
Isomorphisms of Algebraic Number Fields

Mark van Hoeij and Vivek Pal∗

September 17, 2010

Abstract

Let Q(α) and Q(β) be algebraic number fields. We describe a new
method to find (if they exist) all isomorphisms, Q(β) → Q(α). The
algorithm is particularly efficient if the number of isomorphisms is one.

1 Introduction

Let Q(α) and Q(β) be two number fields, given by the minimal polynomials
f(x) =

∑n
i=0 fix

i and g(x) =
∑n

i=0 gix
i of α and β respectively. In this

paper we give an algorithm to compute the isomorphisms Q(β) → Q(α).
Suppose there is an isomorphism then we have the following diagram of
field extensions:

Q(β)

g(x)

∼= // Q(α)

f(x)

Q Q

To represent such an isomorphism we need to give the image of β in
Q(α), in other words, we need to give a root of g(x) in Q(α).

We now describe two common methods of computing isomorphisms of
number fields.

Method I. Field Isomorphism Using Polynomial Factorization [11, Algorithm 4.5.6]

• Find all roots of g in Q(α). Each corresponds to an isomorphism
Q(β)→ Q(α). The roots can be found by factoring g over Q(α).

∗Florida State University

1

(a) If done with Trager’s method, one ends up factoring a poly-
nomial in Q[x] of degree n2.

(b) An alternative is Belabas’ algorithm for factoring in Q(α).

Method II. Field Isomorphism Using Linear Algebra [11, Algorithm 4.5.1/4.5.5]

(a) Let α1, . . . , αd be the roots of f in Qp (choose p with d > 0).

(b) Let β1, . . . , βd be the roots of g in Qp.

(c) If β 7→ h(α) is an isomorphism, then h(α1) = βi for some i ∈
{1, . . . , d}.

(d) Run a loop i = 1, . . . , d and for each i, use LLL[9] techniques
to check if there exists a polynomial h(x) ∈ Q[x]<n for which
h(α1) = βi.

Method I is often fast, but one can give examples where it becomes
slow, e.g. for so-called Swinnerton-Dyer polynomials, the degree n2 factoring
leads to a lattice reduction in [VH 2002] of dimension approximately n2/2.
Method I(b) can be faster, but one can still produce examples where it
becomes slow, e.g. [7]. For such examples method II is faster because the
lattice reduction there has dimension approximately n.

Our algorithm is similar to Method II. There can be n distinct isomor-
phisms (in the Galois case) and in this case our algorithm is the same as
Algorithm II. However, if there is only one isomorphism then we can save
roughly a factor d. This is because we can do the LLL computation for all
βi simultaneously.

2 Preliminaries

We let Q[x]<n denote the polynomials over Q with degree less than n.

Definition 2.1. If h(α) ∈ Q(α) then the notation h(x) is the element of
Q[x]<n that corresponds to h(α) under x 7→ α.

Under an isomorphism β will map to some h(α) ∈ Q(α),

β 7→ h(α) =

n−1∑
i=0

hiα
i (1)

.
A polynomial h(x) ∈ Q[x]<n represents an isomorphism if and only if

h(α) is a root of g, i.e. g(h(α)) = 0.

2

If Q(β) is isomorphic to Q(α) then g and f have the same factorization
pattern in Qp[x] for every prime p. To simplify the factoring in Qp[x] we
restrict to good primes p, defined as:

Definition 2.2. A good prime p is one that does not divide the leading
coefficient of f or g and does not divide the discriminant of either f or g.

Remark 2.3. Both f and g are taken to be in Z[x].

For a good prime p we can factor f in Qp[x] up to any desired p-adic
precision by factoring in Fp[x], followed by Hensel Lifting [11, p. 137].
Likewise we can distinct-degree factor f as:

f = F1F2 . . . Fm in Qp[x] (2)

where Fd is the product of all irreducible factors of f in Qp[x] of degree d
[11, Section 3.4.3].

Definition 2.4. Sub-traces Let p be a prime and d a positive integer.
Then we define the Q-linear map:

Trdp(f, ∗) : Q(α)→ Qp

as follows. Let h(x) ∈ Q[x]<n, h(α) ∈ Q(α) and Fd as above, then:

Trdp(f, h(α)) :=
∑
γ∈Qp

Fd(γ)=0

h(γ)

We call these maps sub-traces because the sum is taken over a subset of the
roots of f .
Likewise we define Trdp(g, ∗) : Q(β)→ Qp.

