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a b s t r a c t

Intensive experimental studies have shown that astrocytes are active partners in modulation of synaptic
transmission. In the present research, we study neuron–astrocyte signaling using a biologically inspired
model of one neuron synapsing one astrocyte. In thismodel, the firing dynamics of the neuron is described
by the Morris–Lecar model and the Ca2+ dynamics of a single astrocyte explained by a functional model
introduced by Postnov and colleagues. Using the coupled neuron–astrocyte model and based on the
results of the phase plane analyses, it is demonstrated that the astrocyte is able to activate the silent
neuron or change the neuron spiking frequency through bidirectional communication. This suggests
that astrocyte feedback signaling is capable of modulating spike transmission frequency by changing
neuron spiking frequency. This effect is described by a saddle–node on invariant circle bifurcation in the
coupled neuron–astrocyte model. In this way, our results suggest that the neuron–astrocyte crosstalk
has a fundamental role in producing diverse neuronal activities and therefore enhances the information
processing capabilities of the brain.

Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Intensive research in the past decade not only revealed new
crucial roles for the glial cells and specifically astrocytes, but
it also increased evidence about the importance of bidirectional
interactions between astrocytes and neuronal cells in maintaining
normal neural activity (Amiri, Bahrami, & Janahmadi, 2011, 2012c;
Fellin, 2009; Halassa, Fellin, & Haydon, 2009). Astrocytes are
the most abundant type of glial cells and perform a variety
of tasks. They control the content of extracellular fluid and
electrolyte homeostasis, regulate neurotransmitter release and
control synapse formation (Fellin, Pascual, & Haydon, 2006;
Halassa et al., 2009). By transporting ions and other substances,
they provide structural, metabolic, and functional support for
differentiation, proliferation, and survival of neurons (Araque,
Parpura, Sanzgiri, & Haydon, 1999; Voltarra & Steinhäuser,
2004). On the other hand, a considerable amount of evidence
obtained by several groups during the last few years has
demonstrated that astrocytes are active partners in the control
of synaptic transmission (Haydon & Araque, 2002; Nimmerjahn,
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2009). Although astrocytes cannot generate action potentials,
they respond to neuronal activities through elevation of their
intracellular calcium levels (Giugliano, 2009). Therefore, astrocytes
not only can sense neuronal transmission but also their calcium
elevation will lead to the release of gliotransmitters such as
Adenosine Triphosphate (ATP) or glutamate which regulate and
control the synaptic strengths of the adjacent neurons (Fellin
et al., 2006; Hertz & Zielke, 2004). In this way, astrocytes provide
reciprocal signals to neighboring neurons. The concept of the
‘‘tripartite synapse’’ recapitulates these features (Araque et al.,
1999; Halassa et al., 2009; Haydon & Araque, 2002). The notion
emphasizes that the astrocyte is a third signaling element at a
synapse with a pre- and a post-synaptic terminal (Fellin et al.,
2006; Newman, 2003).

