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Abstract

A Salem number is a real algebraic integer, greater than 1, with the property

that all of its conjugates lie on or within the unit circle, and at least one

conjugate lies on the unit circle. In this paper we survey some of the recent

appearances of Salem numbers in parts of geometry and arithmetic, and discuss

the possible implications for the `minimization problem'. This is an old question

in number theory which asks whether the set of Salem numbers is bounded away

from 1.
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1 Introduction

A Salem number is a real algebraic integer, greater than 1, with the property

that all its conjugates lie on or within the unit circle, and at least one conjugate

lies on the unit circle. This paper deals with the following unsolved problem:

Problem 1 (Minimization problem) Is the set of Salem numbers bounded

away from 1?

The minimization problem is closely related to the following question posed

by Lehmer [25] in 1933.

Problem 2 (Lehmer's question) Is there a Æ > 0 such that the Mahler mea-

sure of every irreducible monic polynomial P (x) with integer coeÆcients is ei-

ther 1 or larger than 1 + Æ?
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The Mahler measure M(P ) of a monic polynomial P (x) 2 Z[x] is the product

of the absolute values of the roots of P (x) which lie outside the unit circle, and

is 1 if there are no such roots:

M(P ) =
Y

P (�)=0

maxf1; j�jg:

ThusM(P ) � 1 and it may be checked that if P (x) is irreducible thenM(P ) =

1 if and only if P (x) is a cyclotomic polynomial or the monomial x.

Of special interest to Lehmer were palindromic polynomials (also sometimes

called reciprocal or symmetric polynomials): these are polynomials P (x) 2 Z[x]

that satisfy

P (x) = xmP (1=x);

where m is the degree of P (x). Equivalently, palindromic polynomials are inte-

ger polynomials that read the same whether read backwards or forwards. For

any palindromic polynomial, if � is a root, then so is 1=�. Hence, a nonlinear,

palindromic polynomial must have even degree since palindromic polynomials

of odd degree always have �1 as a root. In [25], Lehmer found the monic palin-

dromic polynomials of degrees 2, 4, 6, and 8 with smallest Mahler measure. For

degree 10 and higher, the best polynomial Lehmer could �nd was

L(x) = x10 + x9 � x7 � x6 � x5 � x4 � x3 + x+ 1; (1)

which we will refer to throughout this paper as the Lehmer polynomial. This

polynomial still stands today as the monic polynomial with smallest known

Mahler measure:

M(L) = 1:17628 : : :

If P (x) 2 Z[x] is a monic, irreducible polynomial with M(P ) < M(L), then

P (X) must be palindromic, since Smyth has shown [40] that 1:32471 : : : , the

unique real root of S(x) = x3 � x � 1, is a lower bound for the set of Mahler

measures of non-palindromic polynomials with Mahler measure strictly larger

than 1.

We will refer to the minimal polynomial of a Salem number � as a Salem

polynomial. Its Mahler measure is clearly just �. It is not diÆcult to prove that

Salem polynomials are always palindromic.

The Lehmer polynomial L(x) is a Salem polynomial: it is the minimal

polynomial of the Salem number �L = 1:17628 � � � = M(L). Thus �L is both

the smallest known Salem number, and the smallest known Mahler measure.

Flammang, Grandcolas, and Rhin [18] have shown that there are no Salem

numbers less than 1.3, of degree less than 40, other than the forty-seven Salem

numbers tabulated by Boyd and Mossingho� in [5], [6] and [29]. As a con-

sequence, if there is a Salem number smaller than �L, it would have to have

degree larger than 40.
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The purpose of this note is to expose some of the recent appearances that

Salem numbers, and more generally Mahler measures, have made in arithmetic

and geometry. A more detailed overview of the topics we treat is given in the

next Section. We have tried to adopt an interdisciplinary viewpoint which we

hope will shed a fresh perspective on the minimization problem.

In closing this Introduction we mention that Salem numbers originally arose

in the study of Fourier analysis and uniform distribution [34]. The reader can

�nd a convenient survey of some properties of Salem numbers and those of

the closely related Pisot-Vijayaraghavan numbers in [8] and [2]. Here too the

reader will �nd a more detailed discussion of certain aspects of the minimization

problem. Another area related to Mahler measures, which we do not touch

upon, is the �eld of dynamical systems. The jumping o� point here is that

the entropy of certain dynamical systems attached to polynomials equals the

logarithm of the Mahler measure of these polynomials. We simply refer the

curious reader to the works [26], [35], [17], and [39] for further details.

Acknowledgments We would like to thank D. Boyd, D. Lind, C. McMullen,

M. Mossingho�, P. Sarnak, J.-P. Serre, B. Sury, D. Ulmer, and T. N. Venkatara-

mana for useful conversations and correspondence, and the members and sta�

of the I.H.E.S. where the research for this paper began. We are also indebted

to the referee for helpful comments.

2 Overview of the paper

Here is a brief overview of the contents of this paper.

Sections 3.1 to 3.4 describe a relation between the minimization problem for

Salem numbers and a minimization problem for the lengths of closed geodesics

on arithmetic hyperbolic surfaces, i.e., hyperbolic surfaces attached to arith-

metic Fuchsian groups. This material was worked out by the authors, but it is

certainly not new (see, for example, Neumann and Reid [30]). An equivalent

formulation of these ideas in terms of lattices in semi-simple real Lie groups

was �rst worked out by Sury in [45]. We recall this briey in Section 3.5.

Floyd and Plotnick [19] showed that some Salem numbers, including �L
above, are equal to the asymptotic growth rates of certain hyperbolic planar

reection groups. The smallest Salem number that arises in this way is again

�L, as shown by the second author in [22]. These matters are described in

Section 4.1.

The role of Alexander polynomials in the study of Salem numbers and the

minimization problem is discussed in Section 4.3. The second author has shown

[22] that the Salem polynomials arising, as in Section 4.1, from polygonal reec-

tion groups, are the Alexander polynomials of certain pretzel knots. A corollary

is that Lehmer's polynomials solves the minimization problem for this family
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of polynomials.

