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ABSTRACT
We briefly present and analyze, from a geometric viewpoint,
strategies for designing algorithms to factor bivariate ap-
proximate polynomials in

�
[x, y].

Given a composite polynomial, stably square-free, satis-
fying a genericity hypothesis, we describe the effect of a
perturbation on the roots of its discriminant with respect
to one variable, and the perturbation of the corresponding
monodromy action on a smooth fiber.

A novel geometric approach is presented, based on guided
projection in the parameter space and continuation method
above randomly chosen loops, to reconstruct from a per-
turbed polynomial a nearby composite polynomial and its
irreducible factors. An algorithm and its ingredients are de-
scribed.

Categories and Subject Descriptors
I.1.2 [Computing methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms,Theory

Keywords
Approximate Factorization, Algebraic Geometry, Algorithms,
Maple Code

1. INTRODUCTION

1.1 Approximate algebra
Over the past ten years symbolic-numeric algorithms for

approximate polynomials (computation of greatest common
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divisors, functional decompositions, find zeros of multivari-
ate systems, test primality, factorization) have been stud-
ied by many authors (see e.g. the proceedings of the SNC
conferences and the references inside). The main common
feature of the produced algorithms is to propose a strat-
egy to find a nearby object (some authors claim and even
prove that they found the nearest one in some sense) with
required properties. This can be often re-interpreted as a
reverse engineering task: recognize a perturbed situation by
a “small” distortion of a representation. However the size
of this small distortion is usually not easy to formalize and
many authors present the efficiency of their algorithms by
their effectiveness on some benchmarks.

Ideally the benchmarks should consist of polynomials com-
ing from computations related to problems in engineering
or other sciences; but for now there are too few such con-
crete applications. So, examples in the benchmarks are con-
structed algebraically first by an exact computation on exact
random data and then corrupted by a random noise; this is
useful to detect weaknesses and to check robustness of the
proposed methods. A better control of these constructed ex-
amples would profit from geometric insights on the possible
singular situations.

1.2 Approximate factorization
An important problem of this family which meets a re-

newed interest is the factoring of approximate multivariate
polynomials and the bivariate case captures its essential is-
sues. There exist several methods, algorithms and imple-
mentations for factoring multivariate polynomials in an ex-
act setting. See e.g. [2] or [16] or [4] and their bibliography.
A corresponding approximate problem (for two factors) can
be stated as follows (see e.g. [24]):

Given f ∈ �
[x, y] of total degree n, and ε ∈ � , find a

pair g and h ∈ �
[x, y] such that g × h = f + ∆f , where

deg g, deg h > 0, ||∆f || < ε, degree(∆f) ≤ n and ||·|| denotes
a polynomial norm.

To simplify the discussion, let us assume, in the sequel,
that f is “approximately square-free”, that is, all polyno-
mials in a neighborhood of f are square-free. This can be
determined in practice by taking a random complex floating-
point value for x and using a fast algorithm to certify that
the approximate GCD of f(x, y) and fy(x, y) is 1. If this is
not the case, then an algorithm to remove the multivariate
approximate GCD such as described e.g. in [7, 29, 37] could
be used.

This approximate factorization problem has been already
addressed by several authors as indicated below. More pre-



cisely, the methods find factors of an approximate polyno-
mial if the given polynomial is “sufficiently close” to being
factorable.

The previous (pseudo-) definition of approximate bivari-
ate factorization admits obvious variants such as fixing a
support for the exponents of the monomials allowed for ∆f
or for f + ∆f , or fixing the convex hull of that support. An
important case is to consider polynomials of fixed bidegree
in (x, y).

In the next subsection the approximate factorization prob-
lem will be translated into the task of projecting a point on
a subvariety, up to small perturbations, and this clearly does
not have a unique solution in general.

1.3 Projection in a parameter space
Let E be the allowed support for the exponents of the

monomials of f and of f +∆f , as a normalization we impose
that one coefficient is equal to 1; let N = ](E)− 1. So f can
be considered as a point in the parameter space

� N . Then,
there is a closed algebraic subvariety V of

� N which con-
tains all the composite polynomials. Equations of V could
be computed via generalized resultants, they are sometimes
called Noether forms (Emmy Noether introduced and stud-
ied them). The subvariety V has various components and
singularities. Endowing

� N with any metric, there is no
chance that the projection of a point f on V could be unique
in general. The subvariety V can be stratified by the number
of components of the corresponding polynomials and each
such stratum is also stratified by the degrees (or the partial
degrees) of these factors. The associated combinatorics is
rather involved, therefore V is a complicated object.

Of course the algebraic question carries the same hardness
shown by its geometric interpretation. So we can expect
uniqueness of the projection (hence a well posed approxi-
mate factorization problem) only if f is near a smooth part
of one of the previous strata (defined by some discrete in-
variants) and if we can guide the projection to reach that
strata. This is a difficult task, much more complicated that
the corresponding problem for univariate GCD that we now
briefly recall.

1.4 Comparison with univariate GCD
The degree of the univariate GCD of two polynomials f

and g in
�
[x] is given by the co-rank of the Sylvester matrix,

but the GCD can be computed by the sequence of subresul-
tants extracted from the Sylvester matrix.