The interest in understanding the biophysical mechanisms
of communication between neuron and astrocyte as well as
the computational modeling of the neuron–astrocyte signaling,
is continuously increasing (Amiri, Montaseri, & Bahrami, 2011;
Ullah, Cressman, Barreto, & Schiff, 2009). Nadkarni and Jung
proposed a ‘‘dressed neuron’’ model and provided a mathematical
framework for the synaptic interactions between neurons and
astrocytes in the tripartite synapse (Nadkarni & Jung, 2004, 2007).
Cressman and collaborators constructed a mathematical model
consisting of a single conductance-based neuron together with
intra- and extracellular ion concentration dynamics to study the
role of potassium dynamics on the stability of the activity of a
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single neuron (Cressman, Ullah, Ziburkus, Schiff, & Barreto, 2009).
Volman and colleagues presented a simple biophysical model for
the coupling between synaptic transmission and the local calcium
concentration on an enveloping astrocytic domain. They concluded
that the astrocyte acts as a gatekeeper for the synapse (Volman,
Ben-Jacob, & Levine, 2007). A generalized and nondimensional
model for the astrocyte is proposed by Postnov and colleagues
(Postnov, Ryazanov, & Sosnovtseva, 2007). Recently, this model
was modified in order to be applied to a spatially extended
neuron–astrocyte network (Postnov, Koreshkov, Brazhe, Brazhe, &
Sosnovtseva, 2009). A minimal model consisting of a pyramidal
neuron, an interneuron and an astrocyte was developed and
simulated by Garbo (2009). He investigated that the presence
of ATP and the interneuron affects the overall neural activity
(Garbo, Barbi, Chillemi, Alloisio, & Nobile, 2007). Silchenko and
Tass presented a simple mathematical model of the interaction
between an astrocyte and neuron that is able to numerically
reproduce the experimental results concerning the initiation of
the paroxysmal depolarization shifts (PDS) in the neighboring
neuron (Silchenko & Tass, 2008). Wade and colleagues developed
a detailed model of bidirectional signaling between astrocytes
and neurons and provide evidence which shows that astrocytes
have a role to play in Long Term Potentiation/Depression
(LTP/LTD; Wade, McDaid, Harkin, Crunelli, & S Kelso, 2011). De
Pitta and collaborators explored a plausible form of modulation of
short-term plasticity by astrocytes using a biophysically realistic
computational model (De Pittà, Volman, Berry, & Ben-Jacob,
2011). Nevertheless, a characterization of how astrocyte actively
shapes the dynamics of neuronal function, from the dynamical
system point of view, remains largely unstudied. This standpoint
increases our understanding of the dynamical mechanisms of
neuron–astrocyte interactions and helps to find out more about
the astrocyte function and what it does in regulation of neural
activities. Therefore, in the present study, in order to investigate
these issues a physiologically-inspired model was developed. We
have implemented a functional approach, and the Morris–Lecar
formalism of the neuronal ionic currents synapse to the Postnov
model of the astrocyte dynamics. Then, the developed model was
analyzed from the viewpoint of dynamical system theory. Through
numerical simulations and bifurcation analyses, we have shown
that the feedback mechanism organized by astrocyte could turn
on the silent neighboring neuron or alter the neuronal firing rate.
This means that the neuron–astrocyte crosstalk can enhance the
information processing capabilities of the brain.

The rest of the paper is organized as follows. In Section 2,
the biological description of the Morris–Lecar neuron model, the
dynamic model of the astrocyte and its interaction with the
neuron are covered. Section 3 presents quantitative and qualitative
analyses of the astrocyte–neuron model. Also in this section, the
results of some simulations are presented to investigate the role
played by the astrocyte in regulation of neuronal firing from the
dynamical system point of view. In Section 4, the importance,
limitations and some future directions of the present research are
discussed. Finally, Section 5 concludes the paper.

2. Dynamic models of neuron and astrocyte

In this section, we first present the dynamic model of the
Morris–Lecar neuron and then a mathematical description of the
astrocyte is explained. The Morris–Lecar equations model the
flow of potassium and calcium ions and are a two-dimensional
description of neuronal spike dynamics. For the astrocyte a
generalized mathematical model which is recently introduced is
utilized.
Table 1
Parameter values used in the simulations. The first five rows show the parameter
values of the M–L neuron, the next four rows are the parameter values of the
astrocyte dynamic model and the last row shows the parameter values of the
synapse.

C 20µF/cm2 vL −60 mV v̂3 12 mV
ḡK 8 mS/cm2 vCa 120 mV v̂4 17.4mV
ḡL 2 mS/cm2 v̂1 −1.2 mV φ 1/15 s−1

ḡCa 4 mS/cm2 v̂2 18 mV vK −80mV
Dn 0.8 τn 5 iconst 35
β 3 τSm 10 hSm 0.015
sSm 100 εc 0.2 τc 2
c1 0.13 c2 0.9 c3 0.004
c4 1/εc r 0.2 dSm 0.1
σs 0.02 θs 0.2

2.1. Neuron model

We use the well-known Morris–Lecar (M–L) equations as a
basic model for the neuron (Morris & Lecar, 1981). It includes
the contribution of internal ionic fast activity Ca2+, delayed K+

and passive leak currents. The dynamics of the neuron membrane
potential, v, is as follows (Hauptmann & Tass, 2009):

C
dv(t)
dt

= −ḡCa m∞ (v(t)) (v(t) − vCa)

