
ORIGINAL PAPER

Mathematical analysis and drug exposure evaluation
of pharmacokinetic models with endogenous production
and simultaneous first-order and Michaelis–Menten elimination:
the case of single dose

Xiaotian Wu1,2 • Fahima Nekka2,3 • Jun Li2,3

Received: 8 February 2018 / Accepted: 30 June 2018 / Published online: 9 July 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Drugs with an additional endogenous source often exhibit simultaneous first-order and Michaelis–Menten elimination and

are becoming quite common in pharmacokinetic modeling. In this paper, we investigate the case of single dose intravenous

bolus administration for the one-compartment model. Relying on a formerly introduced transcendent function, we were

able to analytically express the concentration time course of this model and provide the pharmacokinetic interpretation of

its components. Using the concept of the corrected concentration, the mathematical expressions for the partial and total

areas under the concentration time curve (AUC) were also given. The impact on the corrected concentration and AUC is

discussed as well as the relative contribution of the exogenous part in presence of endogenous production. The present

findings theoretically elucidate several pharmacokinetic issues for the considered drug compounds and provide guidance

for the rational estimation of their pharmacokinetic parameters.

Keywords Pharmacokinetic model � X function � Endogenous production � Simultaneous first-order and Michaelis–Menten

elimination � Area under the concentration time curve (AUC)

Introduction

In clinical pharmacology, quantitative pharmacokinetic

modeling has been proved to effectively link the adminis-

tered drug amount and the induced therapeutic outcome by

describing the complete concentration time course for the

desired and/or undesired effect [1, 2]. With the increasing

complexity involved in these models, their quantitative

analysis and interpretation become determinant for the

prediction quality of direct observations and other phar-

macological properties. Historically, linear pharmacoki-

netic compartment models have greatly contributed to the

explanation and prediction of many pharmacological phe-

nomena. However, many of new drug compounds, such as

hormones or monoclonal antibodies, can have more com-

plex kinetics [3–6]. A typical example is the recombinant

human granulocyte colony-stimulating factor (rhG-CSF),

which is molecularly similar to endogenous produced

granulocyte colony-stimulating factor (G-CSF) and gener-

ally used as a stimulant agent to mitigate the toxic effect of

chemical drugs on white blood cells during chemotherapy.

G-CSF functions by promoting the generation, differenti-

ation and maturation of neutrophils, a major part of white

blood cells that play a crucial role in the immune system

[3, 4, 6]. The elimination of G-CSF not only undergoes the

traditional renal pathway, generally of linear type, but also

combines a saturate internalization process, in which the

G-CSF molecules bind to neutrophil receptors and are

transformed into substances readily to be eliminated. Other
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blood stimulants, such as erythropoietin (EPO) and

thrombopoietin (TPO) show similar PK properties [7–9].

In order to predict plasma concentration time courses of

these drugs, compartment models with nonlinear elimina-

tion is a reasonable choice. The general approach is to

model the saturate drug elimination with Michaelis–Menten

kinetics [10–12]. However, refined models using parallel

elimination mechanisms, with a first-order kinetics char-

acterizing the renal elimination pathway and a Michaelis–

Menten kinetics for the saturate metabolism pathway, were

proposed as well [6, 9, 13]. Many efforts are solely based on

numerical solutions, and are limited to pointing out the

existence of an implicit function for the solution [14, 15].

However, it would be helpful to concretely find a closed

form solution, which allows to explore the underlying

mechanisms and easily extract various relevant pharmaco-

logical properties. It has become a challenge to search for

analytical solutions of these complex models. For instance,

in the case of compartment models with Michaelis–Menten

elimination alone, Lambert W function proved to be the

sought-for element able to express their solutions under a

closed form [16, 17]. Specifically, the time course of drug

plasma concentration CmðtÞ after a single intravenous (IV)

bolus dose administration D can be expressed as

CmðtÞ ¼ Km �W D

KmVd

exp
D� Vmaxt

VdKm

� �� �
; ð1Þ

where ‘‘W’’ represents Lambert W function [18]; Vmax is the

maximum velocity of Michaelis–Menten kinetics in unit of

amount/time, and Km, known as the Michaelis–Menten

constant, is the concentration value at which the rate of

change of Michaelis–Menten kinetics reaches half of Vmax;

Vd is the body’s apparent volume of distribution. Recently,

motivated by Lambert W function, we introduced the X

function and obtained the corresponding closed form

solution of C(t) for drugs modeled with a one-compartment

structure and having simultaneous first-order (kel) and

Michaelis–Menten elimination (Km and Vmax) [19]. For the

case of a single dose D, C(t) is therefore expressed as

CðtÞ ¼ Cb � X
D

CbVd

� �p1 D

CbVd

þ 1

� �p2

expð�tÞ; p1; p2
� �

;

ð2Þ

where

p1 ¼
KmVd

kelVdKm þ Vmax

; p2 ¼
Vmax

kelðkelVdKm þ VmaxÞ
;

Cb ¼ Km þ Vmax

kelVd

:

ð3Þ

Note that the symbol Cb used here replaces b that was for-

mally used in [19] to make the content easier to understand.

