S̃α/Zα, are cross-sections of L. The first return map φα defines
a mapping class on Sα, and the pairs (Sα, φα) constructed in this way all lie in the flow-
equivalence class defined by the pair (M,L).

Figure 2. The surface S̃ and the quotient surface S = S̃/ζ̃.

2.1. Constructing M̃ , L̃ and H. Starting with (S̃, ζ̃, η̃), let S := S̃/ζ̃, and let Σ0 be a

fundamental domain on S̃ for the map ζ̃, with the following properties:

(i) Σ0 is a connected closed subset of S̃;

(ii) ζ̃(Σ0) ∩ Σ0 is a finite disjoint union of closed arcs on the boundary ∂Σ0 of Σ0; and

(iii) S̃ =
⋃
i∈Z ζ

i(Σ0).

Let M̃ ′ = R × S̃, and let L̃′ be the flow defined on M̃ ′ with oriented leaves R × {x}. We

construct M̃ and L̃ using cutting and pasting on M̃ ′.

Choose any continuous surjective function h : S̃ → R with the properties:

(1) each fiber of h is an immersed union of simple closed curves (rel. punctures) on S̃

that split S̃ into exactly two pieces;

(2) Σ0 ∩ ζ̃−1(Σ0) = h−1(0); and

(3) h(ζ̃k(x)) = h(x) + k for all x ∈ S̃ and k ∈ Z.

For example, h could be the height function on S̃ illustrated in Figure 2.

Let h′ : M̃ ′ → R× R be defined by h′ = id× h. Let

T ′ : M̃ ′ → M̃ ′

(x, y) 7→ (x− 1, y)
7



(0,0)(-1,0) (1,0)

(0,1)

(0,2)
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(-1,2)

(1,3)-
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Figure 3. The images of the cutting loci Γa,b under h× id : M̃ ′ → R×R.
Horizontal lines indicate the flow L′.

and

Z ′ : M̃ ′ → M̃ ′

(x, y) 7→ (x, ζ̃(y)).

Then T ′ and Z ′ generate a properly discontinuous, fixed-point free Z × Z action on M̃ ′,
and

M ′ = M̃ ′/〈T ′, Z ′〉 = S1 × S.

2.2. Cutting and pasting. We construct a cutting locus G on M̃ ′ by defining a locus
on R × R, and taking the preimage by the map h′. Let Γ0,0 ⊂ R × R be the straight line
segment connecting (0, 0) to (1

2 ,m0), and, for (a, b) ∈ R×R, let Γa,b = (a, b) + Γ0,0 be the
parallel translate of Γ0,0 by (a, b). Then we have the following:

(1) the projection σ′ : M̃ ′ → S̃ to the second coordinate gives an identification

σ′(h′
−1

(Γa,b)) = ζ̃bΣ0 ∩ · · · ∩ ζ̃m0+bΣ0;

(2) the maps T ′ and Z ′ satisfy

h′(T ′(x, y)) = h′(x, y) + (−1, 0) and h′(Z ′(x, y)) = h′(x, y) + (0, 1);

(3) T ′(Γa,b) = Γa−1,b and Z ′(Γa,b) = (Γa,b+1); and
(4) Γa,b are pairwise disjoint.

Cut M̃ ′ along

G =
⋃

(a,b)∈Z×Z

h′
−1

(Γa,b),
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(a,b)

(a,b+1)

(a,b+2)

Figure 4. A figurative local picture (M̃ ′,L′) of cut along the slits

h′−1(Γa,b), for (a, b) ∈ Z × Z. The top and bottom sides of the slits are

pasted together using the map η̃ to form (M̃,L).

i.e., remove the locus G from M̃ ′ and replace it with two copies of G that only intersect at⋃
(a,b)∈Z×Z h

′−1(∂Γa,b). creating a slit with a well defined top and bottom. Figure 4 gives a

local illustration of the cut M̃ ′.
Let M̃ be obtained from the cut M̃ ′ by pasting, by the map ζ̃bη̃ζ̃−b, the top to the

bottom of the slit associated to h′−1(Γa,b) after identification with ζ̃bΣ0 ∩ · · · ∩ ζ̃m0+bΣ0.

Identifying each component of G with the top copy of the corresponding slit in M̃ ′ defines
a bijective map

τ : M̃ → M̃ ′,

where τ ◦Z = Z ′ ◦ τ , and τ ◦ T = T ′ ◦ τ . The locus of discontinuity of τ is contained in G.
Let

h : M̃ → R× R

be the composition h := h′ ◦ τ . Let σ : M̃ → S̃ be the composition σ := σ′ ◦ τ , and

let π : M̃ → R be the composition of τ (or equivalently h) with projection onto the first
coordinate.

The foliation L̃′ defines a foliation L̃ on M̃ , by cutting L̃′ along G, which intersects each
leaf transversally, and pasting as above.