− ḡK w(t) (v(t) − vK ) − ḡL (v(t) − vL) + i(t) (1)

dw(t)
dt

= φ[w∞ (vj(t)) − w(t)]/τw(v(t)) (2)

i(t) = iconst(t) + inoise(t) (3)

where w ∈ [0, 1] is an auxiliary variable and is the fraction of
open K+ channels. The channel conductances ḡCa, ḡK and ḡL of the
Ca2+, K+ and leak currents are constants. i(t) is the applied current
to the neuron. It consists of a constant background current (iconst)
and a noisy current (inoise with amplitude Dn and correlation τn)
to model the inevitable noise present in real systems (Popovych,
Hauptmann, & Tass, 2006). The functions m∞ (v(t)) , w∞ (v(t))
and τw (v(t)) control the dynamics of the ion channels and are
defined by Eqs. (4)–(6):

m∞ (v(t)) = 0.5

1 + tanh


v(t) − v̂1

v̂2


(4)

w∞ (v(t)) = 0.5

1 + tanh


v(t) − v̂3

v̂4


(5)

τw(v(t)) =
1

cosh


v(t)−v̂3
2v̂4

 . (6)

The parameter values of the M–L model are taken from Tsumoto,
Kitajima, Yoshinaga, Aihara, and Kawakami (2006) and are listed
in Table 1.

2.2. Astrocyte model

During the last decade, the numerous in vitro and in vivo
studies suggest that astrocytes play an active role in synaptic
transmission, which is mediated via calcium-dependent release of
neurotransmitters (Perea & Araque, 2005; Voltarra & Steinhäuser,
2004). To model the dynamics of the intracellular Ca2+ waves
produced by astrocytes, a recently introduced dynamic model
of the astrocyte is used (Postnov et al., 2009, 2007). This is
a generalized and simplified mathematical model for a small
neuron–astrocyte ensemble which considers the main pathways
of neuron–astrocyte interactions. Consequently, this model will
be useful to study the main types of astrocyte response to neural
activities and the resulting dynamical patterns and thereby it will
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allow us to predict their changes with varying control parameters.
These parameters will be introduced later in this section. The
model is explained with the following set of equations (Postnov
et al., 2007):

τc
dc
dt

= −c − c4f (c, ce) + (r + β Sm) (7)

εc τc
dce
dt

= f (c, ce) (8)

f (c, ce) = c1
c2

1 + c2
−


c2e

1 + c2e

 
c4

c42 + c4


− c3 ce (9)

τSm
dSm
dt

= (1 + tanh [SSm(z − hSm)]) × (1 − Sm) −
Sm
dSm

(10)

where c and ce are the calcium concentration in the astrocyte
cytoplasm and within the endoplasmic reticulum, respectively.
The parameters εc and τc together define the characteristic time
for calcium oscillations. The calcium influx from the extracellular
space is sensitive to the production of secondary messenger
Sm (IP3), which is controlled by the factor β . The initial state of the
calcium oscillation is controlled by the parameter r . The calcium
exchange between the cytoplasm and the endoplasmic reticulum
is defined by the nonlinear function f (c, ce). We set the control
parameters r, β, τc, τSm, SSm, hSm, hGm, dSm,to the values listed in
Table 1. The values are taken from Amiri, Bahrami, and Janahmadi
(2012a) and Postnov et al. (2007). As a result of augmentation
of calcium concentration in the cytoplasm, astrocyte mediator is
released. The interaction between astrocyte and neuron is denoted
with the parameter z (astrocyte input) that shows the synaptic
activity of the neuron.

2.3. Neuron–astrocyte interactions

Bidirectional communication between neurons and astrocytes
are necessary for normal functioning of the nervous system during
signal processing (Fellin, 2009; Halassa et al., 2009). To develop a
physiologically inspired model and in order to clarify astrocyte-
dependent regulation of neural activities, astrocyte is connected to
the neuronmodel.We proceed in a phenomenological manner and
utilized a functional approach to describe the loop of information
exchange between neuron and astrocyte rather than a detailed
biophysical and biochemical model.

The relative number of astrocytes per neuron varies between
species and differs across the central nervous system. Indeed,
the brain is a localized organ in the sense that the ratio of
neurons and glial cells, their relative volumes, morphology and
their functioning depend strongly on the regionality (Occhipinti,
Somersalo, & Calvetti, 2009). In the human frontal cortex, the ratio
of glia to neurons is about 1.65 (Oberheim, Wang, Goldman, &
Nedergaard, 2006; Sherwood et al., 2006). Given that astrocytes
comprise about 50% of the total number of glial cells, a 1:1
ratio seems to characterize an acceptable approximation (Reato,
Cammarota, Parra, & Carmignoto, 2012).

