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Abstract. We present a lattice algorithm specifically designed for some classical applications of lattice
reduction. The applications are for lattice bases with a generalized knapsack-type structure, where the
target vectors are boundably short. For such applications, the complexity of the algorithm improves
traditional lattice reduction by replacing some dependence on the bit-length of the input vectors by
some dependence on the bound for the output vectors. If the bit-length of the target vectors is unrelated
to the bit-length of the input, then our algorithm is only linear in the bit-length of the input entries,
which is an improvement over the quadratic complexity floating-point LLL algorithms. To illustrate
the usefulness of this algorithm we show that a direct application to factoring univariate polynomials
over the integers leads to the first complexity bound improvement since 1984. A second application is
algebraic number reconstruction, where a new complexity bound is obtained as well.

1 Introduction

Lattice reduction algorithms are essential tools in computational number theory and cryptography.
A lattice is a discrete subset of Rn that is also a Z-module. The goal of lattice reduction is to find
a ‘nice’ basis for a lattice, one which is near orthogonal and composed of short vectors. Since the
publication of the 1982 Lenstra, Lenstra, Lovász [15] lattice reduction algorithm many applications
have been discovered, such as polynomial factorization [15, 11] and attacking several important
public-key cryptosystems including knapsack cryptosystems [23], RSA under certain settings [7],
and DSA and some signature schemes in particular settings [12]. One of the important features
of the LLL algorithm was that it could approximate the shortest vector of a lattice in polynomial
time. This is valuable because finding the exact shortest vector in a lattice is provably NP-hard [1,
18]. Given a basis b1, . . . ,bd ∈ Rn which satisfies ‖ bi ‖≤ X ∀i, the LLL algorithm has a running
time of O(d5n log3X) using classical arithmetic. Recently there has been a resurgence of lattice
reduction work thanks to Nguyen and Stehlé’s L2 algorithm [20, 21] which performs lattice reduction
in O(d4n logX[d+ logX]) CPU operations. The primary result of L2 was that the dependence on
logX is only quadratic allowing for improvement on applications using large input vectors.
The main result: Many applications of LLL (see the applications section below) involve finding
a vector in a lattice whose norm is known to be small in advance. In such cases it can be more
efficient to reduce a basis of a sub-lattice which contains all targeted vectors than reducing a basis
of the entire lattice. In this paper we target short vectors in specific types of input lattice bases
which we call knapsack-type bases. The new algorithm introduces a search parameter B which the
user provides. This parameter is used to bound the norms of targeted short vectors. To be precise:

The rows of the following matrices represent a knapsack-type basis
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0 · · · 0 0 · · · PN
0 · · · 0 0 . . . 0
0 · · · 0 P1 · · · 0
1 · · · 0 x1,1 · · · x1,N
...

. . .
...

...
...

0 · · · 1 xr,1 · · · xr,N


or

1 · · · 0 x1,1 · · · x1,N
...

. . .
...

...
...

0 · · · 1 xr,1 · · · xr,N

.

The specifications of our algorithm are as follows. It takes as input a knapsack-type basis b1, . . . ,bd ∈
Zn of a lattice L with ‖ bi ‖≤ X ∀i and a search parameter B; it returns a reduced basis generating
a sub-lattice L′ ⊆ L such that if v ∈ L and ‖ v ‖≤ B then v ∈ L′.
Our algorithm has the following complexity bounds for various input:

No Pi O(d2(n+ d2)(d+ logB)[logX + n(d+ logB)])
No restriction on Pi O(d4(d+ logB)[logX + d(d+ logB)])

Many Pi large w.r.t. B O(dr3(r + logB)[logX + d(r + logB)])

These complexity bounds have several distinct parameters, so a comparison with other algorithms
is a bit subtle. The most significant parameter to explore is B, the search parameter. If one selects
B = X then our algorithm will return a reduced basis of L′ = L in O(d2n(n + d2)[d2 + log2X]).
This is an interesting result because our algorithm, like the original LLL and the L2 algorithms,
uses switches and size-reductions of the vectors to arrive at a reduced basis. The fact that we return
a reduced basis with a complexity so similar to L2 implies that there are alternative orderings on
the switches which lead to similar performance.
When using a smaller value of B than X the algorithm will return either:

– A reduced basis of a sub-lattice L′ which contains all vectors of norm ≤ B. This sub-lattice
may be different than the sub-lattice, L′′, generated by all vectors of norm ≤ B, and we do
have L′′ ⊆ L′ ⊆ L. Also, because the basis of L′ is reduced, we have an approximation of the
shortest non-zero vector of L.

– The empty set, in which case the algorithm has proved that no non-zero vector of norm ≤ B
exists in L.

We offer the following complexity comparison with L2 [20] for some values of B on square input
lattices (with Pj ’s). When a column has a non-zero Pj we can reduce the xi,j modulo Pj . Thus,
without loss of generality, we may assume that Pj is the largest element in its column. Note that
r = d−N .

L2 O(d6 logX + d5 log2X)

B = O(X) O(d7 + d5 log2X)
B = O(X1/d) O(d2r5 + r3 log2X)
B = 2O(d) O(d4r3 + d2r3 logX)

It should be noted that [20] explores running times of L2 on knapsack lattices with N = 1 (such
lattice bases are used in [9]). In this case, L2 will have complexity O(d5 logX + d4 log2X).
Our approach: We reduce the basis gradually, using many separate calls to another lattice re-
duction algorithm. To get the above complexity results we chose H-LLL [19] but there are many
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suitable lattice reduction algorithms we could use instead such as [13, 15, 20, 24]. For more details
on why we made this decision see the discussion in section 5.

