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ABSTRACT: Synthesizing spatial patterns with genetic networks is an
ongoing challenge in synthetic biology. A successful demonstration of
pattern formation would imply a better understanding of systems in the
natural world and advance applications in synthetic biology. In
developmental systems, transient patterning may suffice in order to
imprint instructions for long-term development. In this paper we show
that transient but persistent patterns can emerge from a realizable
synthetic gene network based on a toggle switch. We show that a
bistable system incorporating diffusible molecules can generate patterns
that resemble Turing patterns but are distinctly different in the
underlying mechanism: diffusion of mutually inhibiting molecules creates a prolonged “tug-of-war” between patches of cells at
opposing bistable states. The patterns are transient but longer wavelength patterns persist for extended periods of time. Analysis
of a representative small scale model implies the eigenvalues of the persistent modes are just above the threshold of stability. The
results are verified through simulation of biologically relevant models.
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Patterning in living organisms has been a topic of interest
across many fields of study and is readily observed in body

coloration,1,2 embryonic development in Drosophila,3 and
organization of neural networks.4 However, reproducing these
patterns in synthetic biology remains a challenge. Zaikin and
Zhabotinsky5 were the first to obtain spontaneous two-
dimensional dynamic patterns in a chemical reaction system.
This was also the first experimental observation of patterns with
biological implications and a physical explanation of this was
provided in ref 6. Shortly after, more concrete relations
between patterns and biological systems were developed
through models.7,8 Since then, there have been a multitude of
models that have been shown to give rise to similar patterns.9,10

Many of the models relevant to biological systems stem from
Turing’s famous 1952 publication11 and the activator-−
inhibitor system built on Turing’s theory by Gierer and
Meinhardt.7 The activator-inhibitor system has been synthe-
sized experimentally in chemical reaction systems;12−14

however, proving the plausibility of Turing patterns emerging
from a genetic regulatory network has been a challenge still in
pursuit today. The main limitation is the narrow parameter
range that satisfies the patterning criteria and the lack of
biological parts available to fine-tune a genetic circuit that meets
these criteria.
Several results in the literature depart from the activator−

inhibitor architecture and propose alternatives based on more
readily realizable genetic networks. Mechanisms involving one
diffusive signaling molecule have been proposed through
mathematical models.15,16 Experimental designs have departed
from the Turing mechanism altogether and have created

patterns through growth rate dynamics coupled with a single
diffusive molecule,17,18 spatial manipulation of inducers,19,20

and spatial arrangement of multicellular systems with quorum
signaling molecules.21,22

In this paper, we show that patterns can also emerge from a
bistable system in which diffusible molecules create a “tug-of-
war” between opposing states. This could have significant
implications toward pattern formation by genetic regulatory
networks in synthetic biology. Obtaining the necessary parts
and parameter range for pattern formation is more feasible
since there are a multitude of genetic network motifs that can
result in bistable behavior23 as observed in many biological
systems, such as the Drosophila embryonic patterning net-
work,24,25 two-component signaling networks,26 and the
galactose regulatory network.27,28

We show that we can obtain specific patterns through
spatially cued initial conditions and that spontaneous patterns
can also emerge from homogeneous initial conditions. Previous
work tells us that nonhomogeneous steady state solutions in a
convex domain are unstable;29−35 however, we show that long
wavelength stationary spatial profiles can persist on long
enough time scales to be relevant in biological contexts. Such
behavior has been observed in chemical reaction networks36

and phase transition in fluids37 but has not been explored in
genetic networks. The primary purpose of this paper is to
demonstrate the relevance of this phenomenon in spatial
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patterning by genetic networks, in particular, a network of
synthetic toggle switches coupled with diffusive molecules.
The tug-of-war mechanism is different from the spatiotem-

poral instability revealed by Turing. In Turing patterns, the
zeroth spatial mode around a homogeneous steady state is
stable and higher modes are destabilized by diffusion; this is
categorized as type-I instability.38 By contrast, the zeroth spatial
mode corresponding to the saddle point of the bistable system
is already unstable, giving rise to what is termed type-III
instability in ref 38. Each type of instability can be further
categorized into stationary and oscillatory depending on
whether the eigenvalues at the onset of instability are real or
complex. In the case of type-III instability, linear analysis
predicts the possibility for stationary patterning on a large
length scale; however, most of the analysis to date on type-III
systems is focused on oscillatory instabilities.38