Remark 2.5. The map Trdp does not depend on the choice of the minimal
polynomial f that is used to represent the number field. In particular if
β 7→ h(α) is an isomorphism Q(β)→ Q(α) then

Trdp(g, β) = Trdp(f, h(α)) for every p, d

Definition 2.6. We will now define two bases of Q(α) that we will need.
The first one is the standard basis, which is {1, α, α2, . . . , αn−1}. The second
will be called the rational representation basis, which is
{1/f ′(α), α/f ′(α), . . . , αn−1/f ′(α)}.

3

Rational representation can improve running time and complexity re-
sults, see [4]. This representation has also been used under various names,
see [2, 4], and occurs naturally in algebraic number theory as a dual basis
under the trace operator, see [2].

A basis for Q(α) corresponds to a map ρ : Qn → Q(α). We use the
rational representation basis, therefore

ρ : (a0, a1, . . . , an−1) 7→
1

f ′(α)

n−1∑
i=0

aiα
i.

Definition 2.7. The inverse linear map h(α) 7→ ~h, from Q(α) to Qn is as
follows. Let h(α) =

∑n−1
i=0 aiα

i ∈ Q(α) and write f ′(α) · h(α) as
∑n−1

i=0 biα
i.

Then define ~h := (b0, b1, . . . , bn−1) ∈ Qn.

Remark 2.8. One of the advantages of rational representation is: by using
the bi in ~h instead of the ai, we have ~h ∈ Zn for every algebraic integer
h(α), see lemma 4.2. Moreover, as in [4] this also improves bounds (section
4). It is also better to use gn~h than simply using h(α) since gn~h will have
integer components, by Corollary 4.3, which are easier to bound and are
heuristically of smaller size [4, Section 6].

For a polynomial f(x) =
∑n

i=0 fix
i denote

‖f(x)‖ :=

(
n∑
i=0

|fi|2
)1/2

.

Let M(f) be the Mahler measure of f ,

M(f) := fn ·
∏
f(γ)=0

γ∈C

max {1, |γ|}.

3 Overview of the Algorithm

Goal: To find all gn~h ∈ Zn for which β 7→ h(α) defines an isomorphism
Q(β)→ Q(α).
Idea: The aim of the pre-processing algorithm in Section 5 is to find a
sequence

Zn = L0 ⊇ L1 ⊇ L2 ⊇ · · · ⊇ Lk
such that all gn~h are in each Li. We can then use Lk to speed up the
computation of the isomorphism(s), especially when dim(Lk) is small. The
cost of computing Lk is comparable to one iteration in Method II.

4

In the algorithm we start with the lattice Zn and then add the re-
strictions imposed by the condition that under an isomorphism, sub-traces
Q(α) → Qp must correspond to sub-traces Q(β) → Qp. By doing this for
several primes we are able to narrow down the possible isomorphisms. If
dim(Lk) ≤ 1, this directly gives the isomorphism or shows that there is no
isomorphism. If dim(Lk) > 1 then we switch to Method II, but starting
with Lk. Thus we end up with d lattice reductions of dimension dim(Lk).
In the worst case dim(Lk) ≈ n, this costs the same as Method II. In the
best case, dim(Lk) ≤ 1 and we save a factor d.

4 Bounding the length of gn~h

To effectively carry out this algorithm we will need a good upper bound on
the size of gn~h. In this section we aim to find such a bound.

Definition 4.1. Let α1, . . . , αn ∈ C be the roots of f . Then using the basis
{1, x, x2, . . . , xn−1} of C[x]<n and the standard basis {e1, e2, . . . , en} for Cn,
the interpolation map Cn → C[x]<n is given by:

ei 7→
f(x)/(x− αi)

f ′(αi)

This polynomial takes value 1 at x = αi and value 0 at x = αj (i 6= j).
The inverse of the interpolation map is the evaluation map, which is given
by the Vandermonde matrix:

1 α1 α2
1 . . . αn−11

1 α2 α2
2 . . . αn−12

1 α3 α2
3 . . . αn−13

...
...

.
...

1 αn α2
n . . . αn−1n

Lemma 4.2. If a ∈ Q(α) is an algebraic integer and f(x) is the minimal
polynomial for α, then f ′(α) · a ∈ Z[α].