The synaptic interactions are modeled in the same way as
suggested by Terman, Rubin, Yew, and Wilson (2002). Depending
on themembrane potential (v(t)), action potential spreading from
the neuron causes neurotransmitter release whose concentration
in the synaptic cleft, [T ], is modeled by the following equation:

[T ] =
1

1 + exp (−(v(t) − θs)/σs)
(11)

where θs and σs are the half-activation voltage and steepness of
the sigmoid function, respectively. It is nowwell-documented that
astrocytes are able to sense transmitters released by neurons, that
is [T ]. Following Volman et al. (2007), we assume that the rate of
IP3 production depends on the concentration of neurotransmitter
which is released to the synaptic cleft. Therefore, the input of the
astrocyte (z) which triggers the IP3 production is defined as:

z = λ [T ] (12)

where λ > 0 is an amplifying parameter. Astrocytes contribute
to synaptic signaling by performing a physiological feedback.
This gives rise to depolarization or hyperpolarization of nearby
neurons (Smith, 2010). Specifically, astrocytic glutamate release in
the hippocampus can activate NMDA (N-methyl-D-asparate) type
glutamate receptors, leading to so-called slow inward currents
(SIC) in neighboring neurons (Fellin et al., 2009; Min, Santello, &
Nevian, 2012; Perea & Araque, 2005). Consequently, the output of
the astrocyte is modeled as:

iast = γ · c (13)

where γ is the feedback strength from astrocyte to neuron.
Therefore, the full expression of the input current of the neuron
is modified as follows to integrate the feedback of the astrocyte:

i(t) = iconst(t) + inoise(t) + iast(t). (14)

3. Phase plane analysis

In this section, the neuron–astrocyte interaction is analyzed
from the dynamical system point of view. It should be emphasized
that we analyze the full model of the astrocyte and neuron
together. Specifically, the neuron affects the astrocyte dynamics
through z̄, where z̄ is the steady state of neurotransmitter
concentration (z). On the other hand, the effect of astrocyte
dynamics on the neuron in the steady state is iast = γ c̄ where c̄ is
the steady state of the calcium concentration inside the astrocyte
(Eq. (17)). The c̄ also depends on S̄m (the steady state of the second
messenger inside the astrocyte) and finally S̄m is determined by the
steady state of the neuron membrane potential (v̄). Therefore, the
closed loop system of neuron–astrocyte signaling is analyzed.

3.1. Quantitative analysis

The steady state values of the neuronmodel (or the equilibrium
points of the neuron model), i.e., (v̄, w̄), are obtained by solving:

dv(t)
dt

=
1
C
f1(v̄, w̄) = 0

dw(t)
dt

= f2(v̄, w̄) = 0
(15)

where f1(v̄, w̄) and f2(v̄, w̄) are:f1(v̄, w̄) = −ḡCa m∞ (v̄) (v̄ − vCa) − ḡK w̄ (v̄ − vK )

− ḡL (v̄ − vL) + iconst + inoise + iast

f2(v̄, w̄) = φ [w∞ (v̄) − w̄] /τw(v̄).

(16)

In (16), iast should be replaced by its steady state value as iast = γ c̄ ,
where:

c̄ = r + β S̄m,

S̄m =
M̄

M̄ +
1

dSm

, M̄ = 1 + tanh[Ssm(z̄ − hsm)]
(17)

and

z̄ = λ [T̄ ], [T̄ ] =
1

1 + exp (−(v̄ − θs)/σs)
. (18)
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Using Eqs. (15)–(18), we can investigate the role of the feedback
strength from astrocyte to neuron (γ ). As we will observe,
variation in γ can change the number of equilibrium points and
their stability.
Computing the bifurcation point γ ∗:

To obtain the bifurcation point, we determine nullclines of the
2nd order neural system defined by Eqs. (16)–(18). The v-nullcline
associated with the variable v is described by the following
function:

w =
−ḡCa m∞ (v) (v − vCa) − ḡL (v − vL) + i

ḡK (v − vK )
. (19)

Similarly, the w-nullcline associated with the variable w is a
monotonically increasing function of v as follows:

w = w∞ (v) = 0.5

1 + tanh


v − v̂3

v̂4


(20)

v and w nullclines are depicted by green and brown colors in
Fig. 1, respectively. The nullclines partition the phase plane into
four quadrants. The asymptotically stable (attractor), the saddle
and the unstable equilibrium points are illustrated by the filled,
half-filled and empty circles in Fig. 1, respectively. In the simulation
results shown in Fig. 1, the value of λ is fixed at 0.5. However, the
feedback strength from astrocyte to neuron (γ ) varies and takes
on three values of (a) γ = 0, (c) γ = 18 and (e) γ = 35.