The seminal paper [7] introduced the use of SVD of the
Sylvester matrix to estimated the degree of the univariate
GCD, this allowed a first approximate GCD algorithm. But
there was an important weakness in that paper, the authors
confused the distance to the set of all matrices of given rank
k with the distance to the strict subset of Sylvester matrices
of rank k. This was revealed and corrected in a series of
papers see e.g. [11, 12] which produced (under mild con-
ditions) a certified approximate GCD algorithm relying on
SVD of subresultants; this algorithm was very efficiently im-
plemented by D. Rupprecht. Later the approach was con-
tinued by Zeng and his coworkers.

Let’s compare these developments with those in approxi-
mate factorization. Recently, important progress in the un-
derstanding of the algebraic conditions fulfilled by the co-
efficient of a composite multivariate polynomial (Noether
forms) was achieved: They can be interpreted as minors of

the Ruppert-Gao matrix (see below) which will play a role
similar to the Sylvester matrix as its co-rank indicates the
number of factors. However, we do not have so far a tool
similar to the subresultants which could give rise to a cer-
tified approximate factorization algorithm. So, for the mo-
ment it is worthwhile to accumulate knowledge of various
sorts about approximate bivariate factorization: algebraic
approaches successful in many cases, examples of difficult
cases, geometric approaches, mixed strategies, examples re-
lated to concrete applications. Preliminary experiments re-
ported in [14] show the feasibility of our approach on some
examples.

2. PREVIOUS WORKS

2.1 Some references
For a history of early algorithms on multivariate polyno-

mial factorization see [22] and [23]. The paper [1] is the first
algorithmic paper using monodromy group action as devel-
oped below in section 2. The paper [15] considers point
combinations, an exponential search, while the paper [20]
uses an optimization method exponential in the degree of
the factor recovered. The paper [21], is also of complexity
exponential in the degree of the input. The papers [33, 31,
32, 30] discuss another interesting algorithm based on zero-
sum identities of power-series solutions of f(x, y) = 0. This
algorithm is numerically stable and of polynomial complex-
ity. The paper [5] adopted a backward error analysis point of
view. Similarly for the papers [25], [17] which relied on the
use of SVD on Ruppert-Gao matrix. The paper [36] takes
the general method of [34, 35] by the same authors and spe-
cializes it to the case of a single polynomial. It makes use
of an analysis of how root clusters perturb under differenti-
ation.

2.2 Factorization and topology
A bivariate polynomial equation f(x, y) = 0 defines a

curve X in
� 2 . We point out two main topological geo-

metric properties of X closely related to factorization of f .
We assumed that f is squarefree so X is reduced.

1. The number s of factors of f , i.e. the number of irre-
ducible components of X, is equal to the dimension of
the homology group H1(

� 2 − X).

The intuition behind this claim is that the loops in
� 2

around each component Xi of X generate the homo-
topy group of the loops around X. See e.g. [10] for
details.

By Poincare duality the dimension of the co-homology
group H1(

� 2 − X) is also s. The definition of that
group in terms of differential forms provides Rupert’s
condition, then its expression in monomial bases gives
rise to Ruppert-Gao matrix.

2. The closure of each connected component of X−Sing(X)
corresponds to an algebraic curve whose equation is an
irreducible factor of f ; here Sing() denotes the singu-
lar locus which consists of a finite number of points of
X; solutions of the system of 3 equations and 2 un-
knowns: f = fx = fy = 0.

The second condition can be analyzed further using a pro-
jection on a line. To simplify the discussion, assume that



no irreducible component of C is a line, (this case can be
treated separately), let d be the degree of f in y and call π
the projection of X on the x-axis. Then, except for a finite
set of values A, π is d to 1. More precisely X − π−1(A) is a
d-covering of the line minus A, moreover it is the union of s
connected such coverings Xi − π−1(A).

For x0 not in A, the fiber E = π−1(x0) consists of d
distinct points, partitioned in s subsets Ei, Ei lying on
Xi − π−1(A) for 1 ≤ i ≤ s. Note that this partition of
E characterizes the aimed factorization of f , as it defines it
modulo (x− x0), and the factorization can be recovered via
x-adic Hensel liftings.

These two properties were the basements of two kinds of
factorization algorithms in the exact setting and are cru-
cial for the understanding of the geometric situation in the
approximate setting.

2.3 Ruppert-Gao matrix and SVD
In a series of important papers [17, 26] a group of au-

thors extended Gao’s factorization algorithm into an effec-
tive method for finding an approximate factorization of a
multivariate polynomial.

The general idea is to closely follow Gao’s strategy replac-
ing the computation of the co-rank of Ruppert-Gao matrix
by the computation of the singular values list of that ma-
trix, then choosing the largest gap to infer both a level of
approximation ε and a candidate integer s for the number of
factors. With that choice, the generators of an approximate
kernel are computed and candidate approximate factors are
obtained via approximate multivariate GCD computations.
Finally a postprocessing is used to diminish the distance
between f and its proposed factorable deformation.

The authors have implemented their algorithm in Maple
and report very good results on a large benchmark. So the
approach is successful, nevertheless it leaves room for im-
provements both in efficiency and in analysis of the process.