Proof. Denote by (i) the complex embeddings of Q(α). Then define

m(x) :=
n∑
i=1

a(i)
f(x)

x− α(i)
.

The coefficients of m(x) are in Q since the polynomial is symmetric in the
α(i). But m(x) is also a sum of polynomials all of whose entries are algebraic

5

integers. Hencem(x) ∈ Z[x]. Note that for α = α(1) we get m(α) = af ′(α) ∈
Z[α].

Corollary 4.3. Let β 7→ h(α) be an isomorphism of Q(β) and Q(α). Then
gnh(α) is an algebraic integer and hence gn~h ∈ Zn.

Proof. Apply lemma 4.2 by letting a = gnh(α) and recall that gn~h is com-
prised of the coefficients of gnf

′(α)h(α) in the standard basis, each of which
will be integers by lemma 4.2.

Lemma 4.4. Let P (x) =
∑n

i=1 βi
f(x)
x−αi ∈ Q[x]<n, then P (α) = f ′(α)h(α).

Proof. If we evaluate f ′(x)h(x) at the roots of f(x) and then interpolate we
get:

n∑
i=1

βif
′(αi)

f(x)/(x− αi)
f ′(αi)

=
n∑
i=1

βi
f(x)

x− αi
.

Therefore
∑n

i=1 βi
f(x)
x−αi will be the remainder of f ′(x)h(x) divided by f(x),

because they are of the same degree and coincide on the n roots of f(x).
The lemma then follows from the fact that α is a root of f(x).

In order to bound f ′(α)h(x) we will have to bound both f(x)
x−αi and also

|βi|. We will use Corollary 4.7 to bound f(x)
x−αi and since we know the βi up

to a permutation (they are roots of g(x)), we can bound
∑
|βi|.

Theorem 4.5. If f(x) and f̃(x) are polynomials with complex coefficients,
of degree n and d respectively, such that f̃(x) divides f(x) and |f(0)| =
|f̃(0)| 6= 0, then

‖f̃(x)‖ ≤

n−d∑
j=0

(
d

j

)2
1/2

‖f(x)‖. (3)

Proof. See Granville, [1].

Corollary 4.6. If f(x) and f̃(x) have the same leading coefficient and
f(0), f̃(0) 6= 0 and f̃(x) divides f(x) then equation (3) holds.

Proof. Apply Theorem 4.5 to the reciprocals of f and f̃ .

Corollary 4.7. Let P (x) be an irreducible polynomial (over Q) of degree
n ≥ 1 and let {γ1, γ2, . . . , γn} be its complex roots. Then∥∥∥∥ P (x)

x− γi

∥∥∥∥ ≤ n‖P (x)‖

6

Proof. Take f̃(x) = P (x)
x−γi and f(x) = P (x) and apply Corollary 4.6. Then

∥∥∥∥ P (x)

x− γi

∥∥∥∥ ≤
n−(n−1)∑

j=0

(
n− 1

j

)2
1/2

‖P (x)‖ =

 1∑
j=0

(
n− 1

j

)2
1/2

‖P (x)‖

=

((
n− 1

0

)2

+

(
n− 1

1

)2
)1/2

‖P (x)‖ = (n2−2n+2)1/2‖P (x)‖ ≤ n‖P (x)‖.

Theorem 4.8. Let
Sg(x) :=

∑
g(β)=0

β∈C

|βi|

then:
gn‖~h‖ ≤ gnn

(
Sg(x)

)
‖f(x)‖. (4)

There are several ways to bound Sg(x):
1) Sg(x) ≤ The degree of g(x) times the rootbound described in [3].
2) Sg(x) ≤M(g)/lc(g) + (n− 1), where the Mahler measure can be bounded
by ‖g(x)‖.

Proof. (of Equation (3))

‖~h‖ = ‖P‖ = ‖
n∑
i=1

βi
f(x)

x− αi
‖ ≤ n‖f(x)‖

n∑
i=1

|βi| = n‖f(x)‖Sg(x).

The first equality is by the definition of ~h, the second by Lemma 4.4 and
the inequality by Corollary 4.7.