When γ = 0, and according to Fig. 1(a), the minimum point
of the v-nullcline, vmin, is between the stable and the saddle
equilibrium points. Using (19), we can obtain the corresponding
wmin |γ=0:
wmin |γ=0

=
ḡCa m∞ (vmin) (vmin − vCa) − ḡL (vmin − vL) + iconst + inoise

ḡK (vmin − vK )
. (21)

Considering (19), and (20), the variations of γ affect only the v-
nullcline and move it vertically in the w-axis direction. This is
illustrated in Fig. 1(a), (c) and (e). At the bifurcation point (γ = γ ∗)
and for vmin the wmin |γ=γ ∗ is:
wmin |γ=γ ∗

=
ḡCa m∞ (vmin) (vmin − vCa) − ḡL (vmin − vL) + iconst + inoise + γ ∗ c̄

ḡK (vmin − vK )
. (22)

Considering Fig. 1(c), when γ = γ ∗ the v-nullcline is tangent to
the w-nullcline at vmin. Because γ does not affect the w-nullcline,
at vmin, the values of the w-nullcline for γ = 0 and γ = γ ∗ are
equal. From the numerical simulations shown in Fig. 1(a), it can
be measured that vmin = −31.77 and at this point the distance
between v- and w-nullclines is approximately equal to 0.0101.
Therefore, wmin |γ=γ ∗ − wmin |γ=0 ≈ 0.0101. Subtracting (21) from
(22) leads to:

γ ∗c̄
ḡK (vmin − vK )

≈ 0.0101. (23)

Replacing vmin = −31.77 and the parameter values listed in
Table 1, we obtain:

γ ∗c̄ ≈ 3.8939. (24)

Substituting c̄ from (17) and the other parameter values listed in
Table 1 leads to:

[T ] =
1

1 + exp (−(−31.77 − 50)/15)
= 0.0043,

z̄ = 0.5 [T̄ ] = 0.0021

M̄ = 1 + tanh[100(0.0021 − 0.02)] = 0.0546

c̄ = 0.2 +
3 × 0.0546
0.0546 + 10

= 0.2163

(25)
and finally,

γ ∗
=

3.8939
0.2163

= 18.00. (26)

Now, we consider three different cases:
Case 1. γ = 0

Solving (16)–(18) results in three equilibrium points for the
system as:

Eq1 :


v̄1
w̄1


=


−36.8802
0.0036


,

Eq2 :


v̄2
w̄2


=


−23.2933
0.0170


,

Eq3 :


v̄3
w̄3


=


5.1496
0.3127


.

(27)

The stability properties of these equilibrium points can be investi-
gated by analyzing the linearized system at the equilibrium points.
The Jacobean matrix is calculated by:

A =

∂ f1(v, w)

∂v

∂ f1(v, w)

∂w
∂ f2(v, w)

∂v

∂ f2(v, w)

∂w



v=v̄i, w=w̄i

(28)

where i = 1, 2. The eigenvalues of A at Eq1 are: λ1 = −0.0527,
λ2 = −0.1327. These eigenvalues demonstrate that Eq1 is a stable
node. For Eq2 we obtain: λ1 = 0.0853, λ2 = −0.0800 and there-
fore it is a saddle point. Finally, for Eq3, λ1,2 = 0.0689 ± j0.1961
which imply that it is an unstable focus.
Case 2. γ ∗

= 18
At the bifurcation point, i.e., γ ∗

= 18, two equilibrium points
exist:

Eq1 :


v̄1
w̄1


=


−29.6248
0.0083


,

Eq2 :


v̄2
w̄2


=


5.9364
0.3325


.

(29)

The eigenvalues of A at Eq1 are: λ1 = 0.0000, λ2 = −0.1013,
and thus it is a saddle–node. For Eq2 we obtain: λ1,2 = 0.0653 ±

j0.2041, that is, it is still an unstable focus. Based on aphase portrait
of the system (Fig. 1(c)) we see that an invariant circle has also
emerged at the bifurcation instant.
Case 3. γ = 35

For γ = 35, there is one unstable focus Eq1 :


v̄1
w̄1


=


6.6599
0.3512


whose eigenvalues are: λ1,2 = 0.0596 ± j0.2123. The phase por-
trait show also the stable limit cycle of the system.