We focus on toggle switch dynamics, as mutual gene
repression is an archetype readily found in genetic networks
(Figure 1). We first conduct an in depth study of boundary
formation in a one-dimensional space (Figure 1A) as a
precursor to pattern formation in a higher order model in
two-dimensional space (Figure 1B). We use a representative
model to gain insight into the key dynamics at play. We next
proceed to two dimensions and demonstrate patterning
through simulation of a bistable system architecture proposed
in ref 39. We investigate pattern formation in the presence of
leaky gene-expression (or nonzero gene expression under full
repression) and cross-talk, which occurs when transcription

factors bind to noncorresponding promoter sites. We find that
a small amount of leakiness and cross-talk permits higher
frequency modes to persist longer but too much obliterates
patterning altogether. Finally, we consider an asymmetric
circuit reflected by unequal diffusion coefficients and
production rates. We show that a perfectly symmetric system
is not required to sustain patterning.

■ RESULTS AND DISCUSSION
A Toggle Switch with Diffusion Can Generate

Prolonged Spatially Cued Patterns in a One-Dimen-
sional Space. We first consider the case of a bistable system
with diffusion in a one-dimensional space to understand the
factors at play in patterning. Analysis in one dimension further
gives insight into methods of boundary formation in the
development of organisms. For example the gap gene network
involved in Drosophila embryonic patterning can be described
as two weakly coupled toggle switches,40 and it has been
proposed that bistability allows for sharp boundary formation.24

We consider a two-state model of two mutual genetic
repressors with diffusion, adapted from Gardner et al.41 to
include diffusion
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Figure 1. Prolonged transient patterns emerging from unbiased initial conditions in a bistable system. (A) Schematic of transient boundaries
observed in a two-state model in one-dimensional space. The boundary quickly forms and the tug-of-war persists for some time before one state wins
over. (B) Schematic of transient patterning in a four-state model in two-dimensional space resulting from a tug-of-war initiated at time t0. Patterns
emerge after some time but high frequency modes quickly dissipate. Low frequency modes persist longer before one state wins over the space.
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with Neumann boundary conditions
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and repression expressed by the following nonlinear function

α=
+

f z
z

( )
1

1 2 (3)

We choose the initial gradients such that they represent
induction from potential transient morphogens (Figure 2A).
For example, early regulation of mRNA in the gap gene
network is based on maternal gradients, and cross-regulatory
interactions are delayed during early accumulation of
proteins.42 Hence, we consider initial conditions that equally
bias each side toward an opposing state described by the
following equations
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where u* = v* is the saddle point of the bistable system. Note
that we add a noise term to represent spatial variability in gene

expression. The term randn(σ,x) represents a pseudorandom
number selected from a normal distribution with standard
deviation σ and zero mean at point x in space.
Figure 2B shows a simulation of system (1,4) with σ = 0.5

nM. The number of molecules u are plotted as a function of
time and space. Figure 2C shows the spatial profiles of u and v
at time t = 1000 min. In this case we see that there is a clear and
persistent divide between the side dominated by u and the side
dominated by v. It may appear from Figure 2B that we have
reached a stable steady state profile. However, if we continue to
simulate the system for a longer time, we find that the divide
breaks eventually and one state wins over the entire space, as
seen in Figure 2D. The tension between the two opposing
states on either end creates the tug-of-war that results in this
prolonged spatial profile. In the following sections we show
mathematically that nonhomogeneous steady state profiles like
the one observed in Figure 2B,C indeed exist, but are unstable
due to an eigenvalue barely above the threshold of stability. The
proximity of this eigenvalue to zero results in the prolonged
transient near this steady state.
In Figure 2E,F, we examine the effects of the domain length