There are three important features to our approach. First, we approach the problem column by
column. Beginning with the r × r identity and with each iteration of the algorithm we expand our
scope to include one more column of the xi,j . Next, within each column iteration, we reduce the
new entries bit by bit, starting with a reduction using only the most significant bits, then gradual
including more and more bits of data. Third, we allow for the removal of vectors which have become
too large. This allows us to always work on small entries, but restricts us to a sub-lattice.

The proof of the algorithm’s complexity is essentially a study of two quantities, the product
of the Gram-Schmidt lengths of the current vectors which we call the active determinant and an
energy function which we call progress. We amortize all of the lattice reduction costs using progress,
and we bound the number of iterations and number of vectors using the active determinant. Neither
of these quantities is impacted by the choice of lattice reduction algorithm.

Applications of the algorithm: As evidence for the usefulness of this new approach we show
two new complexity results based on applications of the main algorithm. The first result is a new
complexity for the classical problem of factoring polynomials in Z[x]. If the polynomial has degree
N , coefficients smaller than log(A), and when reduced modulo a prime p has r irreducible factors
then we prove a complexity of O(N3r4 +N2r4 logA) for the lattice reduction costs using classical
arithmetic. One must also add the cost of multi-factor Hensel lifting which is O(N6 + N4 log2A)
ignoring the small terms log(r) and log2 p (see [8] for details). This is the first improvement over
the Schönhage bound given in 1984 [25] of O(N8 +N5 log3A).

The second new complexity result comes in the problem of reconstructing a minimal polynomial
from a complex approximation of the algebraic number. In this application we know O(d2+d logH)
bits of an approximation of some complex root of an unknown polynomial h(x) with degree d and
with maximal coefficient of absolute value ≤ H. Then our algorithm can be used to find the
coefficients of h(x) in O(d7 + d5 log2H) CPU operations.

Other problems of common interest which might be impacted by our algorithm include integer
relation finding (whereN = 1) and simultaneous Diophantine approximation of several real numbers
[10, 6] (where r = 1).

Notations: All costs are given for the bit-complexity model. A standard row vector will be denoted
v, v[i] represents the ith entry of v, v[i, . . . , j] a vector consisting of all entries of v from the ith

entry to the jth entry, and v[−1] the final entry of v. Also we will use ‖w‖∞ as the max-norm or
the largest absolute value of an entry in the vector w, ‖ w ‖:=

√∑
(w[i])2 which we call the norm

of w, and wT as the transpose of w. The scalar product will be denoted v ·w :=
∑

v[i] ·w[i]. For
a matrix M we will use M [1, . . . , k] to denote the first k columns of M . The n by n identity matrix
will be denoted In×n. For a real number x we use dxe and bxc to denote the closest integer ≥ x
and ≤ x respectively.

Road map: In section 2 we give a brief introduction to lattice reduction algorithms. In section 3 we
present the central algorithm of the paper and prove its correctness. In section 4 we prove several
important features by studying quasi-invariants we call the active determinant and progress. In
this section we treat lattice reduction as a black-box algorithm. In section 5 we prove the overall
complexity and other important claims about the new algorithm by fixing a choice for a standard
lattice reduction algorithm. In section 6 we offer new complexity results for factoring polynomials
in Z[x] and algebraic number reconstruction.
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2 Background on lattice reduction

The purpose of this section is to present some facts from [15] that will be needed throughout the
paper. For a more general treatment of lattice reduction see [17].

A lattice, L, is a discrete subset of Rn that is also a Z-module. Let b1, . . . ,bd ∈ L be a basis
of L and denote b∗1, . . . ,b

∗
d ∈ Rn as the Gram-Schmidt orthogonalization over R of b1, . . . ,bd.

Let δ ∈ (1/4, 1] and η ∈ [1/2,
√
δ). Let li = log1/δ ‖ b∗i ‖

2, and denote µi,j =
bi·b∗j
b∗j ·b∗j

. Note that
bi,b∗i , li, µi,j will change throughout the algorithm sketched below.

Definition 1. b1, . . . ,bd is LLL-reduced if ‖ b∗i ‖
2 ≤ 1

δ−µ2
i+1,i
‖ b∗i+1 ‖

2 for 1 ≤ i < d and |µi,j | ≤ η
for 1 ≤ j < i ≤ d.

In the original paper the values for (δ, η) were chosen as (3/4, 1/2) so that 1
δ−η2 would simply

be 2.

Algorithm 1 (Rough sketch of LLL-type algorithms)
Input: A basis b1, . . . ,bd of a lattice L.
Output: An LLL-reduced basis of L.

A - κ := 2
B - while κ ≤ d do:

1 - (Gram-Schmidt over Z). By subtracting suitable Z-linear combinations of b1, . . . ,bκ−1 from
bκ make sure that |µi,κ| ≤ η for i < κ.

2 - (LLL Switch). If interchanging bκ−1 and bκ will decrease lκ−1 by at least 1 then do so.
3 - (Repeat). If not switched κ := κ+ 1, if switched κ = max(κ− 1, 2).

That the above algorithm terminates, and that the output is LLL-reduced was shown in [15]. Step
B1 has no effect on the li. In step B2 the only li that change are lκ−1 and lκ. The following lemmas
present some standard facts which we will need.

Lemma 1. An LLL switch can not increase max(l1, . . . , ld), nor can it decrease min(l1, . . . , ld).

Lemma 2. If ‖ b∗d ‖ > B then any vector in L with norm ≤ B is a Z-linear combination of
b1, . . . ,bd−1.

In other words, if the current basis of the lattice is b1, . . . ,bd and if the last vector has sufficiently
large G-S length then, provided the user is only interested in elements of L with norm ≤ B, the
last basis element can be removed.