In Section 5 we explain how Salem numbers and Mahler measures show up in

the special values of L-functions. We start, in Section 5.1, with an observation

of Chinburg [12], who relates Salem numbers to Stark units, and hence to the

values of certain (abelian) Artin L-functions at s = 0. Then, in Section 5.2,

we describe work and conjectures of Costa, Friedman and Skoruppa [21] on

the ratios of regulators of extensions of number �elds, and its relation to the

minimization problem.

Pursuing this theme further, we discuss, in Section 5.3, some recent striking

results of Smyth, Ray, Boyd, Deninger, Bornhorn and Rodriguez Villegas, that

show that the special values of more general L-functions are connected to the

logarithms of Mahler measures of polynomials in many variables. The possible

implications for the minimization problem are discussed following Boyd in [9].

We conclude in Section 6 with a review of some of the sharpest results

known to us in the direction of solving the minimization problem. These results

have been obtained by methods completely di�erent from those described in

this paper. We also refer the reader to the web page on Lehmer's Conjecture

maintained by Mossingho� [28] where, among other things, much up to date

numerical information related to Lehmer's question may be found.

3 Geodesics on arithmetic hyperbolic sur-

faces

In this section we show that the minimization problem for Salem numbers is

equivalent to the minimization problem for the lengths of closed geodesics on

arithmetic hyperbolic surfaces.

3.1 Salem extensions

We start by describing some properties of the number �eld L = Q(�) generated

by a Salem number �.

A number �eld L is a �eld extension of Q of �nite degree over Q . We may

write L = Q(�) for an element � 2 L which generates L over Q . Consequently

we may identify L with Q [x]=hP (x)i, where P (x) 2 Z[x] is the minimal poly-

nomial of �. Then the degree of L is the dimension of L as a vector space over

Q , and equals the degree of the minimal polynomial P (x).

If ! is any root of P (x) (! is called a conjugate of �), then there is a unique

isomorphism from L to Q(!) sending x to !. Thus, each root ! of P (x) de�nes

a Q-algebra monomorphism

�! : L
'

�! Q(!) � C :
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Composition by complex conjugation yields another (possibly identical) em-

bedding

�! (= �!) :

A pair of such embeddings f�; �g is called an in�nite place of L. An in�nite

place is real if � = �, otherwise it is complex. In the former case we set L� = R,

and in the latter case we set L� = C , and call L� the completion of L at the

place �. If all the in�nite places of L are real, then we say L is a totally real

number �eld.

Since C and R have natural topologies, each of the in�nite places of L

induce (distinct) topologies on L. However there are other topologies on L,

the non-archimedean topologies. The natural embeddings of L into the q-adic

completions of L, as q varies through the prime ideals of L,

�q : L! Lq;

induce such topologies on L. For this reason, we will refer to the primes q, and

sometimes even to the corresponding embeddings �q, as the �nite places of L.

Now let � be a Salem number, i.e., an algebraic integer all of whose con-

jugates like on or inside the unit circle with at least one on the unit circle,

and let K = Q(�) be the number �eld generated by �. We identify K with

Q [x]=hP (x)i where P (x) is the minimal polynomial of �. As mentioned already

in the Introduction, the degree of K must be even, since P (x) is irreducible

and palindromic. Say this degree is 2n.

Note that all the conjugates of �, except for 1
�
, which is also real, lie on the

unit circle. This is because if any complex root z of P (x) were to lie strictly

within the unit circle, then the root 1
z
would lie outside it, contradicting the

de�nition of �. Thus a list of the conjugates of � can be written as

�;
1

�
; z1; z1; : : : ; zn�1; zn�1;

where jzij = 1, for i = 1; : : : ; n� 1. A plot of the set of conjugates of a typical

Salem number � is given in Figure 3.1.

By the general discussion above we see that K has n � 1 complex places,

say �1; : : : ; �n�1, corresponding to the roots z1; : : : ; zn�1, and two real places,

say � and � 0, corresponding to � and 1=� respectively.

Since P (x) is monic, irreducible, and palindromic, of degree at least 4 (recall

that a Salem number has at least one conjugate on the unit circle) we may

further write

P (x) = xnQ

�
x+

1

x

�
;

for some monic, irreducible polynomial Q(x) 2 Z[x] of degree n � 2. We see

thatQ(x) has n real roots, namely � = �+1
�
, and �i = zi+zi, for i = 1; : : : ; n�1.
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Figure 1: A (degree six) Salem number � and its conjugates

Set k = Q(�), where � = �+ 1
�
is the unique (real) root of Q(x) larger than 2.

Thus, k is a number �eld of degree n. We will call the quadratic �eld extension

K=k a Salem extension.

Note that k is a totally real �eld. Let � denote the real place of k correspond-

ing to �, and let �1; : : : ; �n�1 denote the other real places of k, corresponding

to �1; : : : ; �n�1.

The places of K and k are related. Namely � and � 0 lie over the place �

of k. This means that �(k) � �(K) and �(k) � � 0(K). Similarly the places

�1; : : : ; �n�1 of K lie over the places �1; : : : ; �n�1 of k.

Note that � is a root of the polynomial

f(x) = x2 � �x+ 1:

Conversely, for any real algebraic integer a > 2 (of degree larger than 2) whose

conjugates are all real and lie in (�2; 2), the root e larger than 1 of the poly-

nomial

f(x) = x2 � ax+ 1;

is a Salem number.

Now let L be an arbitrary totally real �eld of degree d � 2 over Q . We

say that a Salem number � is a Salem number over L if the totally real �eld

k = Q(� +1=�) equals L. Let S(L) denote the set of all Salem numbers over L.

Let � be a real place of L. If, in addition, the embedding � of k coincides

with the embedding � of L, then we say � is a Salem number over L of type �.

Let S(L; �) denote the set of all Salem numbers over L of type �. Clearly we

have S(L) =
S

�
S(L; �), as � varies through all the in�nite places of L. Now
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let, for d � 2,

Sd =
[
L

S(L);

where L runs over all totally real �elds of degree d. Thus Sd is the set of all

Salem numbers of degree 2d. We have the following easy Lemma.

Lemma 3 The set Sd has a minimal element.

Proof. We show more generally that the set of Mahler measures of monic

polynomials of degree 2d is a discrete set, and therefore has a minimal element.