Apart from their simultaneous linear and saturate elim-

ination properties, compounds such as hormones or mon-

oclonal antibodies can have more complex properties due

to their endogenous production. While endogenous pro-

duction has been accounted for in compartment PK models,

it only remained at the level of parameters fitting of plasma

concentration data [3, 20]. The systematic analysis of these

models is still absent, either for closed form solutions, or

for model-based estimation of PK parameters, particularly

for the area under concentration time curve (AUC). Even

though in the linear case, where several algebraic formulas

have been established and used to estimate such parameters

in practice, the rationale behind these estimations is still

lacking when endogenous production is present. It is

therefore important to understand how the endogenous

production can impact the disposition of these molecules.

Consequently, the mathematical validity of current AUC

estimation should be revisited. This will be the focus of the

present work.

The paper is organized as follows: the relationship

between Lambert W and X functions is clarified in the next

section, followed by the closed form solution for the model

of single IV bolus administration and the PK interpretation

of newly introduced entities. The analytical formulas for

the estimation of AUC in the case of constant endogenous

production using the corrected concentration and the

impact of endogenous production on the corrected con-

centration and AUC are then studied. Finally, the limits and

perspectives of the current PK models, either from a

pharmacological or a bio-mathematical standpoint are

discussed in the last section.

Lambert W and X functions

Lambert W function is a transcendental function widely

used for the closed form solutions of various differential

equations describing exponential phenomena, particularly

for delay differential equations [21, 22]. In pharmacoki-

netics, it has been used to express the closed form solutions

of drug plasma concentration time courses when only

Michaelis–Menten elimination is involved [16, 17]. In

order to analytically express solutions of one-compartment

PK models of simultaneous first-order and Michaelis–

Menten elimination with intravenous bolus administration,

we have introduced the X function as a natural extension of

Lambert W function [19]. As shown below, we can see how

these two functions are related.

Definition 1 [18] The Lambert W function is the multi-

valued inverse of the function f ðzÞ ¼ z expðzÞ, i.e.,
WðzÞ expðWðzÞÞ ¼ z ð4Þ
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where z is a complex number.

Definition 2 [19] The X function is the multivalued

inverse of the function f ðzÞ ¼ zpðzþ 1Þq, p; q 2 Rþ, i.e.,

ðXðz; p; qÞÞpðXðz; p; qÞ þ 1Þq ¼ z ð5Þ

where z is a complex number.

The PK model having simultaneous first-order and

Michaelis–Menten elimination is an extension of the model

involving only a Michaelis–Menten elimination. Hence the

X function can be considered an extension to the Lambert

W function. However, this extension is neither simple nor

direct. In fact, instead of being a particular case of the

X function, the Lambert W function can only be obtained

through a limit process of the former.

From Eq. (2), we have

CðtÞ
Cb

� �p1 CðtÞ
Cb

þ1

� �p2

¼ D

CbVd

� �p1 D

CbVd

þ1

� �p2

expð�tÞ;

which can be further rearranged into

CðtÞð Þp1 CðtÞ
Cb

þ 1

� �p2

¼ D

Vd

� �p1 D

CbVd

þ 1

� �p2

expð�tÞ;

ð6Þ

where p1, p2 and Cb are given in Eq. (3). Using the

dependence of the models on these parameters, we have

lim
kel!0

CðtÞ ¼ CmðtÞ:

When taking kel ! 0, it can be proved that

lim
kel!0

p1 ¼
KmVd

Vmax

; lim
kel!0

p2CðtÞ
Cb

¼ VdCmðtÞ
Vmax

and lim
kel!0

CðtÞ
Cb

þ 1

� � Cb
CðtÞ

¼ e

where e is the Euler’s number.

Using the above relationships, we have

lim
kel!0

CðtÞ
Cb

þ 1

� �p2

¼ lim
kel!0

CðtÞ
Cb

þ 1

� � Cb
CðtÞ

2
4

3
5

p2CðtÞ
Cb

¼ lim
kel!0

CðtÞ
Cb

þ 1

� � Cb
CðtÞ

2
4

3
5

lim
kel!0

p2CðtÞ
Cb

¼exp
VdCmðtÞ
Vmax

� �
:

Moreover, we have

lim
kel!0

D

CbVd

þ 1

� �p2

¼ exp
D

Vmax

� �
:

For both sides of Eq. (6), we take the limit as kel ! 0, then

CmðtÞð Þ
VdKm
Vmax exp

VdCmðtÞ
Vmax

� �
¼ D

Vd

� �VdKm
Vmax

exp
D

Vmax

� �
expð�tÞ:

Simplifying the above equation, we have

CmðtÞ
Km

exp
CmðtÞ
Km

� �
¼ D

VdKm

exp
D� Vmaxt

VdKm

� �
: ð7Þ

If we use Lambert W function to express the solution of

Eq. (7), it will correspond to the one given by Eq. (1).

Following the definitions of Lambert W and X functions,

the relation between these two functions can be summa-

rized as:

Theorem 1 Write z ¼ D
VdKm

exp D�Vmaxt
VdKm

� �
, then Lambert W

function is a limit of X functions as kel ! 0, which can be

expressed in the following limit form:

lim
kel!0

Cb

Km

� X D

CbVd

� �p1 D

CbVd

þ 1

� �p2
�

exp � D

Vmax

� �
KmVd

D
z

� �VdKm
Vmax

; p1; p2

!
¼ WðzÞ:

Remark 1 KmW
D

KmVd

exp
D� Vmaxt

VdKm

� �� �
is the solution

of the PK model with the Michaelis–Menten elimination

alone (Eq. 1), and CbX
D

CbVd

� �p1 D

CbVd

þ 1

� �p2
�

expð�tÞ; p1; p2Þ is the solution of the model with simulta-

neous first-order and Michaelis–Menten elimination

(Eq. 2). The former is the limit of the latter when the linear

elimination tends to fade.