2.4 Continuation or homotopy methods
A continuation method was proposed in [5], it consists

essentially in following a path in X accumulating sufficiently
many points on the same connected component say X1. An
approximate interpolation provides a candidate factor f1 of
f , then an approximate division is performed.

Other authors tried to proceed directly to the (parallel)
interpolation of all s factors, with the expectation that the
process will be more stable, but this requires to estimate
first the correct partition of a fiber E.

One or several infinitesimal trace(s) (or zero sums) meth-
ods are used for this purpose, [30, 31, 32, 33]. A variant is to
consider an interesting analog of traces obtain by discretiza-
tions on a grid in the x-axis [6] then lifted by an homotopy
on X.

In the paper [34] was made the following important ex-
perimental observation (in the case of exact inputs, approx-
imations with a great precision and with a slightly different
monodromy action than the one considered here) which in-
spired our algorithmic probabilist strategy: The partition of
the fiber E can be recovered from a small number of per-
mutations of E corresponding to the monodromy action of
random loops. Whereas, in theory as in [1], one needs to con-
sider a set of representative of generators of the fundamental
group which consists of a huge number of transpositions or
other permutations.

3. A NOVEL APPROACH

3.1 Another distance
In this paper we will also consider a geometric variation of

the cited problem: control the size of the distance between f
and f+∆f not only via their coefficients but also via discrete
geometric data, namely discriminant and critical loci and
monodromy group attached to the polynomial. This point of
view can be related to the computation of the approximate
GCD of two univariate polynomials f and g by pairing near-
by (controlled by a distance) roots of f and g which are then
merged. Here the situation is more involved as the zero-sets
are curves. We chose to rely on a finite set of characteristic
points: the critical locus of the projection of the associated
curve on the x-axis. Indeed this characterizes an algebraic
curve for a given degree n > 2.

As above, denote by X the curve f−1(0) ∈ � 2 , by π its
projection on the x-axis and choose a generic (i.e. random)
fiber E = π−1(x0) in X which has n points. To simplify
the notations, we let x0 = 0. We denote by ∆ ∈ �

the dis-
criminant locus of π. The action of the fundamental group
π1(

� −∆) on E, defines the monodromy group G, which can
be explicitly calculated. The package algcurves in the com-
puter algebra system Maple contains a program computing
the monodromy.

When f is irreducible, the orbit of G is the whole fiber
E, while when f is composite: f = f1 · · · fs, the orbits of
G provide the s-partition of E by the subsets formed by
the roots of the factors fi. This is the key combinatorial
information which allows us to recover the factorization of
f by a continuation method. See e.g. [8, 2]. In the exact
setting, an early polynomial time algorithm for computing
the absolute factorization of a bivariate polynomial using the
monodromy was presented by [1], monodromy also plays an
important role in the factorization algorithms presented in
[15, 13, 29, 34, 35, 2, 3].

Once the partition is determined, we proceed by an inter-
polation at the intersection points or on a grid to compute
the approximate factors, using the points identified in the
earlier steps. Alternatively we can adapt from [5] and [18]
the needed routines in Maple for computing continuations
and interpolation.

3.2 A generic situation
Here, we restrict our study to the following situation (which

is the one encountered in many application and most bench-
mark examples): The polynomial F to be factored is a small
perturbation of a product f = f1 · · · fs such that the curves
Xi = f−1

i (0) are all smooth and intersect transversally in
double points (nodes). The general idea is that the input
equation F has been corrupted by some noise creating a rela-
tive error on the data of order α, estimated by the user, that
we can use in our program to estimate some bounds thresh-
old; but we can do computations with rational numbers or
bigfloats with a higher precision. As we can start with a
“generic” change of coordinates, we can suppose that f and
its perturbation F are monic in y of degree n and total de-
gree n and that the projections of the critical points on the
x-axis are all distinct, therefore we expect that the only sin-
gularities of the discriminant are double roots corresponding
to the projections of intersections of two components. The
proposed factoring method is based on three main ideas.

First, as the Xi are smooth and cut transversally, the dis-



criminant points of f are either (simple) branching points
(of one Xi) or double points (corresponding to projections
of intersection points of two components Xi and Xj). By a
(small) perturbation the double points give rise to a pair of
nearby branching points which generate the same transposi-
tion of the fiber E at a base point, i.e. there is a path looping
around only these two branching points which induces the
identity on E.

Second, following the previous analysis, as long as we
don’t pass between any such cluster of branchpoints, that
we call “forbidden zones”, the monodromy induced by F is
similar to the monodromy induced by f .

We observed that a main task is to locate the clusters
formed by the deformation of the nodes. This led us to the
third idea that an important preprocessing for the approxi-
mate factorization can be achieved if we can locate ”centers”
for these clusters and ”project” F on the subvariety (in a
parameter space) of the polynomials with the same terms
as F having double points at these points. Our key idea to
locate these centers is given in subsection 6.2.

3.3 A geometric strategy
We aim to adapt in the approximate setting, SVW’s [34]

method which amounts (for us) to determine the partition of
the fiber E by following the roots in y above a small number
of random loops in the x-axis.

So, instead of looking for all the centers of the clusters
mentioned in the previous subsection, we concentrate on
the ones in a neighborhood of these randomly chosen loops.
Then we drag them out of that neighborhood by an adapted
deformation of f , in order to obtain cleared paths, which
resembles more the geometric situation encountered in the
exact setting.