Let P (x) =
P2d

r=0 a2d�rx
r 2 Z[x] denote such a polynomial. Since ar is, up to

sign, a sum of the products of the roots of P (x) chosen r at a time, we see that

jarj �
�
2d
r

�
�M(P ):

Consequently, there are only �nitely many monic polynomials of degree 2d with

bounded Mahler measure. The Lemma follows.

3.2 Arithmetic Fuchsian groups

A group � is a Fuchsian group of the �rst kind if � is a discrete subgroup of

SL2(R) and the quotient �nH of the upper half plane H by � has �nite volume.

An arithmetic Fuchsian group is a Fuchsian group of the �rst kind which

can be constructed out of a totally real number �eld in a manner that we shall

describe in this section. More detailed treatments can be found in [37] and [49].

Let L be any number �eld. A central simple quaternion algebra over L is

an associative L-algebra D with unit such that

� the center of D is L,

� the only two sided ideals of D are the trivial ideal and D itself, and,

� the dimension of D over L is 4.

It is a consequence of a general theorem of Wedderburn [23], that any such

algebra is either a division algebra (that is, D has no zero divisors), or that D

is isomorphic to M2(L), the algebra of 2 by 2 matrices over L.

D can be equipped with the reduced trace and reduced norm maps:

red Tr : D ! L; and; red Nm : D� ! L�;

de�ned as follows. Fix an extension F of L that splits D. This means there is

an isomorphism

h : D 
L F
�

! M2(F ):
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Such an F always exists. Now de�ne

red Tr(x) = trace h(x) and red Nm(x) = det h(x):

One checks that, so de�ned, red Tr and red Nm take values in L � F , and that

their de�nition is independent of the choice of F and h.

We say that D is unrami�ed or split at a place

� : L ,! L�

of L, which may be either �nite or in�nite, if the tensor product,

D 
L;� L�;

viewed as a central simple quaternion algebra over L�, is isomorphic to M2(L�).

Otherwise D 
L;� L� is a division algebra, and in this case, we say that D is

rami�ed at �.

If � is a complex place, then D is necessarily split at �. If � is a real place,

then D may ramify at �, in which case

D 
L;� R ' H

is the usual Hamilton algebra of quaternions over R.

An important property of the quaternion algebras D in this context is that

every such D is rami�ed at an even number of non-complex places. Conversely,

for any �nite collection � of non-complex places of L, of even cardinality, there

is a unique (up to isomorphism) central simple quaternion algebra D over L

which is rami�ed at exactly the places in �. In particular, if D is unrami�ed

everywhere (� = ;), then D is isomorphic to M2(L).

Remark. Much of the above discussion can be described very elegantly by the

following exact sequence from class �eld theory (see for example [38], Chapter

10 or [1]):

0! Br(L)!
M
�

Br(L�)! Q=Z! 0; (2)

where the sum runs over all places �, both �nite and in�nite, of L. Here Br(L),

respectively Br(L�), denotes the Brauer group of L, respectively of L�. We

make this remark simply to orient the more knowledgeable reader. In essence

all the information contained in (2) that we shall need in the sequel has already

been discussed above in words.

Now suppose that L is totally real, with in�nite places �1; : : : ; �d. Fix a

place � (= �j for some j = 1; : : : ; d) of L. We would like to impose the following

condition on the `rami�cation of D at 1'. We assume that D is unrami�ed

9



at a single in�nite place � and rami�ed at all other in�nite places. That is, we

assume that

D 
Q R =
L

d

r=1D 
L;�r R = H � � � � � H �M2(R) � H � � � � � H ; (3)

with the single summand M2(R) corresponding to the place �, and d� 1 copies

of the Hamilton algebra H corresponding to the other places.

An order O in D is a subring of D such that

� O contains the ring OL of integers of L, and,

� O 
OL
L = D.

A maximal order is an order which is not properly contained in any other. Let

O be a maximal order inD and let U be the set of unit elements of O of reduced

norm one.

When L is totally real, and D has rami�cation at 1 given by (3), we let

�(D;O; �) � SL2(R) be the image of U under the embedding � �xed above. It

turns out that �(D;O; �) is a discrete subgroup of SL2(R), and that the volume

of the quotient surface �(D;O; �)nH is �nite. Thus �(D;O; �) is a Fuchsian

group of the �rst kind. If the de�ning �eld L is not equal to Q , then the

quotient surface is also compact.

A Fuchsian group of the �rst kind of the form �(D;O; �) is called an arith-

metic Fuchsian group. The corresponding quotient surface �(D;O; �)nH is

called an arithmetic hyperbolic surface. In the following sections, we will pri-

marily be interested in cocompact arithemetic Fuchsian groups. These are arith-

metic Fuchsian groups whose corresponding quotient surface is compact. A

Fuchsian group of the form �(D;O; �) is cocompact as long as it is de�ned over

a totally real number �eld not equal to Q , i.e., of degree greater than or equal

to 2.

Up to conjugation in SL2(R), �(D;O; �) does not depend on the choice of O.
Indeed although there is more than one maximal order in D, since D is split at

one in�nite place, all its maximal orders are conjugate to each other, and hence

the corresponding Fuchsian group is determined up to inner automorphism of

SL2(R).

In view of the remarks at the beginning of this section, if the degree d of L

is odd, there is a unique D (up to isomorphism over L) which is unrami�ed at

all the �nite places, and is rami�ed at all in�nite places except at �. We will

denote this D by D�. On the other hand, if d is even, then a choice of a �nite

place p of L will again give a canonical choice of D (up to isomorphism), which

is unrami�ed at all the �nite places except p and rami�ed at all the in�nite

places except �. We shall denote this D by Dp, to show that it depends on the

prime p of L. The corresponding arithmetic Fuchsian groups are denoted by

�(D�;O; �) and �(Dp;O; �) respectively.
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3.3 Salem numbers and hyperbolic matrices

In this section we show how Salem numbers are closely related to the eigenvalues

of hyperbolic elements in cocompact arithmetic Fuchsian groups.

Let � � SL2(R) be an arbitrary Fuchsian group of the �rst kind. An element

 2 � is said to be hyperbolic if its eigenvalues are distinct and real. Let f(x)

be the characteristic polynomial of . Then since det() = 1, we have

f(x) = x2 � tr()x+ 1:

Thus,  is hyperbolic if and only if jtr()j > 2. Moreover, in this case the roots

of f(x) form a pair of positive real reciprocal numbers. Let �() be the root

which is larger than 1, and let

N() = �()2

be the norm of  2 �.