As for the case of Lambert W function, the X function

has multiple real branches. However there is only one real

branch in the first quadrant, which we need to express the

analytical solutions of PK models. In the rest of the paper,

we will use the symbol X to denote this unique real branch.

A brief discussion of this topic is given in the Appendix 4.

It is practical to have the X function implemented into

mathematical software such as Matlab, which is what we

have done here to compute the drug plasma concentration

of the discussed PK model.
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Pharmacokinetic model of endogenous
production and simultaneous first-order
and Michaelis–Menten elimination

The X function was introduced to express the closed form

solution of a PK model with simultaneous first-order and

Michaelis–Menten elimination in a previous work [19].

For the more general PK model considered in the current

paper, we will show how the X function can serve its closed

form solution.

The description of the PK model

As mentioned in the introduction, it is not rare that drug

substances (given exogenously) are also endogenously

produced, and eliminated through parallel pathways

[3, 23, 24]. Indeed, their elimination can involve a first-

order process generally through kidneys, in a proportional

way to the drug plasma concentration, accompanied by a

non-linear elimination of Michaelis–Menten kinetics,

likely attributed to drug-mediated metabolism or internal-

ization. It is usually assumed that endogenous production

occurs at a constant rate, denoted by rprod, if circadian

effect can be ignored [3]. The following differential

equation is used to describe the PK model considered here:

d

dt
CðtÞ ¼ rprod � kel CðtÞ �

1

Vd

VmaxCðtÞ
Km þ CðtÞ ; t[ 0; ð8Þ

with initial conditions

Cð0þÞ ¼ Chs þ D=Vd¼
def
C0; at t ¼ 0þ; ð9Þ

where kel, Vmax, Km, Vd, D are as previously defined, and

Chs having the form

Chs ¼
1

2

rprod

kel
� Cb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rprod

kel
� Cb

� �2

þ4
rprod

kel
Km

s0
@

1
A

ð10Þ

is the baseline concentration calculated from the system at

homeostasis. The well-posedness of the model (8) is pro-

vided in Appendix 1.

It is worth noting that the baseline concentration can be

estimated prior to drug administration [25–27]. We also

have to mention that if rprod ¼ 0, the current model goes

back to the model with simultaneous first-order and

Michaelis–Menten elimination studied in [19]. Moreover,

without loss of generality and for the rest of the paper, the

concentration value immediately after dose administration

is referred to as the concentration at time zero (Eq. 9).

Closed form solution of C(t)

The closed form solution of the concentration time course

of the considered model (Eqs. 8–9) can be expressed as

follows.

Theorem 2 For an intravenous bolus dose D, the closed

form solution of Eqs. (8)–(9) is

CðtÞ ¼ Chs þ Chs þ Cen
b

� �
�

X
D=Vd

Chs þ Cen
b

 !p
D=Vd

Chs þ Cen
b

þ 1

 !q

e�t; p; q

 !
; t[ 0

ð11Þ

where

p ¼ 1

kel

Chs þ Km

Chs þ Cen
b

; q ¼ 1

kel

Cen
b � Km

Chs þ Cen
b

;

Cen
b ¼ Chs �

rprod

kel
þ Cb:

ð12Þ

Proof Since a single dose is added to the system, we have

CðtÞ[Chs, thus Eq. (8) can be transformed into�
p

CðtÞ � Chs

þ q

CðtÞ þ Cen
b

�
dCðtÞ ¼ � dt; ð13Þ

with the notations p, q and Cen
b as defined in Eq. (12). It can

be proved that p, q and Cen
b are positive, and Cen

b [Km (see

Appendix 2). Moreover, pþ q ¼ 1=kel is the average time

during which all drug compounds are assumed to be

eliminated through the linear elimination pathway alone;

p and q represent the partition of the time 1=kel modulated

by ChsþKm

ChsþCen
b
and

Cen
b �Km

ChsþCen
b
, respectively.

Integrating Eq. (13) from 0þ to t leads to

p ln CðtÞ � Chsð Þ þ q ln CðtÞ þ Cen
b

� �

¼ p ln C0 � Chsð Þ þ q ln C0 þ Cen
b

� �
� t

ð14Þ

since CðtÞ[Chs.