Lemma 2.1. The automorphisms T ′ and Z ′ define well-defined actions T and Z on M̃
satisfying

(1) σ ◦ T = σ;
(2) σ ◦ Z = ζ ◦ σ; and

(3) T and Z preserve the leaf structure on L̃.

Proof. Properties (1) and (2) follow from the corresponding properties of T ′, Z ′, and σ′,
and the fact that the cutting and pasting locus G is (set-wise) invariant under T ′ and Z ′.
Since σ ◦ Z = ζ ◦ σ, the gluing maps commute with Z and T proving (3).
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Let H = 〈T,Z〉, and let M = M̃/H. In the next section, we prove that the quotient family
Q consists of monodromies of fibrations of M .

Remark 2.2. We choose the notation T to correspond to translation in R×R by (−1, 0)
in order to be compatible to the notation used for mapping tori:

M = [0, 1]× S/(1, x) ' (0, φ(x)) = R× S/(t, x) ' (t− 1, φ(x))

(cf. [McM1]).

Remark 2.3. Although projection of M̃ ′ to the first coordinate is surjective on leaves of

L̃′, the corresponding projection π0 : M̃ → R is not necessarily surjective on individual

leaves of L̃ in M̃ . We show that surjection of π0 on all leaves of L̃ is equivalent to stability
in Section 2.4.

2.3. Proof of Theorem A. To find a suitable fibered face F in H1(M ;R), we first fix

coordinates. Since M̃ → M is a regular abelian covering with automorphism group H, it
is an intermediate covering of the maximal abelian covering of M , and hence there is a
corresponding quotient map H1(M ;Z)→ H.

Identifying H1(M ;R) with homomorphisms of H1(M ;Z) to R, we obtain an inclusion:

Hom(H;R)→ H1(M ;R).

Thus, the dual elements of Z and T in Hom(H;R) define element z, u ∈ H1(M ;R) that form
a basis for a two dimensional subspace W ⊂ H1(M ;R). Using the notation (a, b) = au+bz,
let V ⊂W be the cone defined by

V = {(−a,−b) ∈W | 0 < bm0 < a}.

We will show that V is contained in a fibered cone for M . Let S = S̃/ζ̃. Then Σ0 is
obtained from S by removing a finite collection of simple closed curves, or arcs connecting
punctures on S.

Lemma 2.4. For c = k
n ,

|χ(Sc)| = n|χ(S)|.

Proof. The surface Sc = S̃/ζn is an n-fold covering of S = S̃/ζ.

By Lemma 2.4, can write V = FQ · R+, where FQ is defined by

FQ :=

{(
− 1

|χ|(S)|
,− k

n|χ|(S)|

)
∈ V

∣∣∣∣ 0 <
k

n
<

1

m0

}
.

We prove Theorem A by showing the following.

Proposition 2.5. The Thurston norm ball in H1(M ;R) has a fibered face F satisfying

FQ ⊂ F ∩W ;
10



and the map

ι : Im0 → F

c 7→ 1

|χ(S)|
(−1,−c)

has the property that for c ∈ Im0(Q)

(Sc, φc) = f(ι(c)).

We prove Proposition 2.5 in three steps.

Step 1. Fibrations of M̃ transverse to the foliation L̃.
For c = k

n ∈ Im0(Q), let αc be the primitive integral element in V on the ray defined by
ι(c). Seen as a homomorphism, we have

αc : H → Z
T aZb 7→ −an− bk,

and the kernel Kc of αc is freely generated by Zc := T−kZn. Let w, kn be the solutions to

wn+ knk = 1, and let Tc := TwZk. Then αc(Tc) = −1.

We will define a fibration πc : M̃ → R so that the fibers of πc have the following
properties:

(1) each fiber of πc is preserved by the action of the kernel of πc;
(2) the fibers of πc are permuted by the actions of Z and T are invariant under the

action of the kernel of αc; and
(3) each fiber of πc intersects each leaf of L exactly once.

We begin by first defining a suitable projection pc : R × R → R, and then pulling back

by h to M̃ .

Proposition 2.6. There is a continuous monotone increasing function fc : R → R such
that

(1) for r ∈ Z, fc(r) = rn
k ;

(2) fc(x)− fc(x+ r) = ξr, for some constant ξr ∈ R independent of x;
(3) for r ∈ Z, fc(x+ r) = fc(x) + r

c ; and
(4) each Γa,b is contained in the locus y = fc(x) + r

k for some r ∈ Z.

Proof. We constructive an explicit example. Let ∆0,0 be the straight line segment on R×R
connecting p := (1

2 ,m0) and qc := (1, nk ). Let

∆a,b := (a, b) + ∆0,0,

for (a, b) ∈ R× R. Let

R̃c :=
⋃
r∈Z

(Γr, rn
k
∪∆r, rn

k
),

and
R̃c,ξ := R̃c + (0, ξ).
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(-1,1)
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(0,0)(-1,0) (1,0)

(0,1)

(0,2)

(0,3)

(-1,1)

(-1,2)
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(2,1)
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(2,7)(1,7)(0,7)(-1,7)

Figure 5. The loci Rc ⊂ R× R for c = 1
4 (left) and c = 2

7 (right) when m0 = 3.