Proposition 4 Let � = �(D;O; �) be an arithmetic Fuchsian group. If  =

�(u) 2 �(D;O; �) is not equal to the identity or its negative, then the conjugates

of trace(u) in L lie in the interval (�2; 2).

Proof. By construction (see Section 3.2) the conjugates �0(u) of u (for �0 6= �)

lie in the group of norm one units of the Hamilton quaternion algebra over R.

Thus, they are of the form

�0(u) = a+ bi+ cj + dk;

with a, b, c and d 2 R, and with

norm(�0(u)) = a2 + b2 + c2 + d2 = 1:

Since a is real, we see that jaj � 1, and hence j�0(red Tr(u))j = jtrace(�0(u))j =
j2aj � 2. If jaj = 1, we have �0(u) = �1, and hence u, and therefore , is either

the identity or its negative. The proposition follows.

Proposition 5 Let � = �(D;O; �) be a cocompact arithmetic Fuchsian group,

and let  2 � be a hyperbolic element. Then �() is a Salem number.

Remark. In fact we show that �() is the image of a Salem number � under

the unique real in�nite place of Q(�) which realizes � as a real number larger

than 1. Thus here, and sometimes in the sequel, we identify a Salem number

with its image under such an embedding.
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Proof. Assume that  = �(u). By Proposition 4 above, � = red Tr(u) is an

integer in L, with �(�) > 2, and with all other conjugates lying in (�2; 2).
Thus, since �() is the larger root of

f(x) = x2 � �(�)x + 1;

�() is a Salem number.

Let L be a totally real number �eld of degree greater than or equal to 2. Let

us de�ne S(�(D;O; �)) to be the set of those Salem numbers � satisfying:

� � is the larger eigenvalue of a hyperbolic element in �(D;O; �), and,

� the degree of � is 2d, that is, � = �+ 1=� generates L.

Note that the set S(�(D;O; �)) does not depend on the choice of the maximal

order O.
In Section 3.1 we had de�ned S(L; �) as the set of all Salem numbers over

L of type �. Proposition 5 shows that

S(�(D;O; �)) � S(L; �):

We now ask whether it is possible to capture the entire set S(L; �) by one

division algebra. When the degree d of L is odd, this is indeed possible:

Proposition 6 Assume that d is odd, and that D� is de�ned as in the end of

Section 3.2. Then

S(L; �) = S(�(D�;O; �)):

Proof. One containment has been shown. To show the other, let � 2 S(L; �).
LetK=k be the corresponding Salem extension (see Section 3.1 for the de�nition

of a Salem extension, and for notation that we shall use below). We have k = L,

n = d, and � = �. We claim that K is isomorphic to a maximal sub�eld of

D�. A general theorem about division algebras shows that it suÆces to check

that K splits D�. By the remarks in Section 3.2 applied to K, we see that

it is enough to check that each completion K} of K (�nite or in�nite) splits

D� 
k K. But

D� 
k K 
K K} = D� 
k kp 
kp K};

where p = }\Ok is the prime of k lying under the prime } ofK. By hypothesis,

D� is already split by kp for �nite p, so there is nothing to check at the �nite

places. At the in�nite places, a similar phenomena occurs at �. As for the other
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in�nite places �i (i = 1; : : : ; n� 1), we just note that the Hamilton algebra is

split by the complex numbers.

Thus, K splits D�, and so the Salem extension K=k sits inside D. Since

the Salem number � generates K, it gives an element � 2 �(D�;O; �), for
some maximal order O � D. Note that � is hyperbolic, since its trace is just

�(trK=k(�)) = �(�+ 1
�
) = �(�) > 2. Clearly the larger eigenvalue �(�) of � is

just �(�). Finally the degree of � is 2d. This shows the other inclusion.

When the degree d of L is even, S(L; �) may not be equal to S(�(D;O; �))
for one particular D. First we introduce some terminology. Let K=k be an

arbitrary quadratic extension of number �elds. A prime ideal p of k is said to

be inert in K if the ideal } generated by p in OK is a prime ideal of K. Also,

p is said to split in K if the ideal generated by p in OK factors as a product of

two distinct prime ideals of K.

Let us now assume that � 2 S(L; �). Let K=k denote the Salem extension

corresponding to �. Fix a division algebra D over L with rami�cation as in

(3). Let �f (D) denote the set of �nite places of D where D is rami�ed. Recall

that �f (D) is a �nite set of odd cardinality. The following proposition gives a

criterion to check whether � is the (larger) eigenvalue of a hyperbolic matrix in

�(D;O; �).

Proposition 7 Assume that d is even.

1. If for each p 2 �f (D), p is inert in K, then K sits inside D.

2. If K sits inside D, then for all p 2 �f (D), p does not split in K.

Proof. The proof of the �rst statement of Proposition 7 is exactly the same as

the proof of Proposition 6, except that, additionally, for each p 2 �f , we have

to check the splitting of Dp 
k K at K}, where } is the prime of K generated

by p. But since

Dp 
k K 
K K} = Dp 
k kp 
kp K};

it suÆces to show that the extension K}=kp splits Dp 
k kp. But this follows

from the general fact that over a local �eld, a quaternion algebra is always split

by the unique unrami�ed extension of degree 2 (see [38], Chapter 12).

For the second statement, �x p 2 �f . If p = }}0 splits in K and K sits in

D, then D
k kp would contain the subalgebra K 
k kp = K} �K}0 which has

zero divisors. This is a contradiction.
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Proposition 7 shows that, when the degree d of L is even, we may not be

able to �nd a single, or even �nitely many, division algebras D which account

for all Salem numbers over L (of type �). We must be content with the following

result:

Corollary 8 Assume d is even, and let Dp be the division algebra over L

de�ned as in the end of Section 3.2. Then

S(L; �) =
[
p

S(�(Dp;O; �)) =
[
D

S(�(D;O; �));

where p varies through all �nite places of L, and D varies over all division

algebras over L that are rami�ed at exactly one in�nite place.

Proof. Let � 2 S(L; �), and let K=k denote the corresponding Salem extension.

