
References

K. Belabas A relative van Hoeij algorithm over number fields, J. Symbolic Computation, 37 (2004), pp. 641–668.

K. Belabas, M. van Hoeij, J. Klüners, A. Steel, Factoring polynomials over global fields, arXiv:math/0409510v1 (2004).

M. van Hoeij, Factoring polynomials and the knapsack problem, J. Number Theory, 95 (2002).

M. van Hoeij and A. Novocin, Complexity results for factoring univariate polynomials over the rationals, preprint (2007).

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982).

A. Novocin, Factoring Univariate Polynomials over the Rationals, Florida State University, PhD Thesis (2008).

H. Zassenhaus, On Hensel factorization I, Journal of Number Theory (1969).

Why This is Interesting

There used to be a gap between the best factoring algorithm in theory, and the best algorithm in

practice. Before 2001, the Zassenhaus algorithm performed best in practice, while LLL/Schönhage

had the best theoretical complexity. This gap between theory and practice grew even wider with [van

Hoeij 2002] because this algorithm was even faster in practice, while even worse in theory ([van Hoeij

2002] contains no complexity bound).

Then in [BHKS] the gap was made smaller; polynomial time complexity bounds for two versions of

the [van Hoeij 2002] algorithm were given. However, the gap between theory and practice remained

very large because the version that was faster in practice received the worse theoretical bound!

We can now resolve this unfortunate situation. We have made the (in practice) fastest version even

faster, in practice, by saving time on Hensel lifting. For this (in practice) fastest version we have

proved a bound for the switch-complexity that is asymptotically sharp. This bound perfectly captures

the actual behavior of the algorithm, in fact, the progress P could even be used to give a realistic

progress bar!

We do not merely reduce the gap between theory and practice; we eliminate the gap altogether. The

algorithm that is best in practice, and the algorithm that is best in theory, are now the same algorithm.

Our theoretical work resulted in more than just a better bound for the complexity of factoring. It

also allowed us to solve the key practical problem (mentioned earlier) in designing an efficient early

termination algorithm. Recall that the key practical problem was wasting time on attempts that were

“unsuccessful” because we had not lifted far enough. We can now solve this problem by designing

the algorithm with the measure P in mind, we just have to ensure that P increases with every LLL

switch, and that we take no steps that could decrease P .

This Complexity Result Explains The Algorithm’s Behavior

As already mentioned, [BHKS] gave the worst complexity result for the faster version of the al-

gorithm. The explanation is that the complexity work in [BHKS] does not reflect some important

features of the algorithm. These features are the following previously unexplained observations about

this algorithm:

• According to Section 2.5.1 in [Belabas], if the parameter BitsPerFactor in Algorithm 2.3 is reduced

a factor 2, it has little impact on the CPU time. However, this would double the number of LLL

calls. So the observation is that the number of LLL calls has little impact on the CPU time. This

observation is not reflected in the [BHKS] complexity result, but is reflected in our complexity

result since our bound of 68r3 LLL switches is independent of how many LLL calls are made.

• In section 2.5.3 of [Belabas] there is an example which uses 62 LLL calls, most of the CPU time

for this example is spent during only 11 of the calls to LLL. This illustrates that a small subset

of the LLL calls can dominate the LLL cost. This observation can now be understood with our

complexity result; the switch complexity bound for each individual LLL call, which is O(r3) , is

up to a constant the same as our bound for all LLL calls combined. In our bound, we do not know

a priori which LLL calls will perform the bulk of the work, all we can do is bound the total cost.

The example in section 2.5.3 in [Belabas] helped us because it illustrated that in order to get a good

complexity result, we should not calculate “bound # LLL calls” times “bound cost of each LLL call”.

The above two observations gave a strong clue that we needed to search for a switch complexity bound

(for all LLL calls combined) that is independent of the number of LLL calls. Finding such a bound

explains both observations. So the theoretical complexity work gives practical insight about how the

[van Hoeij] style factoring algorithms (specifically the fastest versions) really work!

Further, the design of our algorithm allows for the Early Termination feature to be included without

harming the switch complexity.

Properties true at every exit arrow

1. s < ⌊3r
2 ⌋ s = r + ngood − nrm is the dimension of L

2. ngood ≤ 3r + 2 ngood counts ‘good’ coefficients (Exit 11a)

3. nbad ≤ 3r2 − 2r + 1 nbad counts ‘bad’ coefficients (Exit 11b)

4. nnovec ≤ 3r + 2 nnovec counts ‘no vector’ coeffs (Exit 10)

5. nrm ≤ r + ngood − 1 ≤ 4r + 1 nrm counts the removed vectors

6. nscales ≤ 3r + 2 nscales counts successful scalings (Exit 15)

7. nentries ≤ 3r2 + 5r + 5 nentries counts entries in bi, i.e. L ⊆ Z
nentries

8. nswitches ≤ P nswitches counts LLL switches throughout

9. P out ≥ P in Progress, P , is how we bound nswitches

10. W ⊆ π(L) W is the solution lattice in Z
r

11. ‖ π−1(vg) ‖2 ≤ r + 1 for any irreducible factor g This is how we ensure W ⊆ π(L)

The basic strategy for proving these properties throughout the algorithm is to check them inductively

at each box of the flow chart. We assume the properties hold true at the beginning of a procedure and

show that they still hold at the end of the procedure.