Lemma 2 follows from the proof of [15, Eq. (1.11)], and is true regardless of whether b1, . . . ,bd
is LLL-reduced or not. However, if one chooses an arbitrary basis b1, . . . ,bd of some lattice L,
then it is unlikely that the last vector has large G-S length (after all, ‖ bd∗ ‖ is the norm of bd
reduced modulo b1, . . . ,bd−1 over R). The effect of LLL reduction is to move G-S length towards
later vectors.
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3 Main algorithm

In this section we present the central algorithm of the paper and a proof of its correctness. Our
algorithm is a kind of wrapper for other standard lattice reduction algorithms. We try to present it
as independently as possible of the choice of lattice reduction algorithm. In order to be general we
must first outline the features that we require of the chosen lattice reduction algorithm. Our first
requirement is that the output satisfy the following slightly weakened version of LLL-reduction.

Definition 2. Let L ⊆ Rn be a lattice and b1, . . . ,bs ∈ L be R-linearly independent. We call
b1, . . . ,bs an α-reduced basis of L if 1,2, and 3a hold, and an (α,B)-reduced sequence (basis of a
sub-lattice) if 1,2, and 3b hold:

1. ‖ b∗i ‖≤ α ‖ b∗i+1 ‖ for i = 1 . . . s− 1.
2. ‖ b∗i ‖≤‖ bi ‖≤ αi−1 ‖ b∗i ‖ for i = 1 . . . s.
3. (a) L = Zb1 + · · ·+ Zbs.

(b) ‖ b∗s ‖≤ B and for every v ∈ L with ‖ v ‖≤ B we have v ∈ Zb1 + · · ·+ Zbs.

The original LLL algorithm from [15] returns output with α =
√

2, L2 from [20] with α =√
1

δ−η2 for appropriate choices of (δ, η), and H-LLL from [19] reduced with α = θη+
√

(1+θ2)δ−η2

δ−η2 for
appropriate (δ, η, θ). We may now also make a useful observation about an (α,B)-reduced sequence.

Lemma 3. If the vectors b1, . . . ,bs form an (α,B)-reduced sequence and we let b∗1, . . . ,b
∗
s repre-

sent the GSO, then the following properties are true:

– ‖ b∗i ‖≤ αs−iB for all i.
– ‖ bi ‖≤ αs−1B for all i.

We use the concept of α-reduction as a means of making proofs which are largely independent
of which lattice reduction algorithm a user might choose. For a basis which is α-reduced, a small
value of α implies a strong reduction. In our algorithm we use the variable α as the worst-case
guarantee of reduction quality. We make our proofs (specifically Lemma 8 and Theorem 3) assuming
an α ≥

√
4/3. This value is chosen because [15, 20, 19] cannot guarantee a stronger reduction.

An (α,B)-reduced bases is typically made from an α-reduced basis by removing trailing vectors
with large G-S length. The introduction of (α,B)-reduction does not require creating new lattice
reduction algorithms, just the minor adjustment of detecting and removing vectors above a given
G-S length.

Algorithm 2 LLL with removals

Input: b1, . . . ,bs ∈ Rn and B ∈ R.
Output: b′1, . . . ,b′s′ ∈ Rn (α,B)-reduced, s′ ≤ s.
Procedure: Use any lattice reduction procedure which returns an α-reduced basis and follows

Assumption 1. However, when it is discovered that the final vector has G-S length provably > B
remove that final vector (deal with it no further).

Assumption 1 The lattice reduction algorithm chosen for LLL with removals must use switches of
consecutive vectors during its reduction process. These switches must have the following properties:
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1. There exists a number γ > 1 such that every switch of vectors bi and bi+1 increases ‖ b∗i+1 ‖2
by a factor provably ≥ γ.

2. The quantity max{‖ b∗i ‖, ‖ b∗i+1 ‖} cannot be increased by switching bi and bi+1.
3. No steps other than switches can affect G-S norms ‖ b∗1 ‖, . . . , ‖ b∗s ‖.

Assumption 1 is not very strong as [15, 20, 19, 24, 27] and the sketch in Algorithm 1 all conform
to these assumptions. We do not allow for the extreme case where γ = 1, although running times
have been studied in [2, 16]. It should also be noted that in the floating point lattice reduction
algorithms ‖ b∗s ‖ is only known approximately. In this case one must only remove vectors whose
approximate G-S length is sufficiently large to ensure that the exact G-S length is ≥ B.

The format of the input matrices was given in section 1. A search parameter B is given to
bound the norm of the target vectors. The algorithm performs its best when B is small compared
to the bit-length of the entries in the input matrix, although B need not be small for the algorithm
to work.

Definition 3. We say the Pj are large enough if:

|Pj | ≥ 2α4r+4k+2B2 for all but k = O(r) values of j. (1)

Note that if N = O(r) then the Pj are trivially large enough. However, for applications where N
is potentially much larger than r this becomes a non-trivial condition. In this case having B close
to X means that the Pj ’s are not large enough.

In the following algorithm we will gradually reduce the input basis. This will be done one column
at a time, similar to the experiments in [3, 6]. The current basis vectors are denoted bi and we will
use M to represent the matrix whose rows are the bi. We will use the notation xj to represent the
column vector (x1,j , . . . , xr,j)T .