and stochastic initial conditions on the transients of the

Figure 2. A toggle switch with diffusion can generate prolonged boundary formations. (A−D) Simulations of system (1,4) with parameters D =
0.001 mm2/ min, γ = 0.5 min−1, α = 10 nM/min, A0 = 100 nM, μ = 5 mm−1, and σ = 0.5 nM. (A) Illustration of initial conditions. (B) Simulation
with L = 0.5 mm. (C) Spatial profiles of u and v at time t = 1000 min for L = 0.5 mm. (D) Simulations showing boundary formations are transient by
extending the simulation time. (E−F): We study the effects of the domain length L and the standard deviation σ in the random initial conditions (4)
on the time t = t* required to reach a homogeneous state. We run 50 simulations for each condition and calculate the average t*, μ(t*), and standard
deviation σt*. (E) Plot of average time μ(t*) until spatial homogeneity is achieved. We normalize by 100 min and apply a logarithmic transformation.
(F) Plot of corresponding coefficient of variation σt*/μ(t*).
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boundaries. Given that the initial conditions are stochastic, we
run 50 simulations at each chosen domain length and find the
time required, t*, to reach a homogeneous state. Numerically,
we define the system to have a homogeneous state when the
difference between minimum and maximum expression levels
across the domain is less that 0.01 nM. This gives a measure of
the persistence of spatial inhomogeneity. For each condition we
calculate the average time, μ(t*), and the corresponding
coefficient of variation σt*/μ(t*). As the domain length
increases, we find that the coexistence of the two states persists
longer; however, there is an increase in variability of the
transients as measured by σt*/μ(t*). The shorter transients at
smaller domain lengths have the least variability.
A Representative Bistable Model Highlights Con-

ditions for Nonhomogeneous Steady State Solutions.
To gain further insight we analyze a simpler model that exhibits
the same mechanisms for pattern formation. Derivation of a
stability condition for the saddle point gives the range of spatial
modes that can exist and a lower bound on the domain length
required to sustain a nonhomogeneous solution. Steady state
analysis verifies that such solutions exist.
We replace the repressive Hill function by a symmetric

nonlinear function that is simpler to work with but is, similarly,
bounded and monotonically decreasing. To ease analysis
without loss of generality we set γ = 1. We choose to model
the mutual repression by the nonlinear function

α= − −f z z( ) tan ( )1
(5)

where α > 1 for bistability. We find that the stability condition
for each of the spatial modes at the saddle point is given by

γ α π> − ⎜ ⎟⎛
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⎞
⎠D
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L

2

(6)

See Supporting Information, Text S3 for the derivation. Note
that the zeroth mode is unstable but as k increases we move
closer toward the threshold for stability, which confirms a type-
III instability.38 We should expect observed patterns to be
dominated by the unstable spatial modes. It follows from eq 6
that, for

π
α γ

<
−

L
D

(7)

all modes aside from the zeroth mode are stable and thus, we
do not expect a nonhomogeneous solution.
We now consider steady state solutions by setting the time

derivatives to zero. This allows us to then rewrite the two-state
PDE (1) as a four-state ODE system with respect to the spatial
variable x:

=
′

′

′

′
= − +− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

x

u x

v x

u x

v x

x

u x

v x
D

f u x

f v x
D

u x

v x

d
d

( )

( )

( )

( )

d
d

( )

( )

( ( ))

( ( ))

( )

( )
.1 1

(8)

Given the odd symmetry of f(·), setting v = −u allows us to
reduce (8) to a two-dimensional Hamiltonian system (Text
S1). Trajectories of the Hamiltonian system (Figure 3A) from x
= 0 to x = L correspond to steady state solutions of the PDE
with spatial domain [0,L], and the boundary conditions are
satisfied if the trajectory starts and ends on the horizontal axis:

′ = ′ =u u L(0) ( ) 0 (9)

Similar methods have been applied to finding traveling wave
solutions in domains of infinite length.43 In Figure 3A the
concentric circles represent solutions with different state
boundary conditions. The corresponding domain length is
the half circle trip time given by