(See Figure 5). Then R̃c is the graph of a piecewise-linear, monotone increasing function,
fc with the desired properties.

Lemma 2.7. The loci Rc,ξ have the following properties.

(a) the R̃c,ξ are fibers of a fibration pc : R× R→ R that sends R̃c,ξ to ξ;
(b) translation by (r, rnk ), for r ∈ Z defines an infinite cyclic action on Rc,ξ with funda-

mental domain given by (0, ξ) + Γ0,0 ∪∆0,0; and

(c) (0, 1) + R̃c,ξ = R̃c,ξ+1 and (−1, 0) + R̃c,ξ = R̃c,ξ+n
k

.

Proof. To verify propery (1) it suffices to check that the Rc,ξ are connected and partition

R × R. This follows from the fact that each R̃c,ξ is the graph of a monotone increasing,
piecewise linear, continuous function on R: Γr, rn

k
is a straight line segment connecting

(r, rnk ) to (r+ 1
2 ,

rn
k +m0), and ∆r, rn

k
is a straight line segment connecting (r+ 1

2 ,
rn
k +m0)

to (r+ 1, (r+1)n
k ). In other words, R̃c,ξ = {(x, y) | y = f(x)− ξ} for a monotone increasing

continuous function f : R → R such that f(0) = 0 and f(r) = (0, rnk ), for each r ∈ Z. To
prove (2) we note that (1, nk ) ∈ Rc,0, and to prove (3) we note that since (1, nk ) ∈ Rc,0,
(0, nk ) ∈ (−1, 0) +Rc,0,

We now apply Lemma 2.7 to M̃ . Let πc = pc ◦ h, and let S̃c,ξ := h−1(R̃c,ξ) ⊂ M̃ .

Lemma 2.8. The map πc has the following properties:
12



(1) πc is a fibration with fibers Sc,ξ;

(2) Kc = 〈Zc〉 generates the set-wise stabilizer in H of S̃c,ξ;

(3) the fundamental domain of the action of Kc on S̃c is

Σc := h−1

(
k⋃
r=0

Γr, rn
k
∪∆r, rn

k

)
.

(4) Z(S̃c,ξ) = S̃c,ξ+1 and T (S̃c,ξ) = S̃c,ξ+n
k

;

(5) Tc(S̃c,ξ) = S̃c,ξ+ 1
k

; and

(6) πc restricts to a homeomorphism on each leaf of L̃.

Proof. The map πc is a continuous since pc identifies the images of points of discontinuity

of h, and the fibers are S̃c,ξ. This proves (1). The map h ◦ Zc ◦ h−1 : R × R → R × R is

translation by (k, n) = k(1, nk ) and hence preserves Rc,ξ. It follows that Zc stabilizes S̃c,ξ
proving (2). Item (3) follows from pulling back the fundamental domain of translation by
(k, n) on Rc. Item (4) follows from the definitions of T and Z and properties of T ′ and Z ′.

To prove (5) we note that the action of Tc on M̃ is conjugate by h to translation in R×R
by

(−w, k) + (0, ξ) = (−w, ξ + k).

Since translation by (1, nk ) stabilizes each Rc,ξ, (−w, ξ + k) and (0, (ξ + k) + wn
k ) lie on the

same fiber of πc. Using the definition of w and k, we have

(ξ + k) +
wn

k
=
ξk + kk + wn

k
= ξ +

1

k

proving (5). Let ` be a leaf of L̃. Then πc restricted to ` is equal to pc ◦ h restricted to `,
which is 1-1 and continuous. Since πc is locally a trivial fibration, πc is locally invertible
on `, proving (6).

Step 2. Comparing forward flow on M̃ and Tc on fibers of πc.
Let

fL̃,c(ξ, s) : R× S̃c,0 → M̃

where fL̃,c(ξ, s) is the unique point on S̃c,ξ that lies on the same leaf of L as s. The map

σ allows us to find the difference between flow along fL̃,c and T .

Lemma 2.9. For each ξ ∈ R, and s ∈ S̃c,0, we have

σ(fL̃,c(ξ −
1

k
, s)) = η̃n(σ(fL̃,c(ξ, s))),

Proof. Recall that L (and L′) are trivial outside of⋃
m∈Z

S̃c,m
k
.

13



Let `s be the segment of the leaf of L through s that lies between S̃c,ξ and S̃c,ξ− 1
k
. Then

σ restricted to L has a single jump discontinuity at a point on h−1(Γ). The claim follows
by the definition of the pasting maps.

Lemma 2.10. The map Tc satisfies

Tc : M̃ → M̃

fL̃,c(ξ, s) 7→ fL̃,c(ξ −
1

k
,Φc(s)).

where for all s ∈ S̃c,0,

σ ◦ Φc(s) = ζ̃kη̃n(σ(s)).