3.2. Qualitative analysis

Fig. 1(a), (c) and (e) correspond to the phase plane of the neu-
ronal system (Eqs. (1)–(2)), and Fig. 1(b), (d) and (f) illustrate the
relevant time responses and the astrocyte outputs for each case.
According to Fig. 1(a) and the stability analysis performed in the
previous subsection, when we open the astrocyte feedback (that is
γ = 0), theM–Lmodel has one stable, one saddle and one unstable
equilibrium point. In this case, depending on the initial conditions,
only a single action potential or sub-threshold responses could be
observed. Some examples are shown in the top panel of Fig. 1(b).
It should be mentioned that since γ = 0, the astrocyte output
(iast) is zero for this condition. Next, we consider the more real-
istic situation and integrate the role of astrocyte in the regulation
of synaptic transmissions. When the astrocyte feedback strength
(γ ) is increased, the stable and the saddle equilibrium points get
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a b

c d

e f

Fig. 1. The phase plane and equilibrium points of the dynamical system (1)–(2). (Left panels), filled, half-filled and empty circles denote stable, saddle and unstable
equilibrium points, respectively. Arrows indicate directions of trajectories. The red closed curve denotes the stable limit cycle. The green and brown curves indicate v
and w-nullclines. The right panels show the time response of the neuron (v) and the astrocyte output (iast ). In these simulations λ = 0.5 and in (a) and (b) γ = 0, in (c) and
(d) γ = 18 and in (e) and (f) γ = 35. It is evident that increasing the feedback strength from astrocyte to neuron first activates the silent neuron and then increases its firing
frequency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
closer to each other and finally, as Fig. 1(c) shows, at γ = 18, the
two equilibrium points come together and at the same time an in-
variant circle is formed. In other words, a stable limit cycle appears
via a saddle–node on invariant circle (SNIC) bifurcation (Izhikevich,
2007). The time response of the neuron and the astrocyte output
are demonstrated in the top and bottom panels of Fig. 1(d), respec-
tively. Due to the presence of the invariant circle and right after and
very close to the bifurcation point, the neuron generates very low
frequency spikes. This implies that if the feedback strength from
astrocyte to neuron is strong enough, then the silent neighboring
neuron can be turned on and generate a few spikes. Next, we in-
creased the astrocyte feedback beyond the critical point (γ > 18)
and investigated the resulting dynamical behavior of the neuron.
For γ = 35, the phase portrait of the system, the time response of
the neuron and the astrocyte output are shown in Fig. 1(e) and (f).
In the phase plane, the stable limit cycle corresponds to the repet-
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Fig. 2. One-parameter bifurcation diagram for equilibrium points shows that at γ = 18 SNIC bifurcation occurs and a stable limit cycle emerges. All parameters, except for
γ , are fixed to the values shown in Table 1. In this figure, the unstable, stable and the saddle equilibrium points are indicated by empty squares, blue line and pink circles,
respectively. The red lines show the stable limit cycle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
itive firing of the neuron. Comparing the simulation results shown
in Fig. 1(d) and (f) together, wewill notice that the firing frequency
of the neuron is considerably increased as the astrocyte feedback
is increased from 18 to 35. In other words, the frequency of oscilla-
tion depends on the bifurcation parameter which is in accordance
with the resultsmentioned in (Izhikevich, 2007). Therefore, the as-
trocyte modulates neuronal excitability by providing feedback ac-
tion. It is noteworthy the astrocyte output is biphasic and consists
of a large initial peak followed by a sustained plateau with smaller
amplitude. This is in agreement with the response obtained by the
experimental results and reported by Garbo et al. (2007, Fig. 2). As
Fig. 1(b), (d) and (f) show, increasing the feedback strength from
astrocyte to neuron leads to the emergence of different neuronal
responses. In other words, the astrocyte is able to turn on the silent
neuron or change the neuron spiking frequency. Moreover, based
on different neural coding paradigms, the firing activity of a neu-
ron is a key component of information processing. In the ‘‘tempo-
ral code’’, the precise timing of action potentials is important and
in the ‘‘rate code’’, the information is represented by a modulation
of the firing rate (Quilichini & Bernard, 2012). Thus, variation in
the strength of astrocyte–neuron interactions can be considered
as a mechanism for information encoding. In this way, the astro-
cyte dynamically contributes to the information processing mech-
anisms. Indeed, the astrocyte is capable of modulating the output
of the neuron and thus the neuron–astrocyte interaction can facili-
tate the diversity of responses produced by the neuron. In linewith
these simulation results, recent studies about communications be-
tween astrocytes and neurons reveal that glutamate release from
a single astrocyte may control the excitability of neighboring cells
(Silchenko & Tass, 2008), that is, the astrocytes can act as local con-
trollers of the synaptic function (Fellin, 2009; Fellin et al., 2006).