Bounding the Dominant Complexity Term: LLL Costs

The number of CPU operations used in an LLL call is dependent on the number of LLL switches

plus some small overhead cost for each call. So to bound the LLL cost we will prove a bound for the

total number of LLL switches. We achieve this by creating a measure to bound the number of LLL

switches which we call Progress P :

P := 1 · l1 + · · · + (s) · ls +
3r

2
· nbad +

3r

2
· 2r log√

4/3
(2) · nrm

Here li is the logarithmic Gram-Schmidt Length of the vectors LLL is working on, while nrm and

nbad are counters for removed vectors. The strategy of our switch bound is to show that, throughout

the algorithm, the number of LLL switches, nswitches , is always ≤ P , and that P ≤ 68r3 at the

algorithm’s termination [Novocin, 2008]. In order to show this we need some technical properties to

hold throughout the algorithm.

The r3 Algorithm:

Check for Factors

Problem Solved and

Decide If Combinatorial

Of Each Vector

Last Entry

Scale Up The

Vectors

Remove Big

is done here)

(most work

Perform LLL

Decide if Good/Bad

Probationary LLL Call

Add A New Vector

Must Be Added

A New Vector

Decide If

To Create Next Entry

Coefficient of f ′

i
f/fi

Search for Next Usable

Hensel Step

Perform

Initialize Vectors

Factor mod p and

Factorization

Complete

Output a

Problem Solved

Combinatorial

Decide If

Algorithm

Zassenhaus’

If r ≤ 10 Use

-
1

-
16

-
18

?

3

?

5

?

17

?

8

?

9
?

12

�
10

�

�
11b

11a

�
13

�

2

�
6

-

4

-
15

-
7

6

14

Problem 2: Overshooting the Hensel Lifting

Let g1, . . . , gk be the true factors of f in Z[x] and let f1, . . . , fr be the local factors (over the p-adic

integers). Current implementations Hensel lift to determine f1, . . . , fr with a p-adic accuracy a that is

guaranteed to be high enough to recover any potential factor of f in Z[x].

However, the problem is that this p-adic accuracy, a, is often much higher than what was actually

necessary to recover all the factors g1, . . . , gk. This implies that current implementations often waste

CPU time on Hensel Lifting. In practice it frequently happens that f has one large factor, say g1, and

zero or more small factors, say g2, . . . , gk. Then, to recover g1, . . . , gk we do not need pa to be larger

than twice the largest coefficient of g1. All we need is that pa is larger than twice the largest coefficient

in g2, . . . , gk. This suffices to reconstruct g2, . . . , gk ∈ Z[x] from their modular images, after which

the remaining factor g1 can be determined by a division in Z[x].

It is easy to give examples where this latter a is ten times smaller than the a used in Zassenhaus’

algorithm. Just multiply a small irreducible polynomial by a big one. (Of course a needs to be large

enough not only to find g2, . . . , gk, but also large enough to prove that g1, . . . , gk are irreducible. More

precisely, a needs to be large enough to solve the combinatorial problem. However, using [van Hoeij]

this can usually be done with a much smaller a than what is used in Zassenhaus’ algorithm.)

An easy way (called Early Termination) to prevent lifting too far is to do these two steps after each

Hensel lift:

1. Try to solve the combinatorial problem using [van Hoeij]

2. and if this succeeds, try to reconstruct g2, . . . , gs from their modular images (and g1 with a division).

Suppose that lifting to at least p100 was necessary to solve both steps 1 and 2. We use quadratic Hensel

lifting, so a doubles each step. This means that we solve the problem once we lifted to p128, which

is close to optimal. So compared to Zassenhaus’ algorithm we could save much CPU time on Hensel

lifting (Hensel lifting often dominates the CPU time).

Key Practical Problem: But couldn’t early termination also be slower in some cases? After all:

What about the time that was spent when step 1 or 2 failed when we lifted to p64, or to p32, etc.?

Step 2 costs little, but if step 1 failed by not lifting far enough, couldn’t we have wasted CPU time?

This practical problem is the reason that current implementations do not use early termination. The

beauty of our work on the theoretical complexity is that it solves this practical problem as well.

Problem 1: Complexity of the Algorithm

Exponential Search Time: When there are many local factors f1, . . . , fr it can take an exponentially

long time to decide which of the local factors combine to form a rational factor gi. The [van Hoeij]

algorithm is a practical solution to this problem but no attempt at a complexity estimate was made.

The [BHKS] paper gave polynomial time complexity results for two versions of the van Hoeij al-

gorithm, a slow version that uses one large lattice reduction, and a fast practical version given in

[Belabas] that uses many small lattice reductions. Still, these complexity results are not satisfac-

tory because they did not describe the actual behavior of the algorithm: the fast version received a

complexity result that was worse than the complexity result given for the slow version!

Key Theoretical Problem: The complexity results for the fastest practical algorithm do not describe

the actual behavior of that algorithm.

Our work on this theoretical issue [Novocin 2008] has led to the resolution of a practical problem

mentioned below.

Summary of Zassenhaus’ Algorithm

Let f ∈ Z[x] be separable and monic with degree N . Goal: the factors of f in Z[x].

Idea 1: If g ∈ Z[x] divides f then the coefficients of g are smaller than some computable bound L.

Idea 2: If g ∈ Z[x] divides f then g can be reconstructed when g mod pa is known for some pa > 2L.

Idea 3: Factor f = f1 · · · fr over Zp (the p-adic integers). There are only finitely many monic factors

of f in Zp[x]. Each is of the form

gv :=
∏

fvi
i

for some 0–1 vector v = (v1, . . . , vr).

Idea 4: f1, . . . , fr (and hence gv) are not known exactly, but are only known mod pa. That’s enough

using idea 2. In practice we find f1, . . . , fr mod p and Hensel Lift until they are known mod pa.

Andrew Novocin & Mark van Hoeij
Department of Mathematics, Florida State University

Factorization of Univariate Polynomials with Rational Coefficients