The matrix M will begin as Ir×r, and we will adjoin x1 and a new row (0, P1) if appropriate.
Each time we add a column xj we will need to calculate the effects of prior lattice reductions on
the new xj . We use yj to represent a new column of entries which will be adjoined to M . In fact
yj = M [1, . . . , r] · xj . Before adjoining the entries we also scale them by a power of 2, to have
smaller absolute values. This keeps the entries in M at a uniform absolute value. The central loop
of the algorithm is the process of gradually using more and more bits of yj until every entry in
M is again an integer. No rounding is performed: we use rational arithmetic on the last column of
each row. Throughout the algorithm the number of rows of M will be changing. We let s be the
current number of rows of M . If (1) is satisfied for some k = O(r) then we can actually bound s
by 2r+ 2k+ 1. We use c as an apriori upper bound on s, either c := 2r+ 2k+ 1 or c := r+N . The
algorithm has better performance when c is small. We let L represent the lattice generated by the
rows of A.

Algorithm 3 Gradual LLL
Input: A search parameter, B ≥

√
5 ∈ Q, an integer knapsack-type matrix, A, and an α ≥√

4/3.
Output: An (α,B)-reduced basis b1, . . . ,bs of a sub-lattice L′ in L with the property that if

v ∈ L and ‖ v ‖ ≤ B then v ∈ L′.

The Main Algorithm:
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1 - if (1) holds set c := min(2r + 2k + 1, r +N)
2 - s := r;M := Ir×r
3 - for j = 1 . . . N do:

a - yj := M [1, . . . , r] · xj ; ` := blog2 (max{|Pj |, ‖yj‖∞, 2})c

b - M :=
[

0 Pj/2`

M yj/2`

]
; if Pj 6= 0 then s := s+ 1 else remove zero row

c - while (` 6= 0) do:
i - yj := 2` ·M · [0, · · · , 0, 1]T ; ` := max{0, dlog2 (‖yj‖∞

α2cB2 )e}
ii - M :=

[
M [1, . . . , r + j − 1] yj/2`

]
iii - Call LLL with removals on M and set M to output; adjust s

4 - return M

First we will prove the correctness of the algorithm. We need to show that the Gram-Schmidt
lengths are never decreased by scaling the final entry or adding a new entry.

Lemma 4. Let b1, . . . ,bs ∈ Rn be the basis of a lattice and b∗1, . . . ,b
∗
s its GSO. Let σ : Rn → Rn

scale up the last entry by some factor β > 1, then we have ‖ b∗i ‖≤‖ σ(bi)
∗ ‖. In other words,

scaling the final entry of each vector by the same scalar β > 1 cannot decrease ‖b∗i ‖ for any i.

Lemma 5. Let b1, . . . ,bs ∈ Rn and let b∗1, . . . ,b
∗
s ∈ Rn be their GSO. The act of adjoining an

(n+ 1)st entry to each vector and re-evaluating the GSO cannot decrease ‖ b∗i ‖ for any i (assuming
that the new entry is in R).

The proofs of these lemmas are quite similar and can be found in the appendix. Now we are
ready to prove the first theorem, asserting the correctness of algorithm 3’s output.

Theorem 1. Algorithm 3 correctly returns an α-reduced basis of a sub-lattice, L′, in L such that
if v ∈ L and ‖ v ‖≤ B then v ∈ L′.

Proof. When the algorithm terminates all entries are unscaled and each vector in the output is
inside of L as it is a linear combination of the original input vectors. Thus the output is a basis of a
sub-lattice L′ inside L. Further, the algorithm terminates after a final call to step 3(c)iii so returns
an (α,B)-reduced sequence.

Now we show that if v ∈ L and ‖ v ‖≤ B then v ∈ L′. The removed vectors correspond to
vectors b̃i ∈ L that, by lemmas 4 and 5, have G-S length at least as large as those of bi. The claim
then follows from lemmas 1 and 2.

4 Two invariants of the algorithm

Here we present the important proofs about the set-up of our algorithm. All proofs in this section
and the next allow for a black-box lattice reduction algorithm up to satisfying assumption 1. Each
proof in this section involves the study of an invariant. The two invariants which we use are:

– The Active Determinant, AD(M), which is the product of the G-S lengths of the active vectors.
This remains constant under standard lattice reduction algorithms, and allows us to bound
many features of the proofs.

– The Progress, PF =
∑s

i=1(i− 1) log ‖ b∗i ‖2 +nrmr log(4α4cB4), where nrm is the total number
of vectors which have been removed so far. This function is an energy function which never
decreases, and is increased by ≥ 1 for each switch made in the lattice reduction algorithm.
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A study of the active determinant

Definition 4. We call the active determinant of the vectors b1, . . . ,bs the product of their Gram-
Schmidt lengths. For notation we use, AD or AD({bi}) :=

∏s
i=1 ‖ b∗i ‖. For a matrix M with the

ith row denoted by M [i], we use AD or AD(M) = AD({M [1], . . . ,M [s]}).
For an (α,B)-reduced sequence we can nicely bound the AD. We have such a sequence after

each execution of step 3(c)iii.

Lemma 6. If b1, . . . ,bs are an (α,B)-reduced sequence then AD ≤ (αs−1B2)s/2.

We now want to attack two problems, bounding the norm of each vector just before lattice
reduction, and bounding the number of vectors throughout the algorithm.

Lemma 7. If s ≤ c then just before step 3(c)iii we have ‖ bi ‖2≤ 2α4cB4 for i = 1 . . . s.

The full details of this proof can be found in the appendix. The following theorem holds trivially
when there is no condition on the Pj or if N = 0. When N > r and B is at least a bit smaller
than X we can show that not all of the extra vectors stay in the lattice. In other words, if there
is enough of a difference between B and X then the sub-lattice aspect of the algorithm begins to
allow for some slight additional savings. Here the primary result of this theorem is allowing O(r)
vectors with a relatively weak condition on the Pj .

Theorem 2. Throughout the algorithm we have s ≤ c.