Choose a prime p of k such that p is inert in K. Then, by Proposition 7,

� 2 S(�(Dp;O; �)). All the other containments have already been shown or are

obvious.

3.4 Closed geodesics on hyperbolic surfaces

In this section we discuss the geometry of arithmetic surfaces, and describe a bi-

jection between conjugacy classes of hyperbolic elements in arithmetic Fuchsian

groups �, and closed geodesics on the quotient surface �nH. In the next section

we will apply this to the cocompact arithmetic Fuchsian groups � = �(D;O; �).
Let � � SL2(R) be an arbitrary Fuchsian group of the �rst kind. Recall

that a matrix  2 � hyperbolic if and only if jtr()j > 2. We say that a matrix

 2 � is elliptic, respectively parabolic, if jtr()j < 2, respectively jtr()j = 2.

As a transformation of C [ 1,  has the following properties (see [49], page

115):

 is hyperbolic ()  has two distinct �xed points in R [1;

 is elliptic ()

(
 has two distinct �xed points of the form

z; z; for z 2 C ; and;

 is parabolic ()  has a unique �xed point in R [1:

The Fuchsian group � is cocompact if � does not have any parabolic ele-

ments. If � does not have any elliptic elements, then �nH is smooth, i.e., a

Riemann surface. Otherwise, it is an orbifold, with singularities corresponding

to the �xed points, called elliptic points, of elliptic elements.
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Proposition 9 Let � be any Fuchsian group. Then there is a bijection between

conjugacy classes of hyperbolic elements  2 � and closed geodesics g() on

�nH. In this correspondence, the length of g() is logN().

Proof. Suppose that  2 � is hyperbolic. Then  has two distinct �xed points

on R [1. Let G be the geodesic in H which joins them. Then, for each point

P on G, the point (P ) also lies on G, and some simple integration shows that

the distance between P and (P ) is logN() (see [49], Proposition 2.8, for more

details). Let us call G(; P ) the (open) geodesic joining P and (P ) in H. This

projects down to a closed geodesic g() on �nH of length logN(), which does

not depend on the choice of P .

Conversely, let g be a closed geodesic on �nH, and let G be a preimage in

H. Then G is a geodesic on H and its stabilizer under the action of � must

contain a hyperbolic element  (see [48]). For this , we have g = g().

The following Theorem follows immediately from the discussion so far.

Theorem 10 Let � = �(D;O; �) be a cocompact arithemetic Fuchsian group.

Let l be the length of a closed geodesic on the quotient surface �nH. Then

exp(l=2) is a Salem number. Conversely, every Salem number is of this form.

An immediate consequence is that the problem of the existence of a minimal

Salem number (cf. Problem 1) is actually equivalent to the following conjecture:

Conjecture 11 (Minimization problem for geodesics) There is a geodesic

of minimal length amongst all closed geodesics on all arithmetic hyperbolic sur-

faces.

3.5 Cocompact lattices

In this section we present a simple reformulation of the previous sections in

terms of lattices in semi-simple Lie groups.

Theorem 12 (Sury [44], [45]) The set of Salem numbers is bounded away

from 1 if and only if there is a neighborhood of the identity element U � SL2(R),

such that for all cocompact arithmetic Fuchsian groups �, the intersection �\U
consists only of elements of �nite order.

Proof. We have already seen that the problem of minimizing Salem numbers

� is equivalent to the problem of minimizing the traces � + 1=� of hyperbolic

elements in arithmetic Fuchsian groups. Since hyperbolic matrices have in�nite

order, the existence of the neighborhood U is equivalent to the statement that

the set of these traces is bounded away from 1.
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T. N. Venkataramana has pointed out to us that a positive answer to (the

more general) Problem 2 implies the following conjecture:

Conjecture 13 (Margulis [27]) Let G be a connected semi-simple group over

R. Suppose that rankR(G) � 2. Then there is a neighborhood U � G(R) of the

identity such that for any irreducible cocompact lattice � � G(R), the intersec-

tion � \ U consists only of elements of �nite order.

We refer the reader to [27] (especially page 322) for the de�nitions of terms

used in this conjecture, and for its connection with Problem 2.

4 Growth rates and pretzel knots

In this section we discuss a restricted class of Salem numbers, that arise both

as growth rates for Coxeter groups and as Mahler measures of Alexander poly-

nomials of knots. We solve the minimization problem for this restricted class

of Salem numbers (see Theorem 15 and Corollary 20).

4.1 Growth series of Coxeter groups

Let G be any group and S a collection of generators for G. The growth series

for G with respect to S is the formal power series

f(x) =

1X
n=1

NS(n)x
n;

where NS(n) is the number of elements in G that can be expressed minimally

as a word of length n in the set of generators S. The quantity

lim
n!1

NS(n)
1=n;

which is the reciprocal of the radius of convergence of f(x), is called the asymp-

totic growth rate of the group G with respect to the generators S.

We will call a group G a (planar) Coxeter group if it is a discrete sub-

group of the group of isometries of the spherical, hyperbolic or Euclidean plane

generated by a �nite set of reections through geodesic lines (see [14]). The

set S of generating reections is called the set of standard generators of the

Coxeter group. We will restrict our discussion to those Coxeter groups whose

corresponding quotient space is compact.

Steinberg [43] showed that if G is a Coxeter group, and S is a standard set

of generators then the corresponding growth series f(x) is a rational function

of x (cf. [4]). Floyd and Plotnick ([19], page 503), expanding on Cannon's work

[10], show that for any group G of Euclidean, spherical, or hyperbolic planar
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isometries, the growth series with respect to suitable `geometric' generators is

a reciprocal or anti-reciprocal function:

f(x) = �f(
1

x
);

up to a factor of (1 � x) in some mild exceptional cases. In particular they

show that for a Coxeter group (G;S), if f(x) is written as a quotient of rela-

tively prime polynomials, then the denominator �(x) of f(x) is a palindromic

polynomial.