∫̃ =L
u

u x
d

d /du

u L

(0)

( )

(10)

We note that the length is normalized by the diffusion
coefficient through the change of variable x ̃ = x/√D.
Therefore, increasing the length is equivalent to decreasing
the diffusion coefficient. Figure 3B shows the steady state
solution corresponding to L = 1.5 mm. Figure 3C shows the
calculated domain length corresponding to each solution. The
domain length approaches infinity as u(0) approaches the
stable equilibrium points ∓u* of the bistable system. As the

Figure 3. A representative bistable system with diffusion shows the existence of nonhomogenous solutions. (A) Steady state solutions of the PDE
(1) with f(z) = −α tan−1(z), D = 0.1 mm, and α = 2 nM/ min. Each solution corresponds to zero flux boundary conditions (i.e., u′(0) = u′(L) = 0)
and varying state boundary conditions u(0) = −u(L). The equilibrium points of the bistable system are indicated by ∓u*. (B) Spatial profile
corresponding to a half circle trip of the solution indicated in panel A with domain length L = 1.5 mm. (C) Calculated domain length for each of the
steady state solutions. The domain length approaches infinity as the boundary condition u(0) approaches ∓u*.
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boundary condition u(0) approaches zero, the corresponding
domain length approaches a finite positive value that is
consistent with the threshold in 7. Nonhomogeneous solutions
do not exist for domain lengths below this value.
Eigenvalue Analysis Explains the Prolonged Transient

Behavior of Nonhomogeneous Steady State Solutions.
Since we are concerned with the transients of the solutions, we
first discretize the PDE (1) in space to find steady state
solutions analogous to the ones found above for the PDE. Next,
we calculate the eigenvalues of the linearization about the
computed steady state profiles. We let = ⌊ Δ ⌋n L x/ and select
Δx = 0.01 mm for a close approximation. The diffusion term is
replaced by a coupling term across neighbors (i.e., d(ul−1+ul+1−
2ul), where l ∈ [1, n − 1] is a spatial index), and the zero flux
boundary condition with d(u2 − u1) and d(un−1 − un) on the
ends of the domain. The parameter mapping is given by d ≡ D/
(Δx)2 (Text S2). Figure 4A shows the solution profile
synonymous to a half circle trip in Figure 3A. We plot the
maximum eigenvalue for the linearization around this profile for
various domain lengths in Figure 4B. Although there is always a
single positive eigenvalue implying instability, this unstable
eigenvalue approaches zero as the normalized domain length
increases. This explains the slow transients with longer domain
lengths seen in Figure 2E.
Next, we investigate whether higher frequency patterns can

exist. In Figure 4C, we choose a domain length L = 10 mm, and
plot all the solutions corresponding to the boundary conditions
u(0) = −u(L). Indeed, the system does admit higher frequency
steady states, which are synonymous with a full circle or even

multiple circular trips in Figure 3A. We plot the maximum
eigenvalue of the linearized system for each profile in Figure
4D. We see that although the system admits multiple periodic
steady states, the instability associated with higher frequency
steady states is more severe. In this specific example three of the
patterns yield small eigenvalues with time constants 18 min,
594 min, and 3.56 × 109 min. Therefore, we expect to see
prolonged patterns composed of low spatial frequency steady
states.

An Unbiased Tug-of-War Leads to Spontaneous
Patterns in Two-Dimensional Space. We have shown that
nonhomogeneous steady state solutions exist in one-dimen-
sional space. We now explore the implications of the tug-of-war
mechanism in two-dimensional space and we show that
spontaneous patterns can emerge from unbiased initial
conditions. Consider again the two-state model of the toggle
switch
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Figure 4. Stability analysis of the representative model (1,5) discretized in space shows patterns are transient. (A) Steady state spatial profile for the
discretized system with D = 0.1 mm2/ min, Δx = 0.01 mm, and α = 2 nM/min. (B) Maximum eigenvalues of the linearized system about the steady
state spatial profile in (A) for varying domain lengths. (C) Higher frequency steady state profiles. (D) Maximum eigenvalue for the higher frequency
steady state profiles. Colors are matched to solutions in (C). We see that the instability associated with high frequency profiles is more severe. The
three smallest eigenvalues have time constants 18 min, 594 min, and 3.56 × 109 min.
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with diffusive molecules and Neumann boundary conditions.
Figure 5 panels A and B show a phase portrait for a symmetric