3.4 An illustrative example
We will use the following illustrative example: f1 and f2

are two random dense bivariate polynomial of degree 3 with
2-digit coefficients, f is their product divided by 100, so that
the coefficient are about 50 and F is a perturbation of f with
a relative error of 10−2.

f1 := 92*y^3+44*x*y^2+40*x^2*y-67*x^3

+8*y^2+66*x*y+68*x^2-95*y-62*x-18:

f2 := 68*y^3+39*x*y^2+20*x^2*y+45*x^3

-65*y^2-67*x*y+93*x^2+43*y+8*x+6:

f:=f1*f2/100: F:=evalf(f,3):

The relative perturbation on the coefficients of the dis-
criminant of f is about 5 ∗ 10−2. The relative perturbation
on its roots is about 10−1 for the double points and about
10−2 for the simple points. This example will continue in
sections 5 and 6.

4. MONODROMY GROUP
In this section, we describe algorithmically our main tool,

the monodromy group: its representation and its calculation
is implemented in the package algcurves of Maple that we
will use. More details can be found in [8].

Let f(x, y) be a polynomial of degree n in y, that we sup-
pose monic in y of degree n, this hypothesis simplifies the
presentation and is always satisfied after a generic (random)
change of coordinates. Let X = f−1(0) be the defined curve
in

� 2 and π : X → �
the projection on the x-axis. The dis-

criminant locus ∆ of f is the zero-set of D := Resy(f, f ′
y),
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Figure 1: Discriminant of F and double points of f
(indicated with ◦ resp. + symbols)

it contains the simple branching points which are the pro-
jections of the points with a vertical tangent and the pro-
jections of the singularities of X (which are the solutions of
f = f ′

y = f ′
x = 0).

To define the monodromy, first select a base point x = a
in the complex x-plane minus the discriminant locus. Let
E be the fiber of p above a (i.e., the n distinct y-values
for which f(a, y) = 0). These y-values are now assigned an
order, (y1, y2, . . . , yn). This ordering of the n y-values labels
the sheets of the covering X − π−1(∆) of

� − ∆.
For each point b ∈ ∆, one chooses a path γb in the complex

x-plane which starts and ends at x = a, encircles only x = b
counterclockwise and avoids all points of ∆. The n-tuple
(y1, y2, . . . , yn) is then analytically continued around this
path γb. When one returns to x = a, a new n-tuple is
found, which has the same entries as (y1, y2, . . . , yn), but
ordered differently: (yσb(1), yσb(2), . . . , yσb(n)), where σb is a
permutation acting on the set of labels {1, 2, . . . , n}. We
will say that the permutation σb is attached to the path
γb. Note that for different choices of γb, we obtain different
permutations.

Here are some typical situations. If x = b is a simple
branching point, then σb is a transposition. If x = b is the
projection of a simple double point (a node), then σb is the
identity. If x = b is the projection of a cusp singularity like
the one with local equation x2−y3 = 0, then σb is the cyclic
permutation of order 3.

For the effective calculation of the monodromy some la-
beling and ordering should be done. The Maple implemen-
tation (algcurves) that we will use (see [8]) and complete



with new procedures, made the following choices.

1. Base point and circles: With every discriminant
point bi, a radius r(bi) is associated: (ρ denotes the
distance)

r(bi) =
2

5
ρ(bi, {b1, b2, . . . , bm} − {bi}),

Let C(bi, r(bi)) denote the circle with center bi and ra-
dius r(bi). Then the circles C(bi, r(bi)) do not intersect
each other.

Now a base point a is chosen, such that the real part
of a is smaller than the real parts of any of the bi. By
this choice, the arguments of bi − a are between −π/2
and π/2.

2. Labeling of the sheets: At the base point x = a
there are n distinct finite y-values, they form the fiber
E of p. These are determined numerically as the solu-
tions of f(a, y) = 0. Let these n y-values be assigned
an order (y1, y2, . . . , yn), this labels the corresponding
sheet of the covering y(x) which contains yi.

3. Ordering of the discriminant points: We order
these points according to their argument with respect
to the base point: if arg(bi − a) < arg(bj − a), then bi

precedes bj in the ordering, where arg(·) denotes the
argument function. If arg(bi − a) = arg(bj − a), then
bi precedes bj if |bi − a| < |bj − a|.

4. Choice of the paths: The simplest path L(bi) around
bi consists of one line segment from a to bi−r(bi). This
is followed by C(bi, r(bi)), starting at bi − r(bi). Suc-
cessively, a line segment is followed from bi − r(bi),
back to a. The algorithm chooses a path that is com-
posed of line segments and semi-circles, and that is
equivalent to the simplest path.

5. Analytic continuation: The path γb is discretized in
small segments xixi+1 so that when a path is followed
in the complex x-plane from x1 to x2, the n entries
of f−1(x1) i.e. the roots of f(x1, y) = 0, follow paths
on the Riemann surface to the roots of f(x2, y) = 0,
by a numerical integration of a vector field defined by
derivatives of f (see [8] or [5] for more details) . This
gives rise to an n-tuple, whose ordering is induced by
the ordering of f−1(x1). The accepted size of |xi+1 −
xi| depends on the separation of the entries of f−1(xi).