Proof. If c = r +N then s ≤ c is vacuously true. So assume c = 2(r + k) + 1 and all but k = O(r)
of the Pj satisfy |Pj | ≥ 2α4r+4k+2B2. When the algorithm begins, AD = 1 and s = r. For s to
increase step 3 must finish without removing a vector. If this happens during iteration j then the
AD has increased by a factor |Pj |. The LLL-switches inside of step 3(c)iii do not alter the AD by
Assumption 1. Each vector which is removed during step 3(c)iii has G-S length ≤ 2α4r+4k+2B2 by
Lemmas 7 and 1. After iteration j we have nrm = r+ j− s as the total number of removed vectors.
All but k of the Pi have larger norm than any removed vector. Therefore the smallest AD can
be after iteration j is ≥ (2α(4r+4k+2)B2)

j−k−nrm . Rearranging we get AD ≥ (2α4r+4k+2B2)s−r−k.
This contradicts Lemma 6 when s reaches 2r + 2k for the first time because (2α4r+4k+2B2)r+k ≥
(α2r+2k−1B2)r+k.

Corollary 1. Throughout the algorithm we have ‖ b∗i ‖≤ 2α2cB2.

We also use the active determinant to bound the number of iterations of the main loop, i.e.
step 3c. First we show in the appendix that AD is increased by every scaling which does not end
the main loop.

Lemma 8. Every execution of step 3(c)ii either increases the AD by a factor ≥ αcB
2 or sets ` = 0.

Now we are ready to prove that the number of iterations of the main loop is O(r + N). This
is important because it means that, although we look at all of the information in the lattice, the
number of times we have to call lattice reduction is unrelated to logX.

Theorem 3. The number of iterations of step 3c is O(r +N).

The strategy of this proof is to show that each succesful scaling increases the active determinant
and to bound the number of iterations using Lemma 6 and Corollary 1. For space constraints this
proof is provided in the appendix.
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A study of the progress function We will now amortize the costs of lattice reduction over each
of the O(r +N) calls to step 3(c)iii. We do this by counting switches, using Progress PF (defined
below). In order to mimic the proof from [15] for our algorithm we introduce a type of Energy
function which we can use over many calls to LLL (not only a single call).

Definition 5. Let b1, . . . ,bs be the current basis at any point in our algorithm, let b∗1, . . . ,b
∗
s be

their GSO, and li := logγ ‖ b∗i ‖2 for all i = 1 . . . s. We let nrm be the number of vectors which have
been removed so far in the algorithm. Then we define the progress function PF to be:

PF := 0 · l0 + · · ·+ (s− 1) · ls + nrm · c · logγ (4α4cB4).

This function is designed to effectively bound the largest number of switches which can have
occurred so far. To prove that it serves this purpose we must prove the following lemma:

Lemma 9. After step 2 Progress PF has value 0. No step in our algorithm can cause the progress
PF to decrease. Further, every switch which takes place in step 3(c)iii must increase PF by at least
1.

Theorem 4. Throughout our algorithm the total number of switches used by all calls to step 3(c)iii
is O((r +N)c(c+ logB)) with Pj and O(c2(c+ logB)) with no Pj.

Proof. Since Lemma 9 shows us that PF never decreases and every switch increases PF by at
least 1, then the number of switches is bounded by PF . However PF is bounded by Lemma 7
which bounds li ≤ logγ (α4rB4), Theorem 2 which bounds s ≤ c, and the fact that we cannot
remove more vectors than are given which implies nrm ≤ r+N . Further we can see that (s−1)ls ≤
(c − 1) logγ (4α4cB4) so PF is maximized by making nrm = (r + N) (or c if no vectors added)
and s = 0. In which case we have number of switches ≤ PF ≤ (r + N)(c − 1)(logγ (4α4cB4) =
O((r +N)c(c+ logB)). Also if there are no Pj , we can replace r +N by c.

5 Complexity bound of main algorithm

In this section we wish to prove a bound for the overall bit-complexity of algorithm 3. The com-
plexity bound must rely on the complexity bound of the lattice reduction algorithm we choose for
step 3(c)iii. The results in the previous sections have not relied on this choice. We will present our
complexity bound using the H-LLL algorithm from [19]. We choose H-LLL for this result because of
its favorable complexity bound and because the analysis of our necessary adaptations is relatively
simple. See [19] for more details on H-LLL.

We make some minor adjustments to the H-LLL algorithm and its analysis. The changes to the
algorithm are the following:

– We have a single non-integer entry in each vector of bit-length O(c+ logX).
– Whenever the final vector has G-S length sufficiently larger than B, it is removed. This has no

impact on the complexity analysis.

We use τ as the number of switches used in a single call to H-LLL. This allows the analysis of
progress PF to be applied directly. The following theorem is an adaptation of the main theorem
in [19] adapted to reflect our adjustments.
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Theorem 5. If a single call to step 3(c)iii, with H-LLL [19] as the chosen variation of LLL,
uses τ switches then the CPU cost is bounded by O((τ + c+ logB)c2[(r +N)(c+ logB) + logX])
bit-operations.

Now we are ready to complete the complexity analysis of the our algorithm.

Theorem 6. The cost of executing algorithm 3 with H-LLL [19] as the variant of LLL in step 3(c)iii
is

O((r +N)c3(c+ logB)[logX + (r +N)(c+ logB)])

CPU operations, where B is a search parameter chosen by the user, |A[i, j]| ≤ X for all i, j, and
c = r +N or c = O(r) (see definition 3 for details). If there are no Pj’s then the cost is

O((r +N + c2)(c+ logB)c2[logX + (r +N)(c+ logB)]).