toggle switch (i.e., αu = αv and γu = γv). There is one unstable
saddle point and two stable equilibria. The scattered points
represent varying initial conditions in space. Without diffusion,
none of the individual trajectories assumed by each of the initial
conditions can cross the separatrix (see Figure 5A). With
diffusion, a set of initial conditions biased toward one steady
state will cause all points to converge to that steady state (see
Figure 5B). However, a nonhomogeneous profile can be
prolonged through random initial conditions with high
variability (Text S4). In the case of unbiased initial conditions,
the equally attracting forces due to diffusion keep the
trajectories centered on the separatrix for an extended period
of time (see Figure 5B). This phenomenon allows patterns to
emerge without any spatial cues. The tug-of-war keeps the
zeroth mode from growing while the rest of unstable modes
grow. Figure 5C shows simulations of system 11.

A Toggle Switch with Quorum Sensing Molecules
Produces Patterns in Two-Dimensional Space. We now
explore patterning in realizable network based on the toggle
switch. Nikolaev and Sontag in39 propose a symmetric toggle
switch design with quorum-sensing molecules and apply
monotone systems theory to find conditions for guaranteed
homogeneity in the system’s steady state response. In this work
we investigate the potential for pattern formation from this
design by adding a spatial dimension to the lumped model of
ref 39.
We describe an example of such a system that can be built

with current tools in synthetic biology in Figure 6A. We
propose a design utilizing biological components and cellular
signaling systems used in ref 44. Starting with the toggle switch
conceptual design in ref 41 we can modify the promoter into a
hybrid promoter,45 where the repressors still mutually repress
each other but are additionally up-regulated by their respective
signaling molecules. To couple the dynamics across cells we
consider the use of the homoserine lactone molecules used in
ref 44. In this case lacI is up-regulated by C4-HSL (a signaling
molecule produced by synthase enzyme CinI), which is in turn
down-regulated by AraC. Similarly, araC is up-regulated by 3-
OHC14-HSL (a signaling molecule produced by synthase
enzyme RhlI), which is in turn down-regulated by LacI.

Figure 5. A toggle switch with diffusion can produce patterns in two-
dimensional space. (A) Phase portrait of a bistable system illustrating
evolution of the dynamics of systems uncoupled by diffusion. (B)
Phase portrait of a bistable system illustrating evolution of the
dynamics coupled by diffusion. Opposing forces from unbiased initial
conditions prolong the tug-of-war. (C) Simulations of system 11 with
initial conditions u(0,x,y) = v(0,x,y) = 100 nM. The parameter values
are Du,v = 0.001 mm2/ min, αu,v = 10 nM/min, and γu,v = 0.5 min−1. We
allow only numerical noise to break homogeneity.

Figure 6. Simulations of a toggle switch design with quorum sensing molecules produces patterns. (A) Example construction of the toggle switch
design with quorum sensing. The toggle switch is composed of two genes lacI and araC encoding repressors, which are up-regulated by their
respective signaling molecules (C4-HSL and 3-OHC14-HSL) and down-regulated by each other. Additionally, each repressor down-regulates each
other’s activators. To implement degradation, the repressors are tagged for enzymatic degradation and constitutive expression of aiiA produces an
enzymes that degrades the signaling molecules. (B) Simulation of system (12) with initial conditions u(0,x,y) = v(0,x,y) = 100 nM and no leakiness
or cross talk. The parameter values are DC4 = DC14 = 0.001 mm2/ min, a+ = aaraC = 10 nM/min, a2 = 20 nM/min, and γ = 0.5 min−1.
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Activation of response of promoters to signaling molecules is
mediated by expression of cinR and rhlR, which encode
transcription factors that respond to the signaling molecules to
regulate their respective promoters. These are constitutively
expressed inside the cell along with the expression of enzyme
AiiA which degrades the signaling molecules.46 Proteins LacI
and AraC are degraded enzymatically by the ClpXP protease via
ssrA tags.47