Equation (14) can be rearranged as

CðtÞ � Chsð Þp CðtÞ þ Cen
b

� �q
¼ C0 � Chsð Þp C0 þ Cen

b

� �q
e�t:

ð15Þ

Dividing both sides of Eq. (15) by ðChs þ Cen
b Þpþq

gives

rise to
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CðtÞ � Chs

Chs þ Cen
b

 !p
CðtÞ � Chs

Chs þ Cen
b

þ 1

 !q

¼ C0 � Chs

Chs þ Cen
b

 !p
C0 þ Cen

b

Chs þ Cen
b

 !q

e�t:

In terms of X function, we have

CðtÞ � Chs

Chs þ Cen
b

¼ X
C0 � Chs

Chs þ Cen
b

 !p
C0 þ Cen

b

Chs þ Cen
b

 !q

e�t; p; q

 !
; t[ 0:

ð16Þ

Substituting C0 with Chs þ D=Vd in Eq. (16), the closed

form solution of C(t) shown in Eq. (11) is obtained. h

Pharmacokinetic interpretation of Cenb

Cen
b can be rewritten as

Cen
b ¼ Chs � CL;hs þ Cb ð17Þ

where Chs is the baseline concentration given in Eq. (10);

CL;hs ¼ rprod=kel is the baseline concentration of Eq. (8) if

Michaelis–Menten kinetics is absent; and Cb ¼ Vmax

kelVd
þ Km

is a parameter defined for the model with no endogenous

production in our previous study [19]. Specifically, Cb is

the concentration at which a linear PK model with an

elimination coefficient kel can have the same rate of change

as produced in another linear model at concentration Km,

which has an elimination rate constant kel þ Vmax

KmVd
.

In fact, Cen
b is the extension of Cb for the PK model that

takes into account the endogenous production. Indeed, let

us consider two linear models:

dC1ðtÞ
dt

¼ kelChs � kelC1ðtÞ ð18Þ

and

dC2ðtÞ
dt

¼ kelCL;hs � kel þ
Vmax

KmVd

� �
C2ðtÞ: ð19Þ

Then, Cen
b is the concentration value of C1ðtÞ in Eq. (18)

that gives the same change rate of concentration for

C2ðtÞ ¼ Km in Eq. (19), i.e.,

dC1ðtÞ
dt

����
C1ðtÞ¼Cen

b

¼ dC2ðtÞ
dt

����
C2ðtÞ¼Km

: ð20Þ

In short, Cen
b is the concentration of a linear model having

endogenous production rate kelChs and elimination coeffi-

cient kel, that gives the same change rate of concentration

for another linear model having endogenous production

rate kelCL;hs and elimination coefficient kel þ Vmax

KmVd
at

concentration Km. If the drug has no endogenous produc-

tion, we then have Chs ¼ CL;hs ¼ 0. In this case, Cen
b ¼ Cb.

We can also show that p and q generalize p1 and p2
given in [19], respectively.

Area under the curve (AUC)

As there is a baseline concentration, the validity of a direct

calculation of AUC from the observed concentrations using

the trapezoidal rule has to be justified and adapted to this

context. For drug compounds that are also endogenously

produced, the use of the corrected concentrations has been

recommended for the calculation of PK parameters. This

corrected concentration, CðtÞ � Chs, which is obtained by

subtracting the baseline concentration from the observed

concentration, is actually used to recover the exogenous

drug contribution [25–27].

Partial area under the curve ðAUC0- tÞ

We will first investigate the partial area under the curve

from drug administration time zero until a certain time t,

noted AUC0�t. Considering the current PK model where

there is a baseline concentration, we can define AUC0�t as

AUC0�t ¼
Z t

0

ðCðtÞ � ChsÞ dt; ð21Þ

where C(t) is the observed concentration, and Chs is the

baseline concentration.

Theorem 3 Given the PK model described by the

Eqs. (8)–(9), the partial drug exposure AUC 0�t is

AUC0�t ¼
1

kel

D

Vd

þ Chs � CðtÞ
� �

þ
Cen
b � Km

kel
ln

CðtÞ þ Cen
b

D=Vd þ Chs þ Cen
b

;

ð22Þ

where all parameters are as previously defined. Moreover,

if Michaelis–Menten elimination pathway is absent, the

corresponding partial area under the curve, AUCL;0�t,

becomes

AUCL;0�t ¼
D

kelVd

1� e�kelt
� 	

; ð23Þ

and we have

AUC0�t\AUCL;0�t if Vmax[0; and lim
Vmax!0

AUC0�t ¼AUCL;0�t:

ð24Þ

Proof The obtention of Eq. (22) is straightforward. We

can multiply both sides of Eq. (13) by CðtÞ � Chs and then

make a simple rearrangement, which gives
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ðCðtÞ � ChsÞ dt ¼ � pþ q� q
Chs þ Cen

b

CðtÞ þ Cen
b

( )
dCðtÞ:

ð25Þ

Integration of Eq. (25) yields

AUC0�t ¼
Z t

0

ðCðtÞ � ChsÞ dt

¼ðpþ qÞ D

Vd

þ Chs � CðtÞ
� �

þ qðChs þ Cen
b Þ ln

CðtÞ þ Cen
b

D=Vd þ Chs þ Cen
b

¼ 1

kel

D

Vd

þ Chs � CðtÞ
� �

þ
Cen
b � Km

kel
ln

CðtÞ þ Cen
b

D=Vd þ Chs þ Cen
b

:

Furthermore, the model (Eqs. 8–9) satisfies

dCðtÞ
dt

¼ rprod � kelCðtÞ �
VmaxCðtÞ

VdðKm þ CðtÞÞ � rprod � kelCðtÞ;

ð26Þ

with the same initial condition D=Vd þ Chs. This leads to

the partial area under the curve of the linear model

(Michaelis–Menten elimination is absent in Eq. (8)) as

AUCL;0�t ¼
Z t

0

D

Vd

e�kelt dt ¼ D

kelVd

1� e�kelt
� 	

:

By the Comparison Theorem [28], the solution of the

current model (i.e. the concentration time curve) is upper

bounded by that of the linear model, which gives rise to

Eq. (24). h

Remark 2 AUC0�t given by Eq. (22) can be directly

calculated using the X function, by applying the expression

of C(t) given in Theorem 2.