Proof. Steps 2, 3b, 3(c)i, and 3(c)ii have negligible costs in comparison to the rest of the algorithm.
Step 3a is called N times, each call performs s inner products. While each inner product performs
r multiplications each of the form bi[m] · xm,j appealing to Corollary 1 we bound the cost of each
multiplication by O((c+ logB) logX). Since Theorem 2 gives s ≤ c we know that the total cost of
all calls to step 3a is O(Ncr(c+ logB) logX). Let k = O(r+N) be the number of iterations of the
main loop. Let τi be the number of LLL switches used in the ith iteration. Theorem 5 gives the cost
of the ith call to step 3(c)iii as = O((τi+c+logB)c2[(r+N)(c+logB)+logX]). Theorem 4 implies
that τ1 + · · ·+ τk = O((r+N)c(c+ logB)) (or O(c2(c+ logB)) when there are no Pj ’s). The total
cost of all calls to step 3(c)iii is then O([k(c+ logB) + τ1 + · · ·+ τk]c2[(r+N)(c+ logB) + logX]).
The term [k(c + logB) + τ1 + · · · + τk] can be replaced by O((r + N)c(c + logB)) (if no Pj then
O((r +N + c2)(c+ logB))). The complete cost of is now O(Nrc(c+ logB) logX + (r +N)c3[c+
logB)(logX+(r+N)(c+logB)]). The first term is absorbed by the cost of the second term, proving
the theorem. If there are no Pj then we get O((r+N + c2)(c+logB)c2[logX+(r+N)(c+logB)]).

6 New complexities for applications of main algorithm

Our algorithm has been designed for some applications of lattice reduction. In this section we
justify the importance of this algorithm by directly applying it to two classical applications of
lattice reduction.

New complexity bound for factoring in Z[x] In [4] it is shown that the problem of factoring
a polynomial, f ∈ Z[x], can be accomplished by the reduction of a large knapsack-type lattice. In
this subsection we merely apply our algorithm to the lattice suggested in [4].

Reminders from [4]. Let f ∈ Z[x] be a polynomial of degree N . Let A be a bound on the
absolute value of the coefficients of f . Let p be a prime such that f ≡ lff1 · · · fr mod pa a separable
irreducible factorization of f in the p-adics lifted to precision a, the fi are monic, and lf is the
leading coefficient of f . For our purposes we choose B :=

√
r + 1.

We will make some minor changes to the All-Coefficients matrix defined in [4] to produce a
matrix that looks like:
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pa−bN

. . .

pa−b1

1 x1,1 · · · x1,N

. . .
...

. . .
...

1 xr,1 · · · xr,N


.

Here xi,j is the jth coefficient of f ′i · f/fi mods pa divided by pbj and pbj represents
√
N times

a bound on the jth coefficient of g′ · f/g for any true factor g ∈ Z[x] of f . In this way the target
vectors will be quite small. An empty spot in this matrix represents a zero entry. This matrix
has pa−bj > 2N

2+N log(A) > 2α4r+2B2 for all j. An (α,B)-reduction of this matrix will solve the
recombination problem by a similar argument to the one presented in [4] and refined in [22]. Now
we look at the computational complexity of making and reducing this matrix which gives the new
result for factoring inside Z[x].

Theorem 7. Using algorithm 3 on the All-Coefficients matrix above provides a complete irreducible
factorization of a polynomial f of degree N , coefficients of bit-length ≤ logA, and r irreducible
factors when reduced modulo a prime p in

O(N2r4[N + logA])

CPU operations. The cost of creating the All-Coefficients matrix adds O(N4[N2 + log2A]) CPU
operations using classical arithmetic (suppressing small factors log r and log2 p) to the complexity
bound.

The following chart gives a complexity bound comparison of our algorithm with the factorization
algorithm presented by Schönhage in [25] we estimate both bounds using classical arithmetic and
fast FFT-based arithmetic [5]. We also suppress all logN , log r, log p, and log logA terms.

Classical Gradual LLL O(N3r4 +N2r4 logA+N6 +N4 log2A)
Classical Schönhage O(N8 +N5 log3A)
Fast Gradual LLL O(N3r3 +N2r3 logA)

Fast Schönhage O(N6 +N4 log2A)

The Schönhage algorithm is not widely implemented because of its impracticality. For most
polynomials, r is much smaller than N . Our main algorithm will reduce the All-Coefficients matrix
with a competitive practical running time, but constructing the matrix itself will require more
Hensel lifting than seems necessary in practice. In [22] a similar switch-complexity bound to section 4
is given on a more practical factoring algorithm.

Algebraic number reconstruction The problem of finding a minimal polynomial from an
approximation of a complex root was attacked in [14] using lattice reduction techniques using
knapsack-type bases. For an extensive treatment see [17].

Theorem 8. Suppose we know O(d2 +d logH) bits of precision of a complex root α of an unknown
irreducible polynomial, h(x), where the degree of h is d and its maximal coefficient has absolute value
≤ H. Algorithm 3 can be used to find h(x) in O(d7 + d5 log2H) CPU operations.
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This new complexity is an improvement over the L2 algorithm which would use O(d9+d7 log2H)
CPU operations to reduce the same lattice. Although, one can prove a better switch-complexity
with a two-column knapsack matrix by using [10, Lem. 2] to bound the determinant of the lattice
as O(X2) and thus the potential function from [15] is O(X2d), leading to a switch complexity of
O(d logX) (posed as an open question in [26, sec. 5.3]). Using this argument the complexity for L2

is reduced to O(d8 + d6 log2H).
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A Missing Proofs

Proof of Lemma 4

Proof. Let Vi = {bi − (ai−1bi−1 + · · ·+ a1b1) | a1, . . . , ai−1 ∈ R}, then b∗i is the shortest vector in
Vi. Now the claim is that the shortest vector in Vi is not longer than the shortest vector in σ(Vi). So
let w be the shortest vector in σ(Vi). There is some v ∈ Vi with σ(v) = w. Let w = (w1, . . . , wn),
then v = (w1, . . . , wn/β) ∈ Vi. Now ‖ b∗i ‖≤‖ v ‖≤‖ w ‖=‖ σ(bi)

∗ ‖.