We model the system as follows
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The states u and v correspond to concentrations of LacI and
AraC. The states g and r are the signaling molecules C4-HSL
and 3-OHC14-HSL that couple single cell dynamics or
intracellular protein concentrations of u and v. These molecules
are not directly regulated by the repressors but to simplify the

model we assume that the production rate is proportional to
that of CinI and RhlI, the enzymes involved in their production.
That is, we assume saturating concentrations of the substrates
involved and that synthesis of the signaling molecules,
produced through a series of biochemical reactions, happens
on a faster time-scale than gene regulation. The degradation
constants γp and γs correspond to degradation rates mediated
by enzymes ClpXP and AiiA, respectively. Furthermore, we add
a factor δ to account for potential cross-talk and another factor l
to account for basal expression of the signaling molecules. The
basal expression is what is referred to as leaky gene expression.
This accounts for the nonzero probability of transcription
initiation occurring even when a repressive transcription factor
is bound to the promoter site. Cross-talk is the undesirable
behavior of signaling molecules up-regulating gene expression
for a nontarget protein.
To simulate the system we consider domains on the scale of

millimeters with zero flux boundary conditions. We again must
consider initial conditions that are experimentally realistic. One
method of controlling initial conditions is through the use of
inducers. In our proposed design, we can use inducers IPTG
and arabinose to deactivate Plac and PBAD promoter activity. The
inducer molecules bind to the repressors, resulting in a protein
conformational change that reduces the binding affinity of the
repressor to its respective promoter site.48 Introducing both
inducers simultaneously should remove cross regulation and
allow both proteins to accumulate at similar rates. We find that
it is important to establish an initial condition that results in
competition for a tug-of-war to be initiated. Once the inducers
are removed, each state begins to fight for majority in its
immediate vicinity. This tug-of-war results in the emergence of
patterns.
For our initial studies we choose the unbiased initial

conditions

Figure 7. Leakiness and cross talk can help improve transient patterns observed. All simulations were done with same parameters as Figure 6 with
initial conditions u(0,x,y) = v(0,x,y) = 100 nM for fair comparison. (A) Range of expression as a function of time for various cross talk values. (B)
Average of the dominant modes as a function of time for various cross talk values. (C) Range of expression as a function of time for various leakiness
values. (D) Average of the dominant modes as a function of time for various leakiness values. (E) Simulation with δ = 0.01 and l = 0.0001 nM/min.
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=

=

u x y

v x y

(0, , ) 100 [nM]

(0, , ) 100 [nM]. (13)

Both states are chosen to be uniform in space and at equal
concentrations above the saddle point. Figure 6B shows
simulations of system 12 at different time-points. We see that
a high frequency pattern initially emerges, but as time passes
neighboring cells reach consensus and only a low frequency
pattern is prolonged. We have seen in the one-dimensional case
that the low frequency patterns have the potential to linger
depending on diffusion coefficients and length of the domain. It
is worth noting from Figure 6B that even the high frequency
pattern persisted for hours.
Leakiness and Crosstalk Can Improve Patterning. We

next investigate the effects of leaky gene expression and cross-
talk in patterning. For this, we keep the deterministic initial
conditions (13) to maintain a fair comparison. We run multiple
simulations for various values of δ and l in system 12. We look
at the range of protein expression and dominant modes present
in the pattern as a function of time (Figure 7). Figure 7A shows
that the range of expression between the differentiated states
gets smaller as cross talk increases. Eventually, patterning is no
longer sustained. Figure 7B plots the average of the dominant
modes found through application of a discrete cosine transform
to the image at each time point. As cross talk increases, we find
that higher frequency modes persist. This leads to more regular
patterns with higher modes.
Next, we investigate leakiness. Figure 7C,D shows that