Total drug exposure ðAUC0- ¥ Þ

The total drug exposure, as represented by AUC0�1 can be

defined as

AUC0�1 ¼
Z 1

0

ðCðtÞ � ChsÞ dt; ð27Þ

where C(t) and Chs are the observed and baseline concen-

trations, respectively.

If Michaelis–Menten elimination pathway is absent in

Eqs. (8)–(9), the following result is known for linear

kinetics.

Lemma 1 For the one-compartment PK model with linear

elimination and constant endogenous production, the total

drug exposure, AUCL;0�1, after a single IV bolus dose D,

is

AUCL;0�1 ¼ D

kelVd

: ð28Þ

Proof Solving the linear PK model of

dCðtÞ
dt

¼ rprod � kelCðtÞ; Cð0þÞ ¼ D=Vd þ CL;hs ð29Þ

yields the corrected concentration as

CðtÞ � CL;hs ¼
D

Vd

e�kelt; t[ 0: ð30Þ

Accordingly, this total drug exposure is

AUCL;0�1 ¼
Z 1

0

ðCðtÞ � CL;hsÞ dt

¼
Z 1

0

D

Vd

e�kelt dt ¼ D

kelVd

:

ð31Þ

h

However, we have

Theorem 4 For the considered PK model described by

Eqs. (8)–(9), the total drug exposure over time defined by

Eq. (27), AUC 0�1, is

AUC0�1 ¼ D

kelVd

�
Cen
b � Km

kel
ln 1þ D=Vd

Chs þ Cen
b

 !
: ð32Þ

Moreover, we have

AUC0�1\AUCL;0�1 if Vmax [ 0;

and lim
Vmax!0

AUC0�1 ¼ D

kelVd

¼ AUCL;0�1:
ð33Þ

Proof Integration of Eq. (25) from 0 to 1 yields

AUC0�1 ¼
Z 1

0

ðCðtÞ � ChsÞ dt

¼
Z 1

0

� pþ q� q
Chs þ Cen

b

CðtÞ þ Cen
b

( )
dCðtÞ

¼ � ðpþ qÞðCð1Þ � C0Þ þ qðChs

þ Cen
b Þ ln

Cð1Þ þ Cen
b

C0 þ Cen
b

 !

¼ D

kelVd

�
Cen
b � Km

kel
ln 1þ D=Vd

Chs þ Cen
b

 !
;

where Cð1Þ ¼ Chs and C0 ¼ Chs þ D=Vd.

Since Cen
b [Km, the second term in the expression of

AUC0�1 is positive when Vmax [ 0. Then we have
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AUC0�1\
D

kelVd

¼ AUCL;0�1:

Moreover, when the maximum velocity of Michaelis–

Menten kinetics tends to zero, we have

Chs !
rprod

kel
and Cen

b ! Km;

which leads to

lim
Vmax!0

AUC0�1 ¼ D

kelVd

¼ AUCL;0�1:

h

Remark 3 If the endogenous production rate rprod ¼ 0,

then total drug exposure over time turns to

AUC0�1 ¼ D

kelVd

� Cb � Km

kel
ln 1þ D=Vd

Cb

� �
: ð34Þ

Moreover, if the endogenous production rate rprod tends to

infinity, we have

lim
rprod!1

AUC0�1 ¼ D

kelVd

: ð35Þ

Remark 4 In fact, AUC0�t can be rewritten as

AUC0�t ¼
D

kelVd

�
Cen
b � Km

kel
ln 1þ D=Vd

Chs þ Cen
b

 !

� 1

kel
CðtÞ � Chsð Þ;

ð36Þ

which coincides with AUC0�1 in Eq. (32) when time tends

to infinity.

Impact of endogenous production
on the corrected concentration and AUC

Endogenous production and the corrected
concentration

Though the use of the corrected concentration CðtÞ � Chs

seems a logic way for a fair estimation of exogenous

compound’s pharmacokinetics, its suitability and valida-

tion should be further investigated. The question would be

to know if the corrected concentration is the same as the

concentration generated by the system where no endoge-

nous production is involved.

For this, two PK models are considered here: (1) the

current PK model described by Eqs. (8)–(9); and (2) the

linear model obtained by dropping the Michaelis–Menten

elimination pathway from the former PK model. The fol-

lowing results are obtained.

– Linear pharmacokinetic model The corrected concen-

tration is identical to the concentration generated by the

system not involving endogenous production. It is

understandable that for linear PK, endogenous produc-

tion and exogenous administration contribute in paral-

lel to the resulting drug concentration time course, a

property known as the superposition principle for the

linear time invariant system. Hence, the corrected

concentration is a rational and fair choice for linear

kinetics.

– Nonlinear pharmacokinetic model As observed in

Fig. 1, the corrected concentration curves are different

from the concentration curves generated by the systems

with no endogenous production. Generally, these

concentrations are even higher when rprod increases

(Fig. 1b). The ratio of the corrected concentration to

that of the system with no endogenous production

(Fig. 1d) grows exponentially with time for the system

with endogenous production. As the superposition

principle is no more valid for nonlinear PK, we can

explain that a larger rprod will make the accumulation of

the resulting concentration even higher, and with

exogenously administered drug fading over time, this

becomes more imposing as reflected in the ratios.