Proof of Lemma 5

Proof. Let b′i represent the ith vector after the extra entries are added for all values of i. Let
Vi := {bi − ai−1bi−1 − · · · − a1b1| for all aj ∈ R}, then we have b∗i = min(‖v‖; v ∈ Vi).

For any given i there are cj ∈ R for j < i such that b′∗i = b′i − ci−1b′i−1 − · · · − c1b′1. Let
v := bi − ci−1bi−1 − · · · − c1b1. Then we have ‖ b∗i ‖2≤‖ v ‖2 +(b′∗i [−1])2 =‖ b′∗i ‖2 (because
v ∈ Vi and (b′∗i [−1]) ∈ R).

Proof of Lemma 6

Proof. Lemma 3 directly implies that AD ≤ Bsα
Ps−1
i=1 i which proves the lemma.

Proof of Lemma 7

Proof. After step 2 and after step 3(c)iii we have an (α,B)-reduced sequence with s vectors. In
those cases lemma 3 gives us that

‖ bi ‖≤ αs−1B for all i. (2)

Before step 3(c)ii we have (2). Afterward we have all added one entry to each vector, and the new
entry has absolute value ≤ α2cB2. Altogether that gives ‖ bi ‖2≤ α2s−2B2 +α4cB4 ≤ 2α4cB4 when
s ≤ c.

Proof of Corollary 1

Proof. It follows from Lemma 7 and Theorem 2 that this holds before every call to step 3(c)iii.
However assumption 1 asserts that the largest G-S length cannot increase, so the corollary holds
throughout lattice reduction.

Throughout the rest of the algorithm the G-S lengths are much smaller. The G-S length is
bounded by αc−1B for an (α,B) reduced sequence by Lemma 3. The addition of extra entries in
step 3b can only increase the bound by the absolute value of the newly added entries which is
bounded by 2.

Proof of Lemma 8

Proof. Let b1, . . . ,bs be the basis vectors before scaling and b′1, . . . ,b′s the vectors after scaling.
Also let m be the index with maximal last entry, so |bm[−1]| ≥ |bi[−1]| for all i.

Now observe that if we rearrange the vectors this will have no effect on AD. So make bm the
first vector and we have: AD({b1, . . . ,bs})
= AD({bm,b1, . . . ,bm−1,bm+1, . . .bs}) and AD({b′1, . . . ,b′s})
= AD({b′m,b′1, . . . ,b′m−1,b′m+1, . . . ,b′s}). Lemma 4 shows us that
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‖ b∗i ‖≤‖ b′∗i ‖ for each i. Now we want to show that the norm of b′m is a factor αcB
2 larger than

the norm of bm.
In order to show this we will need the following fact, |b′m[−1]|2 > α4cB4/2, but this is true if

the algorithm found an ` > 0 in step 3(c)i.
Claim: Before an execution of step 3(c)ii we have ‖ bm ‖2≤ α2cB2.
If this is not the first execution of 3(c)ii inside iteration j of step 3 then, just before scaling, the

vectors are (α,B)-reduced, and the vectors have squared norm ≤ α2c−2B2 by Lemma 3.
If this is the first time we have called 3(c)ii inside iteration j of step 3 then ‖ bm ‖2≤‖

bm[1, . . . , r + j − 1] ‖2 +4 ≤ α2c−2B2 + 4, because the M [1, . . . , r + j − 1] is (α,B) reduced
and the newest entry has absolute value ≤ 2.

Now simply observe that α2c−2B2 + 4 ≤ α2cB2 for c ≥ 2, α ≥ (4/3), and B ≥
√

5. This shows
the claim. The theorem follows from the fact that ‖ b′m ‖2≥ α4cB4/4 when ` > 0.

Proof of Theorem 3

Proof. AD is unaffected by the lattice reduction algorithm used in step 3(c)iii by assumption 1,
except for the removal of a vector. The removal of the final vector reduces the AD by the final G-S
length at the time of its removal.

We know that a reduced basis of ≤ c vectors has AD ≤ (αc−1B2)c/2 with Lemma 6. We also
know, because of Lemma 8, that each iteration of step 3(c)ii with ` 6= 0 increases AD. While we
know from Lemma 4 that step 3(c)ii cannot decrease AD. Also adding an entry cannot decrease
G-S lengths from Lemma 5.

The only step which can decrease AD is a vector removal which can have decreased AD (through-
out the algorithm) by a cumulative factor ≤ (2α2cB2)r+N by Corollary 1.

Thus using k as the number of iterations of step 3(c)ii which do not end with ` = 0 we get the
following inequality after step 3(c)iii.

(αcB/2)k

(2α2cB2)r+N
≤ AD ≤ (α(c−1)B2)

c/2
.

This implies:
(αcB/2)k ≤ (

√
2αcB)

2r+2N+c
(3)

Claim The assumptions on B,α, and c imply that (αcB/2)3 ≥ (
√

2αcB).
By rearranging, we have an equivalent inequality: (αcB)2 ≥ 12 ≥ 23.5, but c ≥ 2, α ≥ (4/3),

B ≥
√

5. So we can safely assert (αcB)2 > 15 > 12 > 23.5 which gives the claim.
Now we have the following inequality:

(
√

2αcB)k/3 ≤ (
√

2αcB)2r+2N+c

This implies that k ≤ 6r + 6N + 3c. There can also be N calls to step 3(c)ii which terminate
the current iteration of the main loop step 3c (in other words, have precision ` = 0). So the total
number of iterations must be ≤ k +N ≤ 7N + 6r + 3c = O(r +N).