5 The Algorithms

Here we give the algorithms for computing the isomorphisms between num-
ber fields. The Pre-processing algorithm reduces the lattice of possible iso-
morphisms and gives the explicit isomorphism if there is only one. The
next algorithm, FindIsomorphism, calls the Pre-processing algorithm and
uses the remaining lattice to check which maps on roots corresponds to an
isomorphism.

Algorithm: LLL-with-removals[10]
Input A matrix A and a bound b.

7

Output A set of LLL reduced row vectors where the last vector is removed
if its Gram-Schmitt length is greater than b.

Algorithm: FindSuitablePrime
Input (f(x), g(x), x,bp, b, e), where bp is the first prime to test, b and e
determine the level to Hensel Lift to.
Output p, pa,m, [[Fd1 , Gd1], [Fd2 , Gd2], . . . [Fdm , Gdm]], see equation (2) for
notation.
Procedure

1. p := bp, counter:= 0.

2. Repeat (until the algorithm stops in Steps 2(d)ii, 2(f) or 2(j)).

(a) p := nextprime(p)

(b) if p| discriminant(f, x) or p|fn then go to Step 2(a)

(c) if p| discriminant(g, x) or p|gn then go to Step 2(a)

(d) Distinct Degree Factor f as f ≡ Fd1Fd2 . . . Fdm mod p.

i. If m = 1 then counter := counter +1.

ii. If counter > 25 then print “They appear to be Galois” and
return 0,0,0,0.

(e) Distinct Degree Factor g as g ≡ Gd′1Gd′2 . . . Gd′m′ mod p.

(f) If m 6= m′ or if the degrees of Fi and Gi do not match then return
“There is no isomorphism”.

(g) Let a :=
⌈
be/102e/4

⌉
.

(h) Hensel lift f ≡ Fd1Fd2 . . . Fdm mod pa and likewise for g.

(i) If deg(F1) > 0 then store p for later use.

(j) Return p, pa,m, [[Fd1 , Gd1], [Fd2 , Gd2], . . . [Fdm , Gdm]] as output and
stop.

Algorithm: Pre-Processing
Input Polynomials f(x) and g(x).
Output Either “No isomorphism exists”, a verified isomorphism, or a Z-
module which contains (gn~h, gn) for every isomorphism h.
Remark: This lattice is given as the row space of a matrix C.
Procedure

8

1. Initialize

(a) e := n+ 1.

(b) C := (n+ 1) x (n+ 1) identity matrix.

(c) p := 3.

(d) q := 0.

(e) Let {Basei} ∈ Q(α)<n, i = 1 . . . n be {ρ(1, 0, . . . , 0), ρ(0, 1, . . . , 0), . . . , ρ(0, 0, . . . , 1)}
with ρ defined in Section 2.

2. Let S be an upper bound for
∑

g(β)=0

β∈C
|βi|, e.g. (4.8.1) or (4.8.2). Our

implementation uses (4.8.1).

3. Let b := nS‖f(x)‖, be the bound described in Theorem 4.8.

4. Repeat (until the algorithm stops in 4(b), 4(e) or 4(i)).

(a) q := q + 1.

(b) p, pa,m,Mq := FindSuitablePrime(f, g, x, p, b, e).

i. If p = 0 then return C.

(c) Find Trdp(f,Basei) for i = 1 . . . n and Trdp(g, β) for each d with
deg(Fd)> 0. The necessary Fd, Gd are read from Mq.

(d) A :=

[
C CT
0 P

]
, where

P :=

 pa

. . .

pa

 ,

T :=

Trd1p1 (f,Base1) . . . T rdmp1 (f,Base1)

Trd1p1 (f,Base2) . . . T rdmp1 (f,Base2)
... . . .

...
Trd1p1 (f,Basen) . . . T rdmp1 (f,Basen)

Trd1p1 (g, β) . . . T rdmp1 (g, β)

the d1, . . . , dm are as in Step 2(h) in Algorithm FindSuitablePrime.
(Omitted entries are zero.)

(e) If CT ≡ 0 mod pa then

i. counter := counter +1.

9

ii. If counter < 10 then Go to Step 4(a) else return C and stop.

(f) L := LLL-with-removals(A, b).

(g) Let C be the matrix with the first n+ 1 columns of L and B the
remaining m columns of L, so L = [C B].

(h) if B 6= 0 then

i. B := 1020 ·B
ii. A := [C B]

iii. L := LLL-with-removals(A, b), then go to Step 4(g).