Therefore the corrected concentration is nonlinearly

dependent on the endogenous production, even with a

constant rate of endogenous production.

Endogenous production and AUC

For the PK model (Eqs. 8–9), we have found the explicit

expressions of AUC0�t and AUC0�1 based on the cor-

rected concentrations and established their relationships

(Eqs. 24 and 32) with the corresponding linear PK model

obtained by dropping the Michaelis–Menten elimination

pathway. This relationship can be better perceived graph-

ically. Indeed, AUC0�1 of the model (Eqs. 8–9) increases

with rprod in a sigmoid fashion but is always bounded

above by AUCL;0�1, which is the total drug exposure of

the linear model (Fig. 2a). Moreover, the shapes of these

AUC0�1 are controlled by Vmax values. For a high Vmax,

AUC0�1is lower and needs a relatively high endogenous

production rprod to reach the saturate level given by

AUCL;0�1. Moreover it is obvious to see that AUC0�1
curve converges to the constant AUCL;0�1 when Vmax

tends to zero, i.e., when the model tends to be linear as

shown in Theorem 4.

It is interesting to explore how AUC0�1 responds to

both endogenous production rate rprod and exogenous dose

D. For this, we calculated and displayed the contour plots

of AUC0�1 vs. rprod and D (Fig. 2b). For a large rprod, the

increase in AUC0�1 is almost equidistant for each increase
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Fig. 1 (Online color) The impact of rprod on the corrected concen-

tration for linear and nonlinear PK models for rprod ¼ 0; 15; 30 mIU/

ml/h. D ¼ 1350 mIU/kg, Vd ¼ 61:18 ml/kg; kel ¼ 0:21/h,
Vmax ¼ 1993 mIU/h/kg and Km ¼ 67:23 mIU/ml. a Time courses

of log corrected concentration for the linear models; b time courses of

log corrected concentration for the nonlinear models; c ratios for the

linear models; d ratios for the nonlinear models
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Fig. 2 (Online color) Drug exposure versus endogenous production

rate rprod and administered dose D. a AUC0�1 versus rprod for

Vmax ¼ 0; 2000; 6000 mIU/h/kg, D ¼ 1375 mIU/kg; b contour plot

of AUC0�1 in function of rprod and D, where Vmax ¼ 2000 mIU/h/kg.

The other parameters are the same as those in Fig. 1
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in D, hence proportional to the dose. However, this linear

increase is not maintained for low levels of rprod. This

phenomenon can be explained with the concept of domi-

nant elimination pathway that we found in [19], where the

linear and nonlinear elimination pathways can have their

dominant role altered depending on drug concentration

levels. A large value of rprod leads to a high level of plasma

concentration, making thus the first-order elimination

dominant. However, when the clearance from the linear

elimination pathway (kelVd) is less than the intrinsic

clearance following Michaelis–Menten kinetics (Vmax=Km),

a small rprod leads to a low baseline concentration, thus

giving rise to a low level of drug plasma concentration

where Michaelis–Menten elimination pathway dominates,

and this is particularly true for a small dose D. Moreover,

for a given AUC0�1, dose can be estimated as D ¼
kelVd � AUC0�1 when rprod ! 1, while dose D can only

be numerically estimated from Eq. (34) when rprod ¼ 0.

Similar observations can be found and explained for the

partial AUC0�t (Fig. 3).

The net total drug exposure (AUCnet)

We have calculated the baseline concentration Chs for the

steady state of Eq. (8). At this state, the system elimination

is balanced with the endogenous input rate rprod. Thus the

validity of using Chs as a proxy of the contribution of

endogenous input can only be established when the system

is not altered by any exogenous drug input. For a constant

rprod, Chs stays constant. However, in the presence of

exogenous drug administration, the fair share of endoge-

nous input in the whole drug exposure can not be constant.

Instead, the transient endogenous contribution should be a

function of time that varies with the PK of the exogenous

drug input. It is hence important to differentiate the fair

contributions of endogenous and exogenous inputs to the

total drug exposure.

Estimation of the contribution of endogenous production

to the total drug exposure cannot be directly obtained as the

case for the determination of the baseline concentration,

where only several blood samples collected prior to drug

administration are needed. However, in the actual model-

ing framework, we can separately model the contribution

of endogenous and exogenous inputs, and numerically

calculate the net drug exposure from exogenous contribu-

tion by removing the endogenous part.

In fact, the current model (Eqs. 8–9) can be further

separated into the following submodel

d

dt
CenðtÞ ¼ rprod � kelCenðtÞ �

VmaxCenðtÞ
VdðKm þ CenðtÞ þ CexðtÞÞ

;

Cenð0Þ ¼ Chs;

ð37Þ
d

dt
CexðtÞ ¼ � kelCexðtÞ �

VmaxCexðtÞ
VdðKm þ CenðtÞ þ CexðtÞÞ

;

Cexð0þÞ ¼ D=Vd;

ð38Þ

which describe the concentrations CenðtÞ and CexðtÞ, gen-
erated by endogenous and exogenous inputs, respectively.