Proof. Fix s ∈ S̃c,0, and ξ ∈ R. Using Lemma 2.9 we have

σ(Tc(fL̃,c(ξ, s))) = σ(TwZk(fL(ξ − 1

k
, s))

= ζk(η̃n(σ(s)).

Step 3. Descending to the quotient surface Sc. Let σc be the map making the
following diagram commute:

S̃c

/Zc
��

σ // S̃

/〈ζ̃n〉
��

S̃c/Kc
σc

// Sc

Then we have a commutative diagram

M̃ ' R× S̃c
/〈Zc〉

��

πc

%%KK
KK

KK
KK

KK
K

R× Sc
/〈T c〉

��

πc
// R

/Z
��

M // S1

where T c is the automorphism of Sc×R induced by Tc and πc is the projection to the first
factor. It follows that αc is a fibered element with fiber Sc.

To show that (Sc, φc) is the monodromy of αc, we consider the lift of the monodromy to

the fibration πc : M̃ → R. By Lemma 2.10, we have

σ(Tc(fL̃,c(ξ, s)))) = ζ̃s ◦ η̃n(σ(fL̃,c(ξ, s))).

It follows that φc = ζknηn, finishing the proof of Theorem A.
14



2.4. Stable quotient families. To prove Theorem B, we define the projection

π0 : M̃ → R

by composing h : M̃ → R× R with projection onto the first coordinate, and show that π0

descends to a fibration of M whose fibers intersect each leaf of L transversally in a single
point. We also describe the mapping class given by the first return map.

Recall that Q = Q(S̃, ζ̃, η̃) is stable if for some m1,

(ζ̃ η̃)m1(s) = ζ−m+m1(ζ̃ η̃)m(s),

for all m ≥ m1 and s ∈ Σ0 ∪ · · · ∪ ζ̃m0Σ0. Let φ′0 be defined by

φ̃′0 : Σ0 ∪ · · · ∪ ζ̃m0Σ0 → S̃

s 7→ ζ−m1(ζ̃ η̃)m1(s).

Since φ̃′0 is the identity on Σ0 ∩ ζ−1(Σ0) and on ζm0(Σ0) ∩ ζm0+1(Σ0), it extends to a
function

φ̃0 : S̃ → S̃

by identity outside the domain of φ̃′0.
Consider the function defined by

φ̃ : S̃ → S̃

s 7→ ζ̃rφ̃0ζ̃
−r(s),

where r is any integer such that ζ̃−r(s) ∈ Σ0.

Lemma 2.11. The map φ̃ is well-defined and continuous, with continuous inverse.

Proof. By definition η̃ is the identity when restricted to Σ0∩ ζ̃−1(Σ0). Suppose ζ̃−r(s) and

ζ̃−r+1(s) lie in Σ0. Then ζ̃−r(s) ∈ Σ0 ∩ ζ−1Σ0, and we have

φ̃(s) = ζ̃rφ̃0ζ̃
−r(s)

= ζ̃r ζ̃−m1(ζ̃ η̃)m1 ζ̃−r(s)

= ζ̃r−1ζ̃−m1(ζ̃ η̃)m1+1ζ̃−r(s)

= ζ̃r−1ζ̃−m1(ζ̃ η̃)m1 ζ̃ η̃(ζ̃−r(s))

= ζ̃r−1ζ−m1(ζ̃ η̃)m1 ζ̃−r+1(s).

This shows that φ̃ is well-defined and continuous. The inverse of φ̃ is defined by

φ̃−1(s) = ζ̃rφ̃−1
0 ζ̃−r(s).

where r is any integer such that ζ−r(s) ∈ ζm0(Σ0). Since η̃ is the identity on ζm0(Σ0) ∩
ζm0+1(Σ0), the proof that φ̃−1 is well-defined and continuous is the same as for φ̃.

Lemma 2.12. The map φ̃ commutes with ζ.
15



Proof. Take any s ∈ S̃, and assume that ζ̃−r(s) ∈ Σ0. Then

φ̃(ζ̃(s)) = ζ̃r+1(ζ̃ η̃)m1 ζ̃−r−1(ζ(s))

= ζ̃r+1(ζ̃ η̃)m1 ζ̃−r(s)

= ζ̃(ζ̃r(ζ̃ η̃)m1 ζ̃−r(s)

= ζ̃(φ̃(s)).

Lemma 2.13. If the quotient family Q is stable, then for any leaf ˜̀ of L̃, then setting xt
to be the point of intersection of ˜̀with π−1

0 (t) we have

σ(x1) = φ̃(σ(x0)).

Proof. The map σ restricts to a homeomorphism on S̃t = π−1
0 (t) for all t ∈ Z, since the

cut loci only intersect these fibers at their boundary.

Let σ0 : S̃0 → S̃ be this homeomorphism. Let ˜̀be the leaf of L̃ that intersects S̃0 at x0.

This is necessarily unique since h(S̃0) intersects the cut loci only at endpoints, where the
gluing map is trivial.