(i) Let e := number of rows of C.

i. if e = 0 then output “There is no isomorphism.”

ii. if e = 1 then let C be [V, v] with V an n dimensional vector,
and let h be the polynomial corresponding to V/v.

A. Let iso:= h(α)gn
f ′(α) .

B. If iso satisfies g then output “iso is the only isomor-
phism.”

C. If not then output “There is no isomorphism.”

iii. Else, go to Step 4a.

Remark 5.1. If we let d be the number of isomorphisms (Q(β) → Q(α))
then just by looking at the input/output of the Pre-processing algorithm we
see that:

If d ∈ {0, 1} then the output is either

{
all isomorphisms

a lattice

If d > 1 then the output is a lattice

In the next algorithm we use the lattice outputted from Pre-Processing
to check all possible maps on the roots to see which are actual isomorphisms.
This will find all isomorphisms from Q(β)→ Q(α).

The following algorithm is described for (linear) roots of f and g in Qp

and can be extended to the roots of Fi and Gi instead.

Remark 5.2. It should be noted that even if the Pre-processing Algorithm
does not find the isomorphism(s), the LLL switches it performs will still
contribute to the FindIsomorphism Algorithm. This is true for the same
reason as in [11, pg 175].

10

Algorithm: FindIsomorphism
Input Two polynomials, f, g ∈ Z[x] which are irreducible and of the same
degree.
Output The set of all isomorphisms from Q[x]/(f) to Q[x]/(g).
Procedure

1. C := Pre-Processing(f(x) , g(x), x).

2. If Step 2(i) in Algorithm FindSuitablePrime (called from Pre-Processing)
stored at least one prime, then choose one with smallest deg(F1). Oth-
erwise keep calling Algorthm FindSuitablePrime until such a prime is
found.

3. Let α1, . . . , αd be the roots of F1 and Hensel lift them to Z/(pa) with a
as in Algorithm FindSuitablePrime. Likewise let β1, . . . , βd ∈ Z/(pa)
be the roots of G1.

4. For j from 1 to d do:

(a) Apply steps 4(d) through 4(i)ii of Pre-Processing using

T :=

Base1|α=αj
Base2|α=αj

...
Basen|α=αj

β1

(b) If e > 1 then

i. Hensel Lift the roots of f and g to twice the current p-adic
precision, i.e. p2a.

ii. Apply Step 4(a) with the more precise roots.

5.1 Proofs of Termination and Validity

In this section we prove that the algorithms terminate and show that the
algorithm does indeed produce all isomorphisms of the number fields Q(β)
and Q(α).

First we cite a lemma which shows why we can use LLL with removal
in our algorithm.

11

Lemma 5.3. Let {b1, . . . , bk} be a basis for a lattice, C, and {b∗1, . . . , b∗k}
the corresponding Gram-Schmitt orthogonalized basis for C. If ‖b∗k‖ > B
then a vector in C with norm less than B will be a Z-linear combination of
{b1, . . . , bk−1}.

Proof. This follows from the proof of Proposition 1.11 in [9], it is also stated
as Lemma 2 in [10].

Corollary 5.4. Using LLL-with-removals on a lattice containing gn~h with
the bound b, computed in Step 3 of Pre-Processing, does not remove gn~h
from the lattice.

Proof. Using Lemma 5.3 and Theorem 4.8 we know that removing final
vectors with Gram-Schmitt length bigger than b does not remove any of the
gn~h.

Lemma 5.5. The Pre-Processing Algorithm terminates.

Proof. The steps of the Pre-Processing algorithm are known algorithms that
terminate, the only one that is not immediate is Step 4(h). Step 4(h) termi-
nates because each run increases the determinant of the lattice (Step 4(h)i)
and any final (see Lemma 5.3) vector with Gram-Schmitt length bigger than
b is removed, thus the number of vectors is monotonically decreasing and
hence it can only be run a finite number of times.

Lemma 5.6. The FindIsomorphism Algorithm described above terminates.

Proof. For Steps 1-3 it is clear why each will terminate. We show that Step
4 terminates by contradiction.
Suppose Step 4 never terminates (i.e. the lattice always has dimension >
1) then it contains at least two vectors: (h1, e1) and (h2, e2). Let H = h1
if e1 = 0 or H = e1h2 − e2h1 otherwise. Then H(α) ≡ 0 mod pa. We
get a contradiction when pa is larger than an upper bound for Resx(H, f).
An upper bound for H can be obtained from equation 1.7 in [9] and the
fact that the last vector after LLL-with-removals has Gram-Schmitt length
≤ b.