Note that adding Eqs. (37) and (38) gives the original

model, where C ¼ Cen þ Cex. Moreover, the non-
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Fig. 3 (Online color) Partial area under the curve AUC0�t versus time

t or endogenous production rate rprod . a AUC0�t versus time t for

different rprod as 0, 10, 20, 30 mIU/ml/h; b AUC0�t versus endoge-

nous production rate rprod for time t ¼ 1; 4; 12; 48 h. Except time t

and endogenous production rate rprod , other parameters are fixed as

D ¼ 1375 mIU/kg, kel ¼ 0:21 /h, Vmax ¼ 1993 mIU/h/kg,

Km ¼ 67:23 mIU/ml, Vd ¼ 61:18 ml/kg [9]
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negativity of the submodel and local stability of the unique

steady state E� ¼ ðC�
en;C

�
exÞ ¼ ðChs; 0Þ are given in

Appendix 3.

Then the net total drug exposure should be

AUCnet ¼
Z 1

0

ðCðtÞ � CenðtÞÞ dt ¼
Z 1

0

CexðtÞ dt: ð39Þ

Based on Eqs. (37)–(38), CenðtÞ and CexðtÞ are simulated

numerically to estimate the net drug exposure, and the

results are displayed in Fig. 4.

In Fig. 4a, we can observe the influence of exogenous

drug input on the PK of endogenous production. Instead of

being an independent concentration curve of constant value

Chs, CenðtÞ is driven by the PK of exogenous drug admin-

istration. In fact, initially at the value of Chs, CenðtÞ increases
after the dose administration and follows a bell curve then

decreases towards Chs. This justifies our argument on the

improper use of Chs in the estimation of drug exposure under

the conditions of the current model. In Fig. 4b, AUC0�1
estimated using the baseline concentration Chs and AUCnet

are reported versus rprod. It clearly shows that AUC0�1
overestimates the drug exposure of the exogenous admin-

istration. However, it is still interesting to see that, even

when the endogenous contribution is more properly drop-

ped, AUCnet remains dependent on rprod , which is in fact

increasing to finally saturate with rprod . The nonlinear

Michaelis–Menten elimination pathway, which saturates at

high concentration values, is responsible for this unusual

phenomenon. With a large rprod, drug concentration is

inclined to accumulate to reach a high level such that the

drug is less easily eliminated, leading to a higher AUCnet.

Moreover, for a very large rprod, linear pathway dominates

the whole drug elimination. In this case, the system is likely

to manifest a linear PK and reaches a plateau of AUCnet.

Discussion and conclusions

In the current paper, we have formulated the closed form

solution for the one-compartment PK model involving

simultaneous first-order and Michaelis–Menten elimination

with endogenous production in the case of a single IV dose.

This model extends the one that we have previously studied

with the additional consideration here of the endogenous

production [19]. The extension is physiologically natural

since it allows to mathematically outreach to those sub-

stances that are also endogenously produced. While our

progress in this direction is a significant step forward, this is

not the end of the story since more refined drug models and

modeling approaches are being proposed and for which a

rigorous mathematical analysis is still lacking [3, 29–32].

Such models could include multiple compartments [32],
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Fig. 4 (Online color) Profiles of time course of observed, endogenous

and exogenous concentrations and impact of endogenous production on

AUC. a Time course of observed, endogenous and exogenous

concentrations in the case of rprod ¼ 50 mIU/ml/h simulated from

the model (Eqs. 37–38). b Impact of endogenous production

(rprod 2[0,300 mIU/ml/h]) on AUC0�1 and AUCnet . In all simulations,

other parameters are fixed as D ¼ 1375 mIU/ml, kel ¼ 0:21/h,
Vmax ¼ 2000 mIU/h/kg, Km ¼ 67:23 mIU/ml, Vd ¼ 61:18 ml/kg
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involving feedback mechanisms regulating endogenous

production [3, 33–35], or target-mediated drug disposition

(TMDD) [29–31]. Though endogenous production is con-

sidered constant here, this work definitely provides a foun-

dation for the understanding of the influence of endogenous

production on PK and sheds light on the inner structure of

PK components and their intertwined relationships.

Our work indicates the need to revisit and update the

estimation of relevant PK parameters, especially for the

case of more complex drugs exhibiting non-linear kinetics.

In the presence of endogenous production, the current

study shows that it can have a great impact on the esti-

mation of drug exposure, whether using the corrected

concentration or net exogenous concentration curve. A

further practical strategy to rationally estimate drug expo-

sure needs to be developed.

As previously mentioned, the introduction of the

X function was motivated by the usefulness of the Lambert

W function to express the closed form solution of one-

compartment PK models involving the Michaelis–Menten

elimination alone [17]. In fact, through a limiting process,

we were able to show that the X function can be linked to

the Lambert W function. We proved that this newly intro-

duced X function was also suitable for the expression of the

closed form solution of one-compartment PK models with

simultaneous first-order and Michaelis–Menten elimina-

tion [19]. In the current paper, we have shown that the use

of X function can be further extended to the case of

endogenous production. Indeed, the X function has its own

specific mathematical properties such as the real branches

as illustrated in the Appendix 4 using typical parameter

values. More complex branches can be explored as what is

known for the case of the Lambert W function [18]. For

numerical purposes, we have implemented the X function

into Matlab, with the aim to make it accessible to the users.
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Appendix 1: Well-posedness of the model
(Eq. 8)

Lemma 2 For the model (Eq. 8), we have the following

results:

(i) There is a unique positive solution Chs as shown in

Eq. (10).