6. Monodromy group: Consider a closed path starting
from x = a and returning there after encircling one
branch point x = b. After analytic continuation of E
along this path, the entries of E are recovered, but
they are shuffled by the permutation σb.

The collection of all σb generates the monodromy group,
which is represented here as a subgroup of Sn, the
group of permutations of {1, 2, . . . , n}. Note that this
representation depends on the choice of the labeling
of the y-values at x = a, so it is only unique up to
conjugation.

The point x = ∞ might also be a branch point. The
corresponding permutation σ∞ does not need to be
computed by analytic continuation, since it can be de-
termined from the other σb.

7. Example: We apply the procedure monodromy to the
perturbation F of f in our illustrative example.
with(algcurves):

m := monodromy(convert(F,rational),x,y);

The output is a list with three entries. The first entry
m[1] is the basepoint x = a that the algorithm chose.
The second entry m[2] is the fiber above a (i.e. our
list E), it consists of n complex numbers. The third
entry m[3] is a list, each entry contains a branchpoint bi

with its permutation σbi
(given as a product of disjoint

cycles).

5. EFFECT OF A PERMUTATION
Given a polynomial F supposed a small perturbation of

a composite polynomial f , and a “generic” base point a in�
, we aim to recover the partition of the fiber of f above

a. We denote by X the curve defined by f and by Y the
“perturbed” curve defined by F . We analyze the situation.

5.1 Deformation of the discriminant and
forbidden zones

With the hypothesis on f described in section 3.2, the
discriminant ∆ of f admits only a subset of simple roots s1,
and a subset of double roots s2. By a small deformation
F of f , each element of s2 is deformed into a “cluster” of
2 roots of the discriminant ∆p of F , while each element of
s1 deforms to a root of ∆p. Our task is thus to separate in
these two categories the elements of ∆p as they all appear
as simple roots of the discriminant of F . The ones in the
first category come in pairs and form a set of clusters. So
we will look for nearby points of ∆p.

This is done as follows. The user specifies a level of dis-
tortion of the coefficients of f , that we use to estimate prob-
abilistically a level of deformation for each type of roots, as
follows. Let the level of relative approximation for the co-
efficients of f be α. Then the expectation for the level of
relative error for D, β, is about 2nα. The expectation for
the level for the simple roots is also about β, while the one
for the double roots is about

√
β. In our illustrative example

α = 5 ∗ 10−2, so we roughly expect perturbations of order
10−2 for the points in s1 and perturbation of order 10−1 for
the points in s2.

We note that each point in s2 is the projection of a dou-
ble point of X which is also deformed in a cluster of two
critical points of the projection of Y . So we can improve
the previous estimation of vicinity by considering not only
the distance between two points of ∆p but also the distance
between the corresponding critical points in Y . They should
be in the same level of magnitude.

A next observation is the following “conservation law”.
The monodromy (on any generic fiber of f) defined by a
small circle looping only around a double point of ∆ is the
identity; because each path in the Riemann surface above
the circles remains in the same layer (as for two crossing
lines in

� 2 ). This feature is conserved by deformation: the
monodromy defined by a path γ looping only around a pair
of two roots of ∆p, obtained by deformation of a double
point of D, is the identity (the simplest example is a couple
of crossing lines deformed in an hyperbola).

If we are able to recognize all the pairs of roots of ∆p,
obtained by deformation of an element of s2, we can merge
the two points of each such pair by creating cuts or “for-
bidden zones“ in the complex plane. Then we require that



the paths γ used to calculate the monodromy do not cross
these cuts, i.e. avoid these forbidden zones. Once this is
done, the remaining roots of ∆p define (a large number of)
permutations of the fiber E whose s orbits give the target
partition of E.

Here are some easy enumerative data. If f admits two
factors of degree n/2, then there are n2/4 double points in
the discriminant. The extreme cases are when f admits a
factor of degree 1 and one of degree n − 1, then there are
n−1 double points; while when f admits n factors of degree
1, there are n(n − 1)/2 double points.

5.2 A geometric property
By a (small) deformation f̃i of each factor fi of f =

f1 · · · fs, satisfying the hypothesis of section 3.2, the number
of intersection points between the irreducible components
Xj and Xk, j 6= k, remains unchanged; hence the number
of singular points of X during the deformation remains un-
changed.

The opposite implication is also true but less obvious.

Proposition: Let f = f1 · · · fs, satisfying the hypothesis of
section 3.2, and f̃ obtained by a (small) deformation of f . If
the number of singular points of f remains unchanged during
the deformation, then f̃ is also composite with s factors.

This can be proved using the monodromy action attached
to perturbed loops following the small deformation of the
simple and double roots of the discriminant of f .

This result provides an interesting geometric insight on
the variety of composite polynomials evoked in subsection
1.3 and will be useful for the our probabilistic algorithm.

5.3 Recognition process
In order to detect the pairs of roots (p, q) to be merged, we

could perform analytic continuation over the shortest path
around p and q for every pair of roots of the discriminant.
However, that would be O(n4) paths. To reduce the number
of paths over which we perform analytic continuation, we
order the points as described in the previous section 2, and
for each point, compute a path around it and the basepoint.
This requires O(n2) paths. Then we use two procedures
given below to detect which pairs may be merged.