Proof of Lemma 9

Proof. After step 2 the b∗i are the rows of the identity matrix, thus they all have norm 1, li = 0 for
all i, and the number of removed vectors nrm = 0.
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The next step which effects the bi is the adjoining of a small entry in step 3b. Adding a real
number to all vectors of L cannot decrease G-S lengths and thus cannot decrease PF (Lemma 5).

The next step which effects the bi is scaling the last entry of each vector in step 3(c)ii. It was
proved in Lemma 4 that this step cannot decrease G-S lengths and thus cannot decrease progress
PF .

The only other step which effects the bi is step 3(c)iii. It is assumed in assumption 1 that the
only steps which effect PF are the switches and the removals. A switch must increase PF by at
least 1, since increasing ‖ b∗i+1 ‖2 by a factor ≥ γ must decrease ‖ b∗i ‖2 by the same factor. To
see this more clearly, li+1 → li+1 + a for some a ≥ 1 and li → li − a, so ((i − 1)li + (i)li+1) →
((i− 1)li + (i)li+1)− ai+ a+ ai, while the remaining lj are unaffected.

The removals must also increase PF . We assumed in assumption 1 that the largest G-S length
cannot be increased. We also know from Corollary 1 that the largest squared G-S length received is
≤ 4α4cB4. Thus the removal of a vector will cause PF to lose the term (s− 1)ls ≤ c logγ (4α4cB4)
(recall from Theorem 2 that s ≤ c) but to increase nrm by one thus increasing PF by the term
1 · c · logγ (4α4cB4), so the net effect is non-decreasing.

Proof of Theorem 5

Proof. Corollary 1 tells us that when step 3(c)iii is called from our algorithm we know that the
norm of all vectors is ≤ 2α2cB2, however each vector has one entry with a trailing decimal. The
bit-length of this entry is O(s+ logX) with only O(c+ logB) of these bits in front of the decimal.
The number of vectors s is bounded by c and the number of entries by r +N . In the remainder of
the proof we borrow the notations of [19].

First, we have to explore the effect of the high-precision entry on the cost of a single iteration of
size-reduction. This is summarized by [19, Th. 3.11] which divides the cost of size reducting vector
κ into: The number of iterations of partial size-reductions performed O(1 + 1

s log ‖b
b
κ‖

‖beκ‖
) and the

cost of each partial size-reduction O(nM(s) log(s|C|)). Here M(s) is the cost of multiplying two
integers of bit-length O(s), bbκ is the vector at the beginning of size-reduction, beκ the vector at the
end of size reduction, and |C| is a bound on the max-norms of the input vectors for H-LLL.

To address the cost of a size-reduction we note that |C| = 2α2cB2 so log(|C|) = O(c+logB), but
the cost of [19, Alg. 3, St. 6] is altered because now updating the vectors involves multiplications of
integers with precision O(c) and rational numbers of bit-length O(log(cX)) for the last coordinate.
So the cost of this step is now O((r +N)c2(c+ logB) + c2 logX). This adds to the other costs of
steps 1-7 of [19, Alg. 3] to give the cost of a single size-reduction as O(c2[logX+(r+N)(c+logB)]).
The number of size-reductions needed is unaffected by the extra precision entries. Also note that
removing the final vector has no effect on the G-S lengths of previous vectors (nor on the worst-case
complexity).

Finally, after every switch a size-reduction is performed. So [19, Th. 4.4] can be adapted to our
situation by replacing the term for the traditional number of switches by τ and adjusting the cost
of size-reduction as above. The result is the following complexity bound:

O
(
(c+ τ + logB)c2((r +N)(c+ logB) + (c+ logX)

)
.

The theorem follows from collecting terms.

Proof of Theorem 7
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Proof. First we will address the cost of constructing the matrix. This roughly amounts to the cost of
factoring modulo a prime p and Hensel Lifting r local factors of f to an accuracy of > 2O(N2+N logA).

For the cost of multifactor Hensel lifting we refer to [8, Alg. 15.17] which gives a complexity
bound of O(M(N) log rM(N [N+logA] log p)) whereM(N) is the cost of multiplying two integers
of bit-length N . To justify why log p is negligible note that according to [15, Eq. (3.9)] a suitable
p can be found with log p = O(logN + log (logA+ logN)). The cost of factoring modulo such a
small prime is also negligible in comparison with the cost of Hensel lifting.

For the cost of the actual sub-lattice reduction we simply appeal to Theorem 6 using H-LLL
as a chosen variant, logX = O(N [N + logA]), and logB = 1/2 log(r + 1). This is an appropriate
choice for B as the target vectors are all below norm

√
r + 1. (0-1 vectors with N extra terms of

absolute value ≤ 1/
√
N). In this estimate we use classical arithmetic.

Proof of Theorem 8

Proof. The lattice which was used in [14, Eq. 1.1] is a knapsack lattice with no Pj ’s. The lattice
has d rows and d+ 2 columns. The first extra column is for x1 the real part of αi (approximated)
and the second for x2 the complex part of αi (approximated). It is proved in [14, Thm. 1.11] that
input entries of bit-length logX = O(d2 +d logH) is sufficient to solve the problem. In order to run
our algorithm we need a bound for the norm of the target vectors (which will be the coefficients of
h(X) and the two columns). A bound of the target vector is also given in [14, Thm. 1.11], namely
B = 2d+1H2.

Using Theorem 6 with logX = O(d2 + d logH) and logB = O(d+ logH) we (α,B)-reduce this
lattice in O(d7 + d5 log2H) CPU operations.
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