patterns appear to be highly sensitive to the presence of
leakiness. While leakiness is small enough to permit patterning,
it does not significantly influence the range of expression in the
differentiated states. However, like cross talk, too much
leakiness breaks the pattern, and this happens at extremely
low thresholds. The result on dominant modes is less easily
understood. A seemingly negligible amount of leakiness
drastically increases the frequency of pattern observed;
however, a further increase in leakiness reduces the frequency
of the pattern again. As we continue to increase leakiness, we
find that the dominant modes converge.
With the results obtained from investigating the effects of

cross talk and leakiness, we should expect to see improved
patterning with the parameters δ = 0.01 and l = 0.0001 nM/

min. Figure 7E shows resulting simulations with δ = 0.01 and l
= 0.0001 nM/min. Indeed, we find that more complex patterns
emerge.

Patterning is Maintained with Unequal Diffusion
Coefficients. It is known that the transport rate of C4 is
slightly faster than that of C14 due to its larger size49 and so we
verify the emergence of spontaneous patterns despite unequal
diffusion coefficients. We also consider the following unbiased
random initial conditions

σ

σ

= * + +

= * + +

u x y u x y

v x y v x y

(0, , ) 1000 randn( , , ) [nM]

(0, , ) 1000 randn( , , ) [nM], (14)

where u* = v* is the saddle point of the bistable system. The
term randn(σ,x,y) represents a pseudorandom number selected
from a normal distribution with standard deviation σ = 0.01 nM
and zero mean at point (x,y) in space. Such initial conditions
can be achieved through an initial presence of inducers. Figure
8 shows simulations of this more realistic scenario. The
difference in diffusion coefficients causes the patterns to
dissipate more quickly. It is expected that LacI dominates,
given that its respective signaling molecule C4 has a larger
diffusion coefficient. However, the patterns can be clearly seen
to persist for some non-negligible amount of time. The
wavelength of the patterns that emerge is dependent on the size
of the domain. Recall from Figure 4 that increasing the domain
length moves the higher frequency modes closer to the stability
boundary.

Prepatterned Spatial Profiles Persist Despite Unequal
Production Rates. Finally, we look at the case in which the
system is prepatterned through initial conditions. This
simulates the effects of transient morphogens on long-term
patterns. Until now we have assumed that with our ability to
modify promoter and ribosomal binding sites, we can tune
expression rates to be equal.50,51 To test the robustness of the
patterns we consider unequal promoter strengths in addition to
unequal diffusion coefficients. The prepatterning is done
through the following initial conditions

Figure 8. Transient patterns emerge despite different diffusion constants and stochastic initial conditions. Simulation of system 12 with DC14 = 0.001
mm2/ min, DC4 = 0.0015 mm2/ min, l = 0 nM/min, δ = 0.01, and σ = 0.01 nM.
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σ
π λ π λ

σ
π λ π λ

= * + +
+ +

= * + +
− +

u x y u x y
x y

v x y v x y
x y

(0, , ) 10 randn( , , )
100 (2 / )sin(2 / ) 100 [nM]

(0, , ) 10 randn( , , )
100 sin(2 / ) sin(2 / ) 100 [nM]

(15)

Figure 9 shows simulations for the prepatterned system for
various wavelengths. We initially see a refinement in the
patterning occur over time and then the protein with the higher
promoter strength begins to take over. The patterns persist for
an extended amount of time despite asymmetry in the circuit.
As predicted, the large wavelength pattern persists longer.
Discussion. We demonstrated that spontaneous patterns

can emerge in a two-component bistable system coupled by
quorum sensing molecules in E. coli. Additionally, the existence
of these solutions and their slow transients give way to
persistence of prepatterned spatial profiles relevant in
developmental biology.
The model describing this bistable system is simple but sheds