Take the triangle: basepoint - p - q. Consider all the
points inside that triangle, in the order in which they appear
in the output M of algcurves[monodromy] (see in section 2
the subsection on the sorting of discriminant points). The
only points that could be inside that triangle have ordering
between p and q, and must appear on the same side of L as
the basepoint, where L is the line through p and q. Finding
these points is done with a simple Maple procedure, see the
website [14].

Then we multiply the permutations corresponding to the
points inside that triangle, to get a permutation g. Now, in
order to compare the permutation of point p with that of
point q, we first have to conjugate with g, and then multiply
and check for identity.

Instead of deleting all pairs with distance below a certain
threshold, we can also work without a threshold and sim-
ply start deleting grouped branchpoints (starting with the
relatively closest pair, then the next closest, and so on) and
stop as soon as the group becomes reducible (i.e. not transi-
tive). One can now try to compute a number δ such that no
δ-perturbation of F can bring a pair of distance d together.

Such δ would then be a lower bound for the distance from
F to the nearest reducible polynomial. In a future work, we
hope to compute a lower bound in this way and compare it
to alternatives like [25].

In our illustrative example, we order the 30 roots of ∆p

as said before, and take the set S of the pairs under the
threshold 0.3 that satisfy the previous matching test. Then
we get 9 elements:

S := [[15, 16, .037], [18, 19, .075], [12, 13, .075], [23, 25, .12],

[6, 8, .12], [28, 29, .13], [2, 3, .13], [21, 26, .26], [5, 10, .26]]

So 30 − 9 · 2 = 12 permutations remain. The generated
subgroup is not transitive and provides the partition in two
subsets (with 3 elements each) {2, 3, 4} and {1, 5, 6} of the
fiber. The corresponding factors are computed by interpo-
lation.

Remark If a pair p,q of discriminant points of F comes from
a double point of f , then we assume that the path around
p,q corresponds to a path around that double point (and
hence has trivial monodromy). However, it is possible that
this assumption fails; during the deformation, the points p,q
move away from each other, starting at the double point.
However, if during this process a third branchpoint r moves
between p,q, then the effect of that will be that σp (or σq)
will be conjugated by σr, after which σpσq no longer needs
to be trivial. A fix could be to check σp,σq and σr when-
ever a pair p,q is so close to another branchpoint r that
this situation may have occurred (for additional robustness
this could be combined with the computation of the pseudo
singular points (see below) because such a point should be
found near the center between p,q if p,q originated from a
double point).

6. TOWARD AN EFFICIENT ALGORITHM
We now list several ingredients needed for our probabilis-

tic algorithm.

6.1 Early detection
In this subsection, we sketch a probabilistic method to

reach by an early detection the targeted partition of the
fiber E.

In the previous section, we sketched a method that ex-
plores all points of the discriminant set ∆p and determines
iteratively a set of pairs of points of ∆p which should be
discarded together with their associated permutations of E.
Thus the set of generators of the monodromy group de-
creases. The process stops when the orbit of the monodromy
group splits, hence provides a partition of E.

Here we will proceed in the opposite direction: we start
with an empty set of generators of the monodromy group
and iteratively enlarge it, so we will coagulate the orbits to
get the partition. More precisely, we consider few permu-
tation σ1, . . . , σl (with say e.g. l = 5), of the fiber E and
decompose each of them into a product of cycles. These per-
mutations should respect the partition of E, so the support
(i.e. the large orbit) of each cycle should be contained in
some subset Ei of the partition. This provides strong in-
dications which allows to recover the partition with a good
probability of success.

Indeed, each of these permutations are a product of a
large number of transpositions, consequently they act on



each subset Ei like a random permutation, so it is unlikely
that the supports of two cycles are equal (or one contains
another one) unless the support is equal to some Ei. There-
fore in the exact setting, one can reconstruct the partition
with high probability, already with l = 2 or l = 3. This
analysis will be developed in a future work [9].

In presence of noise, this process might produce unlucky
(i.e. false) cycles joining two distinct subsets of the parti-
tion, (if one of the loops defining a permutation crosses a
”forbidden zone”) that should be discarded. This problem
can be overcome by taking a larger number of loops (e.g.
l = 5) and performing the following preprocessing on f .

6.2 Pseudo singular points
We consider the clusters of points on Y = F−1(0) created

by the deformation of the singular points of X = f−1(0). We
can call them pseudo singular points. They are the solutions
of a system of three ”approximate equations” (F, F ′

x, F ′
y) in

(x, y). We expect the same order of magnitude ε for the
derivatives of f as for f . By a deformation of f , a common
solution A to the three equations (f, f ′

x, f ′
y) produces a clus-

ter of three points (A12, A13, A23). A12 (respectively A13,
and A23) is the common solution of (F, F ′

x), respectively of
(F, F ′

y) and (F ′
x, F ′

y). We expect that the order of magni-
tude of the distance between A and A12, or A13 is about√

ε while the order of magnitude of the distance between A
and A23 is only about ε. A practical way for locating such
clusters is as follows.