Speci�cally, consider the Coxeter reection group Gp1;:::;pd
generated by re-

ections through the sides of a spherical, hyperbolic, or planar polygon whose

interior angles are
�

p1
; : : : ;

�

pd
;

where p1; : : : ; pd are any positive integers. Then (see [14], p. 55) Gp1;:::;pd
has

the presentation

Gp1;:::;pd
= h g1; : : : ; gd j (gi)

2 = 1; (gigi+1)
pi = 1 i:

The orbifold Euler characteristic of the quotient surface is given by

�(Gp1;:::;pd
) =

1

p1
+ � � � +

1

pd
� d+ 2:

The sign of �(Gp1;:::;pd
) determines whether or not the polygon lives in the

hyperbolic, Euclidean, or spherical plane. Accordingly, if G = Gp1;:::;pd
and

� if �(G) < 0, then G is hyperbolic,

� if �(G) = 0, then G is Euclidean, and,

� if �(G) > 0, then G is spherical.

Of particular interest to us will be hyperbolic triangle groups which are Gp;q;r,

where
1

p
+
1

q
+

1

r
< 1:

A picture of the fundamental domain for a (p; q; r)-hyperbolic triangle group is

given in Figure 2.

Let �p1;:::;pd
(x) be the denominator of the growth series f(x) of Gp1;:::;pd

.

For any positive integer n, let

[n] = 1 + x+ � � �+ xn�1:
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Figure 2. Fundamental domain of a (p; q; r)-hyperbolic triangle group

Theorem 14 (Cannon-Wagreich [10], Floyd-Plotnick [19], Parry [31])

The polynomial �p1;:::;pd
(x) is given by

�p1;:::;pd
(x) = [p1] : : : [pd](x� d+ 1) +

dX
i=1

[p1] : : : c[pi] : : : [pd]:
Furthermore, �p1;:::;pd

(x) is a product of cyclotomic polynomials and at most

one Salem polynomial. The Salem polynomial occurs if and only if Gp1;:::;pd
is

hyperbolic, that is,
1

p1
+ � � � +

1

pd
< d� 2:

It follows that the asymptotic growth rate of a hyperbolic Coxeter reection

group with respect to the standard generators is a Salem number.

The polynomials with smallest Mahler measure of degrees 2, 4, 6 and 8

(found by Lehmer in [25]) all arise as factors of �p1;:::;pd
for some positive in-

tegers p1; : : : ; pd (see [22], Section 3). Also the Lehmer polynomial L(x) =

�2;3;7(x) is the denominator of the growth series of the (2; 3; 7)-hyperbolic tri-

angle group.

As the next result shows, the minimization problem has been solved for the

family of polynomials �p1;:::;pd
(x).

Theorem 15 (Hironaka [22]) Lehmer's Salem number �L is the smallest Salem

number arising as a root of �p1;:::;pd
(x), where p1; : : : ; pd are any positive inte-

gers.

Essentially, the proof of Theorem 15 (see [22] for more details) comes down

to an analysis of the shape of the real graphs of P (x) = �p1;:::;pd
(x) when the

corresponding Coxeter refection group Gp1;:::;pd
is hyperbolic. All of these poly-

nomials, including the Lehmer polynomial shown in Figure 3, have P (0) = 1,

P (1) < 0, and being Salem polynomials, cross the x-axis once in the inter-

val [0; 1], at the point 1=�, where � is the corresponding Salem number. One

shows that for this particular family the distance of 1=� to 1 is related to the
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absolute value of the orbifold Euler characteristic, �(Gp1;:::;pd
), which is mini-

mized among the hyperbolic planar Coxeter reection groups, by that of the

(2,3,7)-hyperbolic triangle group.

-1.5 -1 -0.5 0.5 1 1.5

-1

1

2

3

4

Figure 3. Real graph of the Lehmer polynomial

A suggestive coincidence is that the (2; 3; 7)-hyperbolic triangle also has the

smallest volume among hyperbolic polygons. This leads to the question:

Problem 16 Is there a direct connection between the volumes of hyperbolic

polygons and the asymptotic growth rates of the underlying Coxeter reection

groups?

4.2 Arithmeticity of hyperbolic triangle groups

We will call two discrete groups �, �0 � SL2(R) commensurable if � \ �0 has

�nite index in both � and �0. In this section we will broaden the de�nition

of an arithmetic Fuchsian group given in Section 3.2 to include those Fuchsian

groups which, after conjugation in SL2(R), are commensurable with groups of

the form �(D;O; �).
Takeuchi shows that there are exactly 85 hyperbolic triangle groups Gp;q;r

which are arithmetic (although these groups are de�ned over only 19 totally

real �elds). Included among these is the triangle group G2;3;7.

Recall that the asymptotic growth rate of G2;3;7 is equal to �L, Lehmer's

Salem number. Naively, one might hope that, conversely, the arithmetic group

associated to �L is related to G2;3;7.

This is, however, not the case. Indeed, in [46], Takeuchi shows that the

(2; 3; 7)-hyperbolic triangle group is commensurable to an arithmetic Fuchsian
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group associated to the totally real �eld k2;3;7 := Q(cos(�7 )). The degree of

k2;3;7 over Q is 6, since it is a quadratic extension of the cubic �eld Q(cos(2�7 )).

(This latter �eld is cubic since it has degree equal to half the degree of the

cyclotomic �eld generated by a primitive 7th root of unity). On the other

hand, the totally real �eld kL := Q(�L + 1=�L) associated to Lehmer's Salem

number �L has degree 5 (half the degree of the Lehmer polynomial).

Comparing degrees shows that �L is not quadratic over k2;3;7, and in par-

ticular, �L can not appear, as described in Section 3.3, as the larger eigenvalue

of a hyperbolic matrix in G2;3;7. Since �L does appear as the larger eigenvalue

of a hyperbolic matrix in � = �(D�;O; �), the arithmetic Fuchsian group at-

tached to the division algebra D� over the totally real �eld kL (see Section 3

for an explanation of the notation), we see that G2;3;7 and � are not isomorphic

subgroups of SL2(R).

4.3 Alexander polynomials of pretzel links

The Alexander polynomial is a standard integer polynomial invariant of a knot

or oriented link L embedded in the three sphere S3. Since we are interested

in Mahler measures, for our purposes it will be useful to de�ne the Alexander

polynomial up to a rational multiple, and give a purely algebraic description

of the class of Alexander polynomials via Seifert's theorem. For more precise

de�nitions, see, for example, [20] or [33].