(ii) CðtÞ[ 0 for all t[ 0 provided that Cð0Þ[ 0 and

limt!1 CðtÞ ¼ Chs .

Proof (i) In order to find the positive solution of Eq. (8),

letting the right hand be zero yields

rprod � kelCðtÞ �
1

Vd

VmaxCðtÞ
Km þ CðtÞ ¼ 0:

This can be further transformed into the following quad-

ratic equation

C2ðtÞ þ Vmax

kelVd

þ Km � rprod

kel

� �
CðtÞ � rprodKm

kel
¼ 0:

Since the product of the roots of the above quadratic

equation is � rprodKm
kel

\0, hence the roots must be real with

one negative and one positive Chs as shown in Eq. (10).

(ii) If Cð0Þ ¼ Chs [ 0, then
dCðtÞ
dt

jt¼0 ¼ 0 implying

CðtÞ ¼ Chs [ 0 for all t[ 0. If Cð0Þ[Chs [ 0, we have
dCðtÞ
dt

jt¼0\0 implying a decrease of C(t) at t ¼ 0. By the

continuity of solution, C(t) will continue to decrease as

long as CðtÞ[Chs for t[ 0, and will eventually converge

to Chs since
dCðtÞ
dt

jCðtÞ¼Chs
¼ 0. Therefore, in this case C(t) is

a strictly decreasing sequence and has Chs as a lower

bound. By the monotone convergence theorem, we have

limt!1 CðtÞ ¼ Chs. Similarly, if 0\Cð0Þ\Chs, C(t) in-

creases and eventually converges to Chs. h

Appendix 2: Claim ‘‘p, q and Cen
b are positive

and Cen
b >Km’’

Proof CL;hs satisfies rprod ¼ kelCL;hs, and Chs satisfies

rprod ¼ kelChs þ Vmax

Vd

Chs

KmþChs
, thus we have

kelðChs � CL;hsÞ ¼ �Vmax

Vd

Chs

Km þ Chs

:

This yields

Chs � CL;hs ¼ � Vmax

kelVd

Chs

Km þ Chs

:

Accordingly, we have

Cen
b � Km ¼ Chs � CL;hs þ Cb � Km

¼ � Vmax

kelVd

Chs

Km þ Chs

þ Vmax

kelVd

¼ Vmax

kelVd

Km

Km þ Chs

[ 0:

It is thus obvious that p and q are positive. h

Appendix 3: Stability of the steady state
solution of the model (Eqs. 37–38)

Lemma 3 For the model (Eqs. 37–38), the solution is non-

negative for any initial conditions Cenð0Þ ¼ Chs [ 0 and
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Cexð0Þ[ 0, and there is a unique equilibrium E� ¼
ðC�

en;C
�
exÞ ¼ ðChs; 0Þ which is locally asymptotically stable.

Proof The nonnegativity of CenðtÞ and CexðtÞ follows

immediately from Theorem 5.2.1 on page 81 in [28].

Letting the right hands of Eqs. (37)–(38) be zeroes, we can

simply have C�
en ¼ Chs and C�

ex ¼ 0.

The linearized the system at the equilibrium E� is

C0
enðtÞ ¼ � kel þ

Vmax

Vd

Km

ðKm þ ChsÞ2

 !
CenðtÞ þ

Vmax

Vd

Chs

Km þ Chsð Þ2
CexðtÞ;

C0
exðtÞ ¼ � kel þ

Vmax

Vd

1

Km þ Chs

� �
CexðtÞ:

8>>>><
>>>>:

Thus, the Jacobian matrix is

JðE�Þ ¼
�ðkel þ

Vmax

Vd

Km

ðKm þ ChsÞ2
Þ Vmax

Vd

Chs

ðKm þ ChsÞ2

0 � ðkel þ
Vmax

Vd

1

Km þ Chs

Þ

0
BB@

1
CCA;

and the two eigenvalues k1 and k2 satisfy

k1 þ k2 ¼ trðJðE�ÞÞ\0 and k1k2 ¼ detðJðE�ÞÞ[ 0:

These imply k1 and k2 are negative, which ensures the local
asymptotic stability of E�. h

Appendix 4: Real branches of Lambert W
and X functions

Lambert W function is known to have two real branches,

with one branch W0 2 ð�1;1Þ for z defined in ð�1=e;1Þ,
and the other W�1 2 ð�1;�1Þ for z defined in ð�1=e; 0Þ
(left panel, Fig. 5) [17, 18]. However, the case of

X function is more complex. Without going into details, we

simply illustrate here a case of real branches of an

X function, with the aim to show its particularity compared

to Lambert W function (right panel, Fig. 5).

As observed in the right panel of Fig. 5, there is only

one real branch in the first quadrant. In fact, this is true for

all X functions. Taking the derivative of X function, we

have

d

dz
Xðz; p; qÞ ¼ 1

z
�
�

p

Xðz; p; qÞ þ
q

1þ Xðz; p; qÞ

��1

[ 0;

ð40Þ

which guarantees there is only one real branch in the first

quadrant. In the current study, we are interested only in this

real branch Xðz; p; qÞ 2 ð0;1Þ and use it to express the

analytical solutions of PK models. Thus we use the letter

X to denote this unique real branch in the current paper.
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