1. Compute approximately a chosen subset A of the (n−
1)2 common solutions of (F ′

x, F ′
y) in

� 2 . This can be
done via resultants of a rational approximation of F .

2. Take the subset B ⊆ A consisting of those P ∈ A for
which F (P ) is close to 0 (tolerance O(ε)).

We applied the procedure of computation of the pseudo
singular points to our illustrative example. With a threshold
equal to 0.1 or to 0.2, we obtain 11 pseudo singular points,
(X has only 9 singular points). However, one of the pseudo
singular points of Y very near to a singular point of X is
obtained with distance larger than the two “extra” ones.
This shows that we may have to accept more pseudo singular
points of Y than singular points of X in order not to miss
one.

6.3 A “Red Sea” preprocessing
We plan to apply a probabilistic algorithm, computing the

permutations σj of the fiber E attached to few loops γj with
1 ≤ j ≤ l. So we do not need to control all pseudo singular
points but only those in the neighborhood of these loops.

We first choose “randomly” the loops γj , e.g. taking the
border path OMjNj of quarter of a discs centered at the
origin of the x-axis with radius 2 making random angles θj

with the real axis of that plane. To avoid that the segments
OMj and ONj (and even the arcs MjNj) cross the forbidden
zone defined by presence of the projections of the pseudo
singular points, we propose to deform the polynomial f as
follows.

First, the set S of pseudo singular points of F in a (small)
tubular neighborhood N of the l loops γj is computed.

Second, we drag the points of S out of the neighborhood
N on a new set of points T . Simultaneously we perform a
(small) deformation F + ∆F of F imposing that F + ∆F

admits singular points at T . This last step can be achieved
by a Newton like approximation algorithm.

Then we check that F +∆F has no more pseudo singular
points in the tubular neighborhood N of the l loops γj , we
also adjust the induced small deformation on the fiber E.
In the following steps, the deformed polynomial F + ∆F
replaces F and this is considered as a preprocessing for the
approximate factorization.

6.4 Interpolation and postprocessing
The previous procedures “recognize” the partition of the

fiber E, into s disjoint subsets Ij with 1 ≤ j ≤ s of {1, . . . , n}
and identify several points Pi = (xi, yi) on the corresponding
layer. Then it remains to compute, by interpolation at these
points, candidate factors Fj . Then this factorization can be
improved further by a postprocessing consisting of one or
more Newton steps.

The general method is to find the coefficients of each Fj ,
e.g. in the monomial basis of dense polynomials of degree
nj , by imposing a family of linear conditions on these co-
efficients. These conditions express the vanishing of Fj at
the Pi corresponding to Ij . Then one solves approximately
the (overdetermined) linear system using QR or SVD tech-
niques.

There are several ways to choose the points Pi.

1. Take m points xi in the complement of the discrimi-
nant locus and all n points Pi,l above each xi organized
in a grid.

2. Take double points or critical points of F correspond-
ing to the branching points producing Ij , as well as
the conditions coming from F ′

y(Mi) = 0.

The first possibility with m = 2n points widely spread in
the x-axis gives satisfactory results.

Also, it seems that the distance (defined by the differ-
ence of the coefficients) between each candidate factor Fi to
the corresponding fi is smaller than the distance from their
product to F . So Newton step(s) can improve the result.
If s = 2 a Newton step amounts to solving approximately
(SVD) in the coefficients of (δF1, δF2) the overdetermined
linear system

F − F1 ∗ F2 − F1 ∗ δF2 − F2 ∗ δF1 = 0.

The second possibility has the advantage of focusing on
the discriminant and critical loci. So the candidate Fi will
have discriminant and a critical loci near a subset of the loci
of F . This is more in the spirit of a geometric approach to
the factoring problem.

Remark When the polynomial F is monic in y, the first
possibility has the advantage that, for each triple of x-values
(x1, x2, x3), we can check the zero-sum condition for each set
of points corresponding to a given j, then return to the main
loop if it fails, or simply if needed deform the points in a fiber
(as done e.g. in [35]) before the interpolation.

6.5 Illustrative example
With our illustrative example, we took 12 points in the

rectangle [−2..1,−1.5..1.5] included in the x-axis and the
points above them (in the corresponding fibers) divided in
two sets U and V . Therefore, U defines 36 homogeneous lin-
ear conditions on the ten coefficients of F1; and respectively



for F2. We normalized by letting F1 and F2 to be monic
in y. We have that the (normalized) maximal difference be-
tween the coefficients of f and its perturbation F is 0.01.
We obtain two candidate factors F1 and F2 with a maximal
difference with the coefficients of f1 and f2 of 0.02 and 0.03
while the maximal difference between the coefficients of F
and F1 ∗ F2 is 0.03. This can be improved with only one
Newton step and we get new candidate factors F̃1 and F̃2

such that the maximal difference between the coefficients of
F and F̃1F̃2 is 0.003 which seems satisfactory.

7. WHAT HAPPENS WITH HIGHER
SINGULARITIES

In section 3.2 we made the important hypothesis that F
was a small deformation of a composite polynomial f =
f1 · · · fs such that Xi = f−1

i (0) are all smooth. So the
only singularities of f were a fixed number of nodes (double
points).

In this section, we discuss some issues and sketch some
possibilities of solutions when f has more complicated sin-
gularities.