Let M = S3 n L be the complement of L in S3. The orientations on the

components of the link determine an in�nite cyclic covering fM of M , and a

canonical generator t for the corresponding Z-action on the homology group

H = H1(fM ;Q). The Alexander polynomial is an integer polynomial PL(x) 2
Z[x], whose roots are the eigenvalues of the action of t on H.

Alexander polynomials form a rich testing ground for the minimization prob-

lem, because of the following theorem.

Theorem 17 (Seifert [36]) P (x) 2 Z[x] is a palindromic polynomial satisfy-

ing

P (1) = �1

if and only if P (x) is the Alexander polynomial of some knot K.

One is led to ask the following question.

Problem 18 Can the Mahler measure be minimized for monic, non-cyclotomic

Alexander polynomials?
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We restrict our attention to a particular class of knots and links, called

pretzel knots and links. To describe what they are, we start with the (-2; 3; 7)-

pretzel knot. One takes 3 pairs of strings and twists them -2, 3, and 7 times

respectively. The negative sign with the 2 means a negative twist. Then one

joins the top and bottom strands as in Figure 4.

Figure 4. (-2,3,7)-pretzel knot

By replacing (-2; 3; 7) by any list of nonzero integers (p1; : : : ; pd), we get

a corresponding knot or link Lp1;:::;pd
, called the (p1; : : : ; pd)-pretzel knot or

link. If p1; : : : ; pd are all odd, or at most one is even, then Lp1;:::;pd
is a knot,

otherwise it is a link with number of components equal to one less than the

number of even integers among p1; : : : ; pd. As described above any choice of

orientations on the components of the link determines a one-variable Alexander

polynomial for the link. This polynomial may be di�erent for di�erent choices

of orientation.

Let L(x) be Lehmer's polynomial. As Kirby points out in his problem list

([24], page 340), L(�x) is the Alexander polynomial of the (-2; 3; 7)-pretzel

knot, drawn in Figure 4. This seeming coincidence was also pointed out to the

second author by D. Lind.

As mentioned in Section 4.1, Lehmer polynomial L(x) is also the Salem

polynomial �2;3;7(x) which is the denominator of the growth series of the

(2; 3; 7)-hyperbolic triangle group G2;3;7. This leads naturally to the question:

is �p1;:::;pd
(�x) also the Alexander polynomial of a pretzel knot or link? This

question is answered by the following result.

Theorem 19 (Hironaka [22], Theorem 1.2) Let d be odd, and let p1; : : : ; pd
be positive integers. Then the Alexander polynomial of the (p1; : : : ; pd; -1)- pret-

zel link, with respect to a suitable orientation of its components, is �p1;:::;pd
(�x).

This theorem applies to the (-2; 3; 7)-pretzel knot, which is equivalent to

the (2; 3; 7; -1)-pretzel knot. The polynomials �p1;:::;pd
(�x) are related to the

polynomials arising in Theorem 15. Since M(P (x)) =M(P (�x)), for a monic

polynomial P (x) 2 Z[x], we have the following corollary.
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Corollary 20 The minimum of the set of Mahler measures of Alexander poly-

nomials of (suitably oriented) (p1; : : : ; pd; -1)-pretzel links, as d varies through

all odd integers and p1; : : : ; pd through all positive integers, is attained by �L,

the Mahler measure of the (2; 3; 7; -1)-pretzel knot.

So far, questions about Salem numbers and Mahler measures arising from

Alexander polynomials of more general links have not been fully addressed.

Finding a concrete relation between the geometry of oriented knot and link

complements, and the Mahler measures of Alexander polynomials could lead

to new insights into Problem 18, and to Lehmer's question itself.

5 Special values of L-functions

We now continue our survey of the ubiquity of Salem numbers in mathematics,

by describing how they show up in expressions for the special values of L-

functions.

5.1 Stark units and Salem numbers

Given an arbitrary Galois extension K=k of number �elds with group G, and

a �nite-dimensional complex representation � : G! GL(V ) one has the Artin

L-function

L(s;K=k; �) =
Y
p

det(1� Frp
��
V
IpNp�s)�1;

where the product runs over all (archimedean) primes p of k, Ip is an inertia

subgroup at p, V Ip is the subspace of V of Ip-�xed points, and Frp is a Frobenius

element at p.

Stark has a conjectural description of the leading term in the Taylor ex-

pansion of this L-function at s = 0, which states that it is essentially a certain

r � r determinant, where r is the order of vanishing of L(s;K=k; �) at s = 0.

A precise statement can be found in [47]. When r = 1, Stark's conjecture is

known to be true (see [42]), and the above mentioned determinant is essentially

just the logarithm of a special unit of K, now called a Stark unit.

We are interested in the case when K=k is a Salem extension, hence of

degree 2, and � is the non-trivial quadratic character of K=k. In this case we

have

L(s;K=k; �) =
�K(s)

�k(s)
;

where �F (s) is the Dedekind zeta function of the number �eld F . A formula of

Dedekind says that the leading term in the Taylor expansion of �F (s) at s = 0
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is given by

�F (s) =
hFRF

wF

ssF+tF�1 + higher order terms;

where

� hF is the class number of F ,

� RF is the regulator of F ,

� wF is the number of roots of 1 in F , and,

� sF (respectively tF ) is the number of real (respectively complex) places

of F .

Using this, we see that when K=k is a Salem extension, r = 1, and

L0(0;K=k; �) =
hKRK

hkRk

: (4)

The formula (4) is already very close to what is implied by Stark's conjecture.

In fact, Stark showed:

Proposition 21 (Stark [42]) Let K=k be a Salem extension. Then

L0(0;K=k; �) =
hK 2n�2 log (e)

hk u
(5)

where u = 2 when K is generated over k by a square root of a unit of k, and

u = 1 otherwise, and e is a unit of K, which together with the units of k

generates a subgroup of index 2u in O�
K
.

The relation between Stark's conjecture and our subject is seen by the

following result.

Proposition 22 (Chinburg [12]) The unit e of K is a Salem number. Con-

versely every Salem number � in K is of the form � = em=2 for some positive

integer m.

Chinburg also uses Proposition 22 to deduce some information on the rela-

tive class number hK=hk of a Salem extension in [11].