Consider the sequence t1, t2, . . . of intersections of ˜̀with the cut loci of π−1
0 ([0, 1]) (see

Figure 4). Let t0 = x0. A priori, the sequence ti may be finite or infinite.
Then we have the following. If ζ−r(σ(t0)) ∈ Σ0, then

σ(t1) = ζrηζ−r(σ(t0))

σ(t2) = ζr−1ηζ1−rζrηζ−r(σ(t0)) = ζr−2(ζη)2ζ−r(σ(x0))

· · ·
σ(tm) = ζr−(m−1))ηζm−1−rσ(tm−1) = ζr−(m−1)(ζη)m−1ζ−r(σ(t0)) = φ̃(σ(t0)).

The condition for stability implies that for m > m1,

σ(tm+1) = ζrζ−m1(ζη)m1ζ−r(σ(x0)) = φ̃(σ(t0)) = σ(tm).

Thus we can break ˜̀ into a finite number of segments ˜̀0, ˜̀1, . . . , ˜̀m1+1 where ˜̀0 = ˜̀∩
π−1

0 ((−∞, 0]), ˜̀i is the segment of ˜̀between ti−1 and ti, for i = 1, . . . ,m1, and˜̀
m1+1 = ˜̀\ (˜̀1 ∪ · · · ∪ ˜̀m1).

Since α is constant on I = ˜̀
m1+1 ∩ π−1

0 ([0, 1]) the leaf is identical to a leaf in the trivial

foliation ˜̀′. Thus, ˜̀m1+1 and hence ˜̀ intersects S̃1 at some point x1. Furthermore, since α
is constant on I, we have

σ(x1) = σ(tm1+1) = φ̃(σ(x0)).

Corollary 2.14. The quotient family Q is stable if and only if each leaf ˜̀ of L̃ intersects
every fiber of π0 exactly once.
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By Lemma 2.13, if Q is stable then ι extends continuously to 0, and ι(0) has monodromy

(S, φ), where S = S̃/ζ̃ and φ is the map induced by φ̃. By continuity of L, we have

lim
c→0

L(αc) = L(α0) = L(S, φ).

Conversely, if the limit does not exist, then α0 must lie on the boundary of the fibered
cone, and hence Q could not have been stable. This completes the proof of Theorem B.

3. Penner example

In this section we illustrate Theorem A and Theorem B using Penner’s sequence (Rg, ψg)
(see Figure 1).

Consider the quotient family Q = Q(S̃, ζ̃, η̃) where S̃ is the infinite surface drawn in

Figure 6 as a stack of copies Σi, i ∈ Z, of a fundamental domain Σ, ζ̃ sends each Σi to
Σi+1, and η̃ = δc̃δ

−1

b̃
δã.

Figure 6. The surface S̃ with fundamental domain homeomorphic to a
once punctured torus.

For a mapping class (S, φ), where S has punctures or boundary components, let S be the
closure of S, that is, the closed surface obtained by filling in the punctures and boundary
components, and let (S, φ) be the induced mapping class. Then we have the following.

Proposition 3.1. For g ≥ 3,
(Rg, ψg) = (S 1

g
, φ 1

g
),

where (S 1
g
, φ 1

g
) = ι(1

g ) ∈ Q.

We now use Theorem B to show that L(S 1
g
, φ 1

g
) is bounded for g ≥ 3 by showing the

following.
17



Proposition 3.2. The family Q is a stable quotient family.

Proof. Let Sr =
⋃∞
i=r Σi, and for any simple closed curve γ embedded on an oriented

surface surface, let Aγ denote a small annular neighborhood of γ. To see that Q is of
stable type, observe that we have:

(i) ζ̃(η̃(S0)) ⊂ Ac̃ ∪S1;
(ii) η̃(S1) = Ac̃ ∪S1;

(iii) η̃(Ac̃) ⊂ Ab̃ ∪ Ac̃; and

(iv) ζ̃(A
b̃
∪ Ac̃ ∪S1) ⊂ S1 \ Ac̃.

It follows that for all x ∈ Σ0, ζ̃(ζ̃ η̃)2(x) = ζ̃(x), and thus Q is stable.

By Theorem B it follows that

lim
g→∞

L(S 1
g
, φ 1

g
) = L(S, φ)

where S = S̃/ζ̃ and φ is defined by the ζ-equivariant map φ̃. This gives an alternative to
Penner’s proof in [Pen2] that for some constant C > 0

log(λ(φ 1
g
)) ≤ C

g
.

3.1. Train tracks for the quotient family. Train track theory, introduced by W.
Thurston, gives a way to compute the dilatation of any individual pseudo-Anosov mapping
class (see [FLP] [CB]). We recall the theory briefly.

A train track is an embedded graph with trivalent edges τ and smoothings of the edges
locally near each vertex as in Figure 7. A simple closed curve γ is carried on τ if there is

Figure 7. Smoothing near a vertex of a train track

an isotopy of γ to a curve on τ that is locally embedded at each vertex. A train track τ on
S is compatible with a pseudo-Anosov map φ : S → S if for any simple closed curve Γ on
S there is an n > 0 such that for all k ≥ n φk(γ) is carried by τ . In particular, any train
track τ fills S. That is, all its complementary components are either disks or punctured
disks.