To have a general view of how the variation of γ affects the
dynamical behavior of the neuron and summarize the results
observed in Fig. 1, a one-parameter (γ ) bifurcation diagram is
plotted in Fig. 2. It can be seen that when γ is increased, the stable
(blue line) and the saddle equilibrium points (pink circles) move
towards each other and finally coalesce and disappear and a stable
limit cycle emerges (red lines), which corresponds to the SNIC
bifurcation mentioned earlier. Regardless of the value of γ , the
stability property of the unstable point (empty squares) remains
unchanged.
Next, let us consider the effect of variation of λ in (13), that is, in
neuron to astrocyte feed-forward strength. To study this relation,
in Fig. 3, we fixed γ = 28 and changed the value of λ. It can be
seen that changing λ from 0.1 (blue curve) to 0.5 (green curve)
and finally to 1 (pink curve) alters the v-nullcline insignificantly.
In other words, due to the change of λ no bifurcation occurs and
only the position of the unstable equilibrium point moves slightly
upward. This is illustrated in the enlarged diagramat the left side of
Fig. 3. In Fig. 4, the top panel shows the time response of the neuron
and the bottom panel the astrocyte output corresponding to the
individual values of λ in Fig. 3. Fig. 4 shows that changing the value
ofλ also alters the firing rate of the neuron. To investigate the effect
of changing λ and γ on the neuronal behavior simultaneously,
we calculated the neuron spiking frequency (that is, the inverse
on inter-spike intervals) and then plotted it versus λ and γ . The
results are shown in Fig. 5. It should be mentioned that in this
figure, theminimum value of γ is considered to be 18, since first at
this point the limit cycle (tonic behavior) is appeared. As shown
in Fig. 2, repetitive firing is caused by the SNIC bifurcation, and
therefore starts with the zero frequency. This region is indicated
by the dark blue in Fig. 5. However, for the large value of λ and
γ the frequency is increased considerably. Two important results
are derived from this figure. First, we observe a transition in the
neuron firing frequency as the strength of the neuron–astrocyte
interactions changes. Second, the locus of the constant frequency
points has an arc shape. This observation suggests that there is a
nonlinear relationship between the feed-forward (from neuron to
astrocyte) and feedback (from astrocyte to neuron) gains in the
neuron–astrocyte communication. In this way, to have a specific
firing activity, the interaction of both parameters is requiredwhich
reveals the fundamental role of the astrocytes to regulate the
neuronal excitability.