5.2 Lower bounds for relative regulators

The formulas (4) and (5) of the previous section show that one might make

some progress towards the minimization problem if one could establish a good

absolute lower bound for the quotient of regulators RK=Rk corresponding to

a Salem extension K=k. This observation was made by Costa, Friedman and

Skoruppa, who in fact made the following general conjecture which for rL=F = 1

implies an aÆrmative answer to the minimization problem (see [21]):
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Conjecture 23 Let L=F denote an arbitrary extension of number �elds, and

let

Reg(L=F ) :=
1

[O�
F
: �FNL=F (O

�

L
)]

RL

RF

;

where �F is the groups of roots of 1 in F . Then there are absolute constants f0
and f1 such that:

Reg(L=F ) � f0f
rL=F

1 ;

where rL=F � 0 denotes the di�erence in the unit ranks of L and F .

Costa and Freidman prove Conjecture 23 when [L : F ] is `large', and in the

case when L (and so F ) is totally real (see [13]).

5.3 Mahler measures and L-values

The results of Section 5.1 point towards a connection between the (logarithms

of) Mahler measures of polynomials and the special values of L-functions. In

fact the �rst examples of this phenomena were discovered by Smyth for poly-

nomials in more than one variables. Let P (x1; x2; : : : ; xn) 2 Z[x1; x2; : : : ; xn]

be such a polynomial. De�ne its Mahler measure M(P ) by

logM(P ) =

Z
� � �

Z
S1
�����S1

jlogP (x1; : : : ; xn)j
dx1

x1
: : :

dxn

xn
:

Using Jensen's formula one sees that when n = 1 we recover the de�nition made

in the Introduction. In [41] Smyth showed that

logM(1 + x+ y) = L0(��3;�1);

logM(1 + x+ y + z) = 14 � 0(�2);

where ��3 is the Dirichlet character attached to the quadratic extension Q(
p
�3),

and �(s) is just the Riemann zeta function. Other striking examples of this kind

were given by Ray [32].

The �rst `non-abelian' example is due to Deninger [15] and Boyd [9]. They

showed

logM(y2 + (x2 + x+ 1)y + x2) = L0(E15; 0); (6)

where E15 is the elliptic curve of conductor 15 de�ned by the polynomial ap-

pearing in (6) above. Actually this formula has only been checked to 50 decimals

places of accuracy, though in [15] Deninger has been able to give a heuristic

reason for its validity. Moreover in some cases Deninger (see also [3]) has been

able to interpret Mahler measures as Deligne periods of mixed motives.
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Many other formulae similar to (6) have been numerically identi�ed by Boyd

[9], and via di�erent methods, by Rodriguez Villegas [50]. Interestingly, proofs,

and not just numerical coincidence, of these formulae have so far been forth-

coming mostly for curves E with complex multiplication, in which case both the

L-value and the Mahler measure reduce to the value of a Eisenstein-Kronecker

series evaluated at the corresponding point of complex multiplication. We refer

the reader to the papers mentioned above for more details.

In closing this section we would like to point out a curious discovery of Boyd

[9]. Boyd noticed that there is a formula similar to (6) above for L0(E14; 0)

where E14 is the elliptic curve over Q with conductor 14:

logM
�
(x+ 1)y2 + (x2 + x+ 1)y + (x2 + x)

�
= 0:2274812230:::: = L0(E14; 0):

This formula has again only been checked numerically. Since we have (see [8])

lim
m!1

M(P (x; xm)) =M(P (x; y));

we see that exp(L0(E14; 0)) = 1:25543::: is a (potential) limit point of the set

of Mahler measures of polynomials in one variable. As it turns out, it is the

smallest known limit point.

Now apart from E14 there is, up to isogeny, exactly one more elliptic curve

over Q with conductor smaller than 15, namely the curve E11 of conductor

11. Yet no such analogous formula has so far been discovered for E11. Since

exp(L0(E11; 0)) = 1:16433::: < �L = 1:17628:::, the existence of such a formula

for E11 would imply that one would be able to �nd in�nitely many polynomials

in one variable, with Mahler measure smaller than that of Lehmer's polynomial

L(x).

6 Best results and records

This section contains the best results (known to us) concerning lower bounds on

Salem numbers and Mahler measures of irreducible monic polynomials P (x) 2
Z[x] in one variable.

In 1979, Dobrowolski [16] obtained a lower bound B(d) for the Mahler

measure of polynomials of degree d. Since then, his methods have been re�ned

by various mathematicians. As Boyd points out ([8]) the existence of B(d) is

not in question since as we have seen (see the proof of Lemma 3) the set of

Mahler measures of monic polynomials with integer coeÆcients of a �xed degree

d has a minimal element. In any case, a sample of such a result is the

Theorem 24 (Voutier, [51]) If P (X) is not a cyclotomic polynomial, and

has degree d > 1, then

logM(P ) >
1

4

� log (log (d))
log (d)

�3
:
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Note that the bound above tends to 0 as d!1.

One also has bounds that depend on the number of real roots of P (X). For

instance it seems that a lower bound for M(P ) for those polynomials P (X)

which have at least one non-real root outside the unit circle is 1.2013... This is

the Mahler measure of the polynomial (cf. [7]):

x18 + x17 + x16 � x13 � x11 � x9 � x7 � x5 + x2 + x1 + 1;

which has two complex-conjugate roots outside the unit circle. In this vein we

have the following theorem (cf. [27], page 322)

Theorem 25 (Laurent) Let P(X) be a non-cyclotomic polynomial, with r

real roots, of degree d. Then

logM(P ) � c
r2

d log (1 + d=r)
;

where c > 0 is an absolute constant.

Note that for r = 2, which is the minimization problem for Salem numbers,

this is a better bound than the one above, yet it still tends to 0 as d!1.

In closing, we refer the reader to the very informative web page on Lehmer's

Conjecture maintained by Mossingho� [28], where one may �nd many lists and

records related to Problems 1 and 2. For instance, there are tables of the

smallest hundred Mahler measures known, the smallest known Mahler measure

of each degree d � 180, the smallest known Mahler measure of a given height

(= the maximum of the absolute values of the coeÆcients), the smallest forty-

seven Salem numbers less than 1.3 and so on and so forth. There is also a

bibliography on Lehmer's conjecture there which nicely compliments our own.
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