If (S, φ) is pseudo-Anosov and τ is a compatible train track, then we can represent φ
up to isotopy as a graph map on τ , that is, a map that takes vertices of τ to vertices, and
edges of τ to edge paths. This defines a linear map on RE where E is the set of edges of τ .
Let V be the set of vertices of τ . The space of allowable weights on τ is defined to be the
quotient space W in the exact sequence

0→W → RE → RV ,
18



where the second map takes v ∈ V to e1 − e2 − e3, for e1 and e2 the two edges that meet
in a cusp at v, and e3 the third edge or branch of τ at v. Then the action of φ defines a
linear map T on Wτ called the transition matrix.

Recall that a non-negative integer matrix T is Perron-Frobenius (or PF) if its powers are
eventually positive. This implies that T has a positive eigenvector with eigenvalue equal
to the spectral radius of T (unique up to positive scalar multiplication). This is called the
PF eigenvalue, which we write as λ(T ).

Any non-negative integer matrix T defines a directed graph D with vertices associated
to the rows (or columns) of T , so that the entry in the ith row and jth column equal to
the number of directed edges on D from the ith vertex to the jth vertex. Then T is the
directed adjacency matrix of D. A directed graph is PF if and only if there is a directed
path from any vertex to any other, and the set of lengths of directed cycles is relatively
prime. The following is well-known:

Proposition 3.3. A non-negative integer matrix T is PF if and only if its corresponding
directed graph D is PF.

The transition matrix T defined on the weight space of a compatible train track under
the action of a pseudo-Anosov mapping class is a PF map, and λ(φ) = λ(T ). If D is the
directed graph associated to T , we also write λ(D) = λ(T ).

Lemma 3.4. For all c = k
n ∈ (0, 1

2), (Sc, φc) is pseudo-Anosov and there is a compatible
train track τn ⊂ Sc depending only on n.

The proof of Lemma 3.4 uses Penner’s semi-group criterion, as is done in [Pen2]. Suppose
there are multi-curves

γ1 = a1 ∪ · · · ∪ an, and γ2 = b1 ∪ · · · ∪ bm,
finite disjoint unions of simple closed curves, so that each pair of components a of γ1 and
b of γ2 intersect minimally, and φc is defined by a multiple of positive Dehn twists on
components of γ1 and negative Dehn twists on components of γ2.

Consider the train track obtained from γ1 and γ2 by changing every crossing as in the
diagram below.

Figure 8. Smoothings of a multi-curve γ1 = a1 ∪ · · · ∪ an, γ2 = b1 ∪ · · · ∪ bn.

Penner’s semi-group criterion states that this train track is compatible with any mapping
class that can be written as a product of positive multiples of δai and negative multiples
of δbj [Pen1]. One can also see from Figure 7 that the weight space W is isomorphic to

RA∪B, where A = {a1, . . . , an} and B = {b1, . . . , bm}.
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Figure 9. Multicurves defining the mapping classes in Q.

Proof of Lemma 3.4. Let c = k
g . Let γ1 be the union of the orbits of a and c under ζ, and

let γ2 be the union of the orbits of b. Then δcδ
−1
b δa is carried by the train track τ obtained

by smoothing γ1 ∪ γ2 as above, and since γ1 ∪ γ2 is invariant under application of ζ, τ
carried φc.

The following lemma (see [Pen2]) also makes computations easier.

Lemma 3.5. The weight space W is isomorphic to the space of weights on the components
of γ1 and γ2.

Proof. One can see that any choice of weights on the components of γ1 and γ2 uniquely
determines an element of W as shown in Figure 8.

As a corollary, we see that the dilatation of any element (Sc, φc) ∈ Q, c = k
n is the

PF eigenvalue of a PF matrix of dimension 3n × 3n. This matrix is encapsulated in the
directed graph shown in Figure 10.

Figure 10. Directed graph associated to the PF transition matrix for (S 1
n
, φ 1

n
).
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3.2. Limiting mapping class. We describe the limiting mapping class (S, φ) for Q at 0

explicitly. Figure 11 gives a picture of S = S̃/ζ with images a, b, c of the curves ã, b̃ and

c̃, and the image d of d̃ = Σ0 ∩ ζ(Σ0). Then φ is the mapping class on the torus with two
boundary components given by the composition φ = ρ ◦ δc ◦ δ−1

b ◦ δa, where ρ is the map

induced by ζ̃.

Figure 11. The limiting mapping class for Penner’s sequence.

Then we have the following.

Proposition 3.6. The map ι extends to 0, and ι(0) = (S, φ).

3.3. Alexander and Teichmüller polynomial. Let M be the mapping torus of the
quotient family Q.

Proposition 3.7. The first Betti number of M equals 2.