First of all let us recall the classical results on perturbation
of multiple roots of an univariate polynomial: the typical
behavior is the one of xd − ε with ε small, so the root 0 is
perturbed at a distance of dth-root of ε.

This extends to systems of two bivariate polynomials: the
more complicated the singularity is, the further the roots
move away. Indeed, it suffices to analyze the projections on
two lines, and clusters of several roots are not easy to locate.

One strategy used in one variable, and which can be gen-
eralized in two (or more) variables to locate the clusters of
d-roots of a polynomial P is the following. First compute
the zeros of P , P ′, P”, . . ., P (d). Then for each zero x1

of P (d), such that P (d+1)(x1) is big enough, there are two

zeros of P (d−1) at a distance about
√

ε, then three zeros of
P (d−2) at a distance about the third root of ε, and so on
till d zeros of P at a distance about the dth-root of ε. See
also section 3 in [36]. The situation is more complicated
in two variables because one has to consider not the totally
ordered iterations of derivations of P but the the only par-
tially ordered iteration of the partial derivations of F (x, y).
This was studied by several authors including T. Ojika [28],
and more recently by Giusti, Lecerf, Salvy, and Yakoubsohn
[19], see also references in [19, 27].

In our setting such singularities may show up in three
different ways: For one or more i, Xi = f−1

i (0) admits sin-
gularities, but

• We still have the property that for any two i and j,
Xi and Xj intersect transversally (and their small de-
formations also intersect transversally) and form only
nodes at these intersections. Then the strategy pre-
sented in the previous sections can be adapted and
re-used with small changes, because we focus on the
intersections.

• We still have the property that for any two i and j,
the intersection point of Xi and Xj is a smooth point
of Xi and a smooth point of Xj , but they are tangent.
Then we can try to adapt the previous strategy but the
analysis and the algorithm will be a bit more intricate.

• For two i and j, the intersection point of Xi and Xj is

not a smooth point of Xi. Then the situation is even
more complicated.

In all cases, a general strategy for obtaining an approx-
imate factorization of F is to first approximate F by the
nearby more singular polynomial.

Let us illustrate this paradigm on a case that we encoun-
tered when we experimented our algorithms. We created
a benchmark of small degree polynomial with two factors,
choosing two random polynomials f1 and f2 of degree 4 and
5 via the Maple command randpoly, and then deforming f
into F . However, one such pair represented two curves X1

and X2 almost tangent at a point. Instead of finding the
expected 4 × 5 = 20 common solutions to F ′

x and F ′
y, on

which F almost vanishes, we found 21 even for quite small
perturbations.

This can be explained as follows: to simplify the nota-
tions, let suppose that the tangent point correspond to two
parabolas and is represented by the two equations f1 :=
y − x2 and f2 := y + 2x2, so f = y2 + x2y − 2x4. By a
small deformation, the nearby composite curve is formed
by the union of two parabolas intersecting (transversally)
at two points nearby 0. However, the partial derivatives F ′

x

and F ′
y, of the deformed polynomial F have 3 common roots

nearby 0, (because f ′
y = 2y + x2 and f ′

x = 2xy − 8x3 have a
root in 0 of multiplicity 3) and F almost vanishes at these 3
points, so we can hardly distinguish 2 out of these 3 points.

The suggestion is to consider the second derivatives: f”yy =
2, f”xy = 2x and f ′

xx = 2y − 24x2 and observe that f”2
xy −

f ′
xxf ′

yy vanishes at 0 and that f”xy and f”xx have a common
simple solution in 0. This last property is conserved by a
small deformation and give a good estimate of the location
of the cluster.

If among the pseudo singular points we correctly selected
the subset B coming from true singularities, then we can ap-
ply a Newton iteration to bring those points closer to true
singularities, as follows: Consider the space of polynomials
that vanish at all P ∈ B, and then replace F by the pro-
jection of F on that space. We implemented this, see Near-
estNpoly on [14]. If the initial errors were sufficiently small,
say of size O(ε), then this process has quadratic convergence
and should lead to an output that is no further than O(ε2)
away from an optimal output f (assuming transversal inter-
sections, the distance from a P ∈ B to a singularity of f is
O(ε), and hence f(P ) = O(ε2). Note that this gives another
potential way to determine a lower bound for the distance
from F to a nearest reducible polynomial. We hope to com-
pute such a lower bound and compare to other approaches
in the final version of this paper).

8. CONCLUDING REMARKS
We presented a new geometric approach and sketched an

algorithm for factoring bivariate approximate polynomials.
A draft implementation and some test files with examples
are available at [14]. The algorithms work for bivariate ap-
proximate polynomials that are close enough to exactly fac-
torable polynomials.

The presented algorithm assumes that the input polyno-
mial approximates a product of polynomials defining smooth
curves that intersect transversally. In the last section we dis-
cussed the effect of more complicated singularities. In the
near future we will develop a complete implementation of
our algorithm, test it on the existing benchmarks and try to



extend our algorithm to this more general case. We can also
incorporate in our algorithm, the zero-sums tests in order to
speed up the iteration step before going to the interpolation
step. Another interesting direction of research is to compare
our approach with the one using the Ruppert-Gao matrix
developed in [17].
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