6 Heuristic estimate on the rank of C

Let C ⊆ Zn+1 be the output of the Pre-Processing Algorithm.

Observation 6.1. In most (but not all) examples, dim(C) is equal to n −
n/d+ 1.

12

This means that Pre-Processing is most effective when d = 1. Though
as pointed out in Remark 5.2 the work done in Pre-Processing reduces the
amount left to do.

Let G be the Galois group of f(x) and let Hi be the stabilizer of αi for
i ∈ {1, 2, . . . , n}, where the αi are the roots of f(x).

Let d be the number of j such that H1 = Hj , then d is the number of
automorphisms of Q(α). If Q(α) and Q(β) are isomorphic then d will also
be the number of isomorphisms from Q(β) to Q(α).

Remark 6.2. We viewG, which as the Galois group acts on {α1, α2, . . . , αn},
as acting on the set {1, 2, . . . , n} in the most natural way. Hence we view G
as a subgroup of Sn, the symmetric group.

We will construct a partition matrix as follows. For each σ ∈ G, group
together the cycles of the same length. Different group elements and cycle
lengths will correspond to different rows. For each element of G and for
each cycle length in σ, construct one row of P as follows: place a 1 in the
ith entry if αi is in a cycle of that length. We call the resulting matrix P .

For example for σ1 = (1)(2)(3)(456) and σ2 = (12)(3456) we would get
the following partition matrix :

P =

σ1 l = 1
σ1 l = 3
σ2 l = 2
σ2 l = 4

...

1 1 1 0 0 0
0 0 0 1 1 1
1 1 0 0 0 0
0 0 1 1 1 1
...

...
...

...
...

...

Since there are d automorphisms the number of distinct columns of P

will be ≤ n/d, hence rank(P) ≤ n/d and thus Nullspace(P) ≥ n− n/d.
This translates into an estimate on the rank of the lattice C since it

helps us bound

V =
⋂
p,d

Ker(Trdp(f, ∗)).

Nullspace(P) corresponds to elements for which all sub-traces are zero,
so dim(Nullspace(P)) ≤ dim(V).

Since we used LLL-with-removals with cut off point b, if V admits a
basis whose norms are all smaller than b then V ⊆ π1...n(C), where π1...n is
the projection on the first n coordinates.

Therefore under that assumption

dim(π1...n(C)) ≥ dim(Nullspace(P)) ≥ n− n/d.

13

This leads to our estimate:

dim(C) ≈ n− n/d+ 1. (5)

For most polynomials taken from the database [5] our estimate is an
equality. Peter Muller provided an infinite sequence of counter-examples for
the case we were most interested in (d = 1). For the first group in this
sequence, the database [5] provides the following example:
f := x14+2x13−5x12−184x11−314x10+474x9+1760x8+1504x7−400x6−
1478x5 − 818x4 + 73x3 + 260x2 + 121x+ 23,
which has one automorphism but the Pre-processing algorithm outputs a
dimension 2 lattice.

7 Computational Efficiency

We compare our algorithm implemented in Maple with other methods of
finding isomorphisms. The best algorithm we know for factoring over num-
ber fields is give by Belabas in [6], which is implemented in Pari/Gp. Both
implementations were run on a standard 2.2GHz processor. We tested them
on the field extensions given by the following two degree 25 polynomials:
f1 := 2174026154062500000x25−12927273797812500000x24+44254465332187500000x23−
102418940816662500000x22+180537842164766250000x21−249634002590534050000x20+
292282923494920350000x19−384197583430502150000x18+815826517614521346000x17−
2131245874043847615600x16+4352260622811059705104x15−6463590834754261173232x14+
6920777688226436002712x13−4525061881234027826296x12+528408698276686662696x11+
2762117617850418790424x10−4343360968383689825174x9+4191186502263628451150x8−
2802452375464033976482x7+1332292171242725153638x6−161285249796825311495x5−
429207332210687640181x4+264147194777000152867x3+6032198632961699729x2−
42885793067858008650x+ 13774402803823804220 and
f2 := −42885793067858008650x−13774402803823804220−161285249796825311495x5+
429207332210687640181x4+264147194777000152867x3−6032198632961699729x2−
1332292171242725153638x6−2802452375464033976482x7−4191186502263628451150x8−
4343360968383689825174x9−2762117617850418790424x10+528408698276686662696x11+
4525061881234027826296x12+6920777688226436002712x13+6463590834754261173232x14+
4352260622811059705104x15+815826517614521346000x17+384197583430502150000x18+
292282923494920350000x19+249634002590534050000x20+180537842164766250000x21+
102418940816662500000x22+44254465332187500000x23+2131245874043847615600x16+
12927273797812500000x24 + 2174026154062500000x25.