Proof. The first cohomology group of H1(S;Z) is generated by duals to [a], [b] and [d], the
relative homology classes defined by a, b and d in H1(S, ∂S;Z). With respect to this basis,
the action of φ on the first cohomology group H1(S,Z) is given by 1 1 0

1 2 0
0 0 1


The invariant cohomology is 1-dimensional, and hence b1(M) = 2.

The cohomology class generating the invariant cohomology is dual to the path d between

the two punctures on S, and the corresponding cyclic covering S̃ → S is the one drawn
in Figure 6, with fundamental domain Σ = S[d] where S[d] is the surface S slit at d. Let

ζ̃ generate the group of covering automorphisms, and Z = ζ̃ × {id} and T = T
φ̃

define

generators for H1(M ;Z). Let u, t ∈ H1(M ;Z) be duals to Z and T respectively. We
consider these as multiplicative elements in H = H1(M ;Z), and write elements of ZH as
polynomials in u, t.

Let τ be the train track for φ given by smoothing the union of a, b and c at the intersec-

tions (see [Pen2]). The space W̃τ of allowable weights on the lift τ̃ of τ in S̃ is a module
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over ZH, and the Teichmüller polynomial is the characteristic polynomial of the transition

matrix for the action of φ̃ on W̃τ .
There is an isomorphism

R{a,b,c} → W̃τ ,

given by sending any choice of weights on the edges a, b, c to the unique extension to a set

of allowable weights on edges of τ . Thus, the elements a, b, c define a basis for W̃τ . The

action of φ̃ on W̃τ written as a matrix with respect to this basis is given by 1 1 0
1 2 1 + t

1 + t−1 2(1 + t−1) 1 + (1 + t)(1 + t−1).

 .
The Teichmüller polynomial is the characteristic polynomial of this matrix:

Θ(u, t) = u2 − u(5 + t+ t−1) + 1.

The Alexander polynomial ∆ is the characteristic polynomial of the action of the lift

φ̃ of φ on the first homology of S̃. The lifts of a, b and c generate H1(S̃;Z) as a Z[t, t−1]

module, and the action of φ̃ on these generators is given by 1 1 0
1 2 1− t

1− t−1 2(1− t−1) 1 + (1− t)(1− t−1)

 .
We thus have

∆(u, t) = Θ(u,−t) = u2 − u(5− t− t−1) + 1.

3.4. Fibered face. The fibered face of a 3-manifold M associated to a flow equivalence
class can be found explicitly from the Tecihmüller polynomial of the face, and the Alexander
polynomial of M by a result of McMullen [McM2], which we recall here.

Let H be a finitely generated free abelian group. Write f ∈ ZH as

f =
∑
h∈H0

ahh

where H0 ⊂ H is a finite subset, and ah 6= 0 for all h ∈ H0. This representation for f is
unique, and we call H0 the support of f . If H0 is in general position in H ⊗ R considered
as a Euclidean space, then there is a corresponding norm on Hom(H;R) given by

||α||f = max{|α(h1)− α(h2)| : h1, h2 ∈ H0},
and the norm ball for || ||f is convex polyhedral.

McMullen showed in [McM2] that if F is a fibered face of a hyperbolic 3-manifold, ∆ and
ΘF are the Alexander and Teichmüller polynomials, and b1(M) ≥ 2, then the Thurston
norm || || restricted to the cone C = F · R+ has the property that

||α|| = ||α||∆ ≤ ||α||ΘF
for all α ∈ VF .
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Lemma 3.8. The fibered cone C in H1(M ;R) associated to Penner wheels is given by
elements (a, b) ∈ H1(M ;R), satisfying

a > |b|,
and the Thurston norm is given by

||(a, b)||T = max{2|a|, 2|b|}.
3.5. Orientability. A pseudo-Anosov mapping class is orientable if it has orientable in-
variant foliations, or equivalently the geometric and homological dilatations are the same,
and the spectral radius of the homological action is realized by a real (possibly negative)
eigenvalue (see, for example, [LT] p. 5). Given a polynomial f , the largest complex norm
amongst its roots is called the house of f , denoted |f |. Thus, ψg is orientable if and only if

|∆(xg, x))| = |Θ(xg, x)|.(1)

Proposition 3.9. The mapping classes (Rg, ψg) are orientable if and only if g is even.

Proof. By Equation (1), the homological dilatation of ψg is the largest complex norm
amongst roots of

∆(xg, x) = x2g + xg+1 − 5xg + xg−1 + 1.

Let λ be the real root of ∆(xg, x) with largest absolute value. Plugging λ into Θ(xg, x)
gives

Θ(λg, λ) = −2λg+1 − 2λg−1 6= 0.

while for −λ we have

Θ(−λg,−λ) = (−λ)g+1 − (λ)g+1 + (−λ)g−1 − (λg−1).

It follows that |∆(xg, x)| = λ = |Θ(xg, x)| if and only if g is even.

3.6. Dilatations and normalized dilatations. The dilatation λ(φα) corresponding to
primitive integral points α = (a, b) in C is the largest solution of the polynomial equation

Θ(xa, xb) = 0.