light on more complex networks found in nature. Although the
nonhomogeneous spatial patterns are unstable, investigation of
the transients through analysis of a representative model
showed that low frequency patterns have the potential to
persist beyond any of the simulation times examined in this
paper. Analysis of a discrete approximation gave insight into the
instability of nonhomogeneous steady state profiles. We
showed that low frequency profiles can be marginally close to
being stable, which explains the prolonged transient patterns.
This phenomena has been investigated in the field of phase
transitions,37 where there are similar underlying dynamics, but
has not been previously investigated for a toggle switch.
Simulations of the toggle switch with quorum sensing
molecules showed high frequency patterns did not persist as
long but remained for hours just as predicted.
Furthermore, we are able to show that leaky gene expression

and promiscuous promoter binding may be advantages to
generating patterns within some threshold, after which, they aid
to obliterate pattern formation. The role of leaky gene
expression and promiscuous promoter binding in network
response is an interesting topic to investigate further given its
presence in gene regulation. In related work, Ishihara et al.

demonstrated generation of spatial stripes from cross talk in a
chain of feed-forward network motifs.52 Other results have
demonstrated the positive role of noise in dynamics such as
noise induced stability53−56 and noise induced patterning.57−59

However, there remains a lot of unexplored work on the role of
small coupling through cross talk or basal gene expression in
stability and patterning.
In summary, although much focus has been on permanent

patterning, transient patterns from bistability may be sufficient
in biological applications. For example, spatial regulation of eve
stripes in Drosophila embryogenesis is dominated by weakly
coupled toggle switches (?), where Bothma et al.60 show that
every stripe 2 expression persists for only 15 min. This is
sufficient to correctly achieve the next stage in development.
Another example of the effectiveness of bistability in patterning
with transient inducers is given in ref 61. The authors propose
and investigate a detailed model of patterning of the dorsal
surface of the Drosophila embryo based on experiments62 and
show that boundary refinement can be achieved with unrefined
transient inducers. In this mechanism, mutual inhibition is not
the source of bistability; however, much like our first example,
resulting patterns are shown to depend on the history of
morphogen exposure rather than to a concentration. Moreover,
we showed that spatially cued patterns are much more tolerant
to asymmetric conditions. We only need to initially create
contrasting biases toward one state or another to generate
prolonged patterning with sharp boundaries.

■ METHODS

Simulations. Simulations for the 1D cases were done in
Matlab using the PDE solver pdepe. The 2D simulations were
done in Comsol using the time-dependent solver. The mesh
settings were set to “Physics-controlled mesh” with an extra fine
element size. The Backward differentiation formula (BDF) was
chosen as the numerical ODE solver for the built in finite
element method. The maximum and minimum orders of the
BDF solver were set to 5 and 1, respectively. The initial step
size was set to 0.0001 and the setting for steps taken by the
solver was set to ”Strict.” Data were saved for time points in
increments of 10 min. The data were exported in csv files for
image analysis in Matlab.

Figure 9. Longer wavelengths in patterning persist longer. Simulation of system 12 with DC14 = 0.001 mm2/ min, DC4 = 0.0015 mm2/min, l = 0 nM/
min, δ = 0.01, σ = 0.01 nM, aaraC = 10.5 nM/min. Additionally, the strength of the maximal production rate of the LacI promoter is also shown.
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Calculation of Average Dominant Modes. Using Matlab
we apply the discrete cosine transform in two-dimensional
space using the command dct2. Before applying the transform,
we subtract the mean value of the matrix since we are interested
in finding the dominant nonhomogeneous modes. After
applying the cosine transform we normalize each element in
the output matrix by the “total energy” of the system in order
to compare across different simulations. We define

= ∈ ×B dct2(A) N M and normalize the coefficients by

̅ = ×
∑ ∑ | |= =

B B
N M

Bi
N

j
M

i j1 1 ,
2

(16)

We then set a threshold to find the dominant modes. Any
coefficient with magnitude greater than 1 is considered
sufficiently large. The corresponding maximum wavelength of
the mode is calculated from

λ = L
i j

2
max([ , ])ij

(17)

where L is the length of the domain. We then plot the average
of all the calculated wavelengths present in the image.
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