These are field extensions with one isomorphism between them. Using
Belabas’ method we have a runtime of 11.69 seconds, which includes the

14

indispensable operation of defining the number field, and with our algorithm
we have a runtime of 2.97 seconds.

We also tested this algorithm in the case where our heuristic estimate
on the rank does not apply, namely on the first counter-example. Using
Belabas’ method we have a runtime of .091 seconds and with our algorithm
we have a runtime of .797 seconds.

Bearing in mind that our implementation is not optimized and is coded
in Maple we expect it to be much faster when using a better implementation
of LLL.

We also tested them on a larger example, namely the degree 81 example
located at [7], our algorithm found the isomorphism in 2604.843 seconds and
the Belabas’ implementation did not finish as it ran out of memory after
trying for a few days. Therefore there are certainly advantages to using this
algorithm, as there are examples where there is a significant reduction in
the required runtime/resources.

8 Summary

Method II (from Section 1) can be described by the following procedure:
first pick p such that f and g have roots in Qp. Fix one root β ∈ Qp of
g, take all roots α1, . . . , αd ∈ Qp of f . Then for each αi use LLL to find
hi ∈ Q[x] (if it exists) with hi(αi) = βi.

Our approach is similar, the difference is that we start with LLL re-
ductions (obtained from sub-traces) that are valid for all αi. This way, a
portion of the LLL computation to be done for each αi is now shared. The
time saved is then (d − 1) times the cost of the shared portion. This can
be made rigorous by introducing a progress counter for LLL cost similar to
[10].

9 References

1. Granville, A. “Bounding the coefficients of a divisor of a given poly-
nomial”, Monatsh. Math. 109 (1990), 271-277.

2. Conrad, Kieth. “The different ideal”. Expository papers/Lecture
notes. Available at:
http://www.math.uconn.edu/∼kconrad/blurbs/gradnumthy/different.pdf

3. Monagan, M. B. “A Heuristic Irreducibility Test for Univariate Poly-
nomials”, J. of Symbolic Comp., 13, No. 1, Academic Press (1992)

15

47-57.

4. Dahan, X. and Schost, É. 2004. “Sharp estimates for triangular sets”.
In Proceedings of the 2004 international Symposium on Symbolic and
Algebraic Computation (Santander, Spain, July 04 - 07, 2004). ISSAC
’04. ACM, New York, NY, 103-110.

5. Database by Jürgen Klüners and Gunter Malle , located at:
http://www.math.uni-duesseldorf.de/∼klueners/minimum/minimum.html

6. Belabas, Karim. “A relative van Hoeij algorithm over number fields”.
J. Symbolic Computation, Vol. 37 (2004), no. 5, pp. 641-668.

7. Website with implementations and Degree 81 examples:
http://www.math.fsu.edu/ ∼vpal/Iso/

8. van Hoeij, Mark. “Factoring Polynomials and the Knapsack Problem.”
J. Number Th. 95, 167189, 2002

9. Lenstra, A. K.; Lenstra, H. W., Jr.; Lovsz, L. “Factoring polynomials
with rational coefficients”. Mathematische Annalen 261 (4), 515534,
1982.

10. M. van Hoeij and A. Novocin, “ Gradual sub-lattice reduction and a
new complexity for factoring polynomials”, accepted for proceedings
of LATIN 2010.

11. Cohen, Henri A Course in Computational Algebraic Number Theory,
Graduate Texts in Mathematics 138, Springer-Verlag, 1993.

Florida State University 211 Love Building, Tallahassee, Fl 32306-3027,
USA
E-mail address: hoeij@math.fsu.edu
E-mail address: vpal@math.fsu.edu

16