In particular, Penner’s examples (Rg, ψg) correspond to the points (g, 1) ∈ C, and we have
the following.

Proposition 3.10. The dilatation of ψg is given by the largest root of the polynomial

Θ(xg, x) = x2g − xg+1 − 5xg − xg−1 + 1.

Specializing Θ at t = 1 and u = x gives

θ(x) = x2 − 7x+ 1,

so λ(φ) = 1
2(7 + 3

√
5) and

lim
g→∞

L(Rg, ψg) = L(S, φ) ≈ 46.9787.

The symmetry of Θ with respect to x 7→ −x and convexity of L on fibered faces implies
the minimum normalized dilatation realized on the fibered face must occur at (a, b) = (1, 0).
Thus, we have the following.
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Proposition 3.11. The minimum normalized dilatation for the monodromies in C is given
by L(S, φ) ≈ 46.9787.

3.7. Boundary Behavior. By Lemma 3.8 we can extend the parameterization
f : I2 = (0, 1

2)→ F to

f : (−1, 1) → F

c 7→ 1

|χ(c)|
(1, c),

Lemma 3.12. The sequence of mapping classes associated to f(n−1
n ) is conjugate to

(S̃/ζ̃n, ζnδζ−1
n (c)δ

−1
b δa).

Proof. Let R : S̃ → S̃ be a rotation around an axis that passes through ã ∪ b̃ in 3 points,

preserves each of ã and b̃, and Rc̃ = ζ−1(c̃). Then we have

R−1ζ̃R = ζ̃−1

R−1δãR = δã

R−1δ
b̃
R = δ

b̃

R−1δc̃R = δ−1

ζ̃−1(c̃)
.

We have

ζ̃−1η̃ = ζ̃−1δc̃δ
−1

b̃
δã = ζ̃−1Rδ

ζ̃−1(c)
Rδ−1

b̃
δã

Conjugating by R we have

Rζ̃−1η̃R = Rζ̃−1Rδ
ζ̃−1(c)

Rδ−1

b̃
δãR

= ζ̃δ
ζ̃−1(c)

δ−1

b̃
δã

By Lemma 3.12, the mapping classes (Sn−1
n
, φn−1

n
), also known as the reverse Penner

sequence, are the same as the mapping classes for the sequence ( 1
n) in the family Q′ =

Q(S̃, ζ̃, δζ−1(c̃)δ
−1

b̃
δã). In fact, Q and Q′ are equal, but parameterized so that ι′(c) = ι(1−c).

By Lemma 3.8, Q′ is not stable, and it follows that limn→∞ L(Sn−1
n
, φn−1

n
) =∞.

4. How common are quotient families?

Quotient families have special structure, and any quotient family can be reconstructed
from any single element of the family.

Proposition 4.1. Let (S, φ) be a mapping class. Then (S, φ) belongs to a quotient family
if and only if φ = r ◦ η̃, where

(i) r is periodic of order m ≥ 2 with fundamental domain Σ with bounded by b− and
b+ = ζb−,
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(ii) η has support

Y ⊂ Σ ∪ ζΣ ∪ · · · ∪ ζm−1Σ.

Proof. Let S̃ and ζ by taking the cyclic covering of S corresponding to the map H1(S;Z)→
Z given by intersection number with b−. Let Σ′ be a lift of Σ. Then η determines a map

φ̂ with support contained in

Σ′ ∪ ζΣ′ ∪ · · · ∪ ζm−1Σ′.

Thus (S, φ) lies in the quotient family defined by (S̃, ζ, φ̂).

Question 4.2. Are there one-dimensional linear sections of fibered faces that do not con-
tain any quotient family?

Definition 4.3. For κ > 0, a mapping (S, φ) κ-quasi-periodic if there is a subsurface Y ⊂ S
and a mapping class r : Y → Y such that

(1) the boundary of Y is a finite union of simple closed curves on S;
(2) rk is a product of Dehn twists along boundary parallel curves on Y (r is periodic

rel boundary on Y ); and
(3) the support A of φ ◦ r has topological Euler characteristic bounded by

−κ < χ(A) < 0.

A mapping class (S, φ) is strongly κ-quasi-periodic if Y = S, and (S, φ) is (strongly) quasi-
periodic it is (strongly) κ-quasi-periodic for some κ > 0.

A family of mapping classes F ⊂ P is a (strongly) quasi-periodic if for some κ > 0 all
its members are (strongly) κ-quasi-periodic.

Penner-type sequences and quotient families of mapping classes are strongly κ-quasi-
periodic, where we can take κ = m1|χ(Σ)|.

Given ` > 1, let P` ⊂ P be the elements with normalized dilatation less than `. It is

known, for example, that if ` >
(

3+
√

5
2

)2
, then P` is infinite [Hir1] [AD] [KT].

Question 4.4 (Quasi-periodicity question). For each `, is P` a quasi-periodic family? Is
it strongly quasi-periodic?
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