4. Discussion

Neuronal firing activity, which includes both the frequency
and the timing of action potentials, is an essential component
in information processing in the brain. Understanding neuronal
computation requires knowledge about how neurons can switch
from one firing pattern to another and how neuronal networks
can switch from one mode of oscillation to another (Quilichini
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Fig. 3. The phase plane of the dynamical system (1)–(2) for different values of λ. The brown curve indicates w-nullcline. In these simulations γ was fixed at γ = 28 and
λ was changed and took on three different values of λ = 0.1 (blue curve), λ = 0.5 (green curve) and λ = 1 (pink curve). It is evident that increasing λ, the position of the
unstable equilibrium point will move upward and the firing frequency of the neuron will increase. The inset is the enlargement of the selected part. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Top panel illustrates the time response of the neuron and the bottom panel shows the astrocyte output for the fixed value of γ = 28 and three different values of
λ = 0.1 (blue, T = 147 ms), λ = 0.5 (green, T = 143 ms) and λ = 1 (pink, T = 138 ms). The values of λ are chosen consistent with Fig. 3. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
& Bernard, 2012). Considering the results of this paper which
implies that the astrocyte is able to change the neuron spiking
frequency, suggests the possibility that the astrocyte has an active
role in neuronal synchronization. Synchronization is an important
mechanism for neural signaling, whereas a hallmark of several
neurological diseases such as epilepsy is excessively synchronized
discharges of neurons (Amiri, Bahrami, & Janahmadi, 2012b; Amiri,
Davoodi, Bahrami, &Raza, 2011; Seifert, Carmignoto& Steinhäuser,
2010). Indeed, in vitro experiments have demonstrated that
astrocytes control the frequency of cortical up-states (Min et al.,
2012; Poskanzer & Yuste, 2011). In addition, experimental
evidence shows that astrocytically released gliotransmitters has a
role in the neural synchrony (Fellin et al., 2009; Pereira & Furlan,
2009). One explanation for local synchronization of neurons is
that neighboring synapses are coordinated by signals from a single
astrocyte. In other words, one astrocytic glutamate release event
can induce SICs simultaneously in adjacent neurons. This led
to the assumption that they play a role in the local neuronal
synchronization (Angulo, Kozlov, Charpak, & Audinat, 2004; Fellin
et al., 2004; Min et al., 2012).

Also, based on the results of this paper, it is expected that
not only variations in the neuron–astrocyte interactions, but also
variation in the strength of astrocyte–neuron interactions can
be considered as a mechanism to encode information besides
variations in the neuron–neuron interactions in the brain. This can
provide a layer of information processing that could be in parallel
with, and/or interacting with, the information processing in
neuronal cells (Amiri, Hosseinmardi, Bahrami, & Janahmadi, 2013;
Hamilton & Attwell, 2010). Based on the structural relationship
between astrocytes and nerve cells, it has been reported that not
only an astrocyte has the potential to coordinate small clusters
of neurons, but also one astrocyte has the potential to regulate
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Fig. 5. The neuron firing frequency as a function of γ and λ with different colors to investigate the effect of bidirectional communication between neuron and astrocyte on
the neuronal behavior. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the function of hundreds of synapses (Halassa, Fellin, Takano,
Dong, & Haydon, 2007). Given that the results of this paper
highlight the importance of astrocyte–neuronal coupling, it is an
interesting point to consider a neuronal population model and
construct a network inwhich astrocytes can dynamicallymodulate
neuronal excitability and synaptic transmission. This procedure
also provides new opportunities for further investigation of
the model and pertinent applications including involvement of
astrocytes in brain disorders such as epilepsy.

It should be pointed out that the procedure used in this paper
to model neuron–astrocyte interactions is a functional approach
rather than a detailed structural and biophysical modeling. The
proposed model was developed by applying simplifications to the
underlying biophysicalmechanisms. Hence, although changing the
model alters the quantitative analysis performed in the paper,
the obtained qualitative responses are the same. In this way,
the absolute values of the obtained results are less significant
and thus the simulation results are qualitatively discussed and
compared with experimental observations. Finally, the phase
plane analysis of the model carried out in this paper is a
starting point for dynamical analysis of the realistic neuron–glia
networks.

5. Conclusion

Over the past two decades, the knowledge about the diverse
role of astrocytes in many facets of synaptic transmission has
considerably expanded (Rusakov, Zheng, & Henneberger, 2011).
The present study puts forward a new perspective to analyze the
loop of information exchange between the neuron and astrocyte.
First, a biologically inspired model was developed by connecting
the Morris–Lecar neuron and astrocyte dynamic models. Then,
utilizing dynamical system theory and based on the stability
analysis of the equilibrium points and the bifurcation diagram,
the neuron–astrocyte crosstalk was analyzed. In this way, it was
demonstrated that the astrocyte could apply feedback action to
regulate neuronal excitability. Through SNIC bifurcation, it was
shown that the astrocyte is able to turn on the silent neighboring
neuron or change the neuron spiking frequency. This means that
the bidirectional signaling between neuron and astrocyte could
facilitate the diversity of responses produced by the neuron.
Consequently, the feedback signaling through the activation of
astrocytes modulates spike transmission frequency by increasing
or decreasing neuronal firing. This suggests that astrocyte actively
contributes in the information processing mechanisms which are
carried out primarily by neurons. It should be pointed out that
the state-of-the-art experimental techniques will require further
investigation of the astrocyte’s role in the understanding of brain
function.
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