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Abstract
Building upon previous experiments can be used to accomplish new goals. In computing, it is imperative to reuse computer code
to continue development on specific projects. Reproducibility is a fundamental building block in science, and experimental
reproducibility issues have recently been of great concern. It may be surprising that reproducibility is also of concern in
computational science. In this study, we used a previously published code to investigate neural network activity and we were
unable to replicate our original results. This led us to investigate the code in question, and we found that several different aspects,
attributable to floating-point arithmetic, were the cause of these replicability issues. Furthermore, we uncovered other manifes-
tations of this lack of replicability in other parts of the computation with this model. The simulated model is a standard system of
ordinary differential equations, very much like those commonly used in computational neuroscience. Thus, we believe that other
researchers in the field should be vigilant when using such models and avoid drawing conclusions from calculations if their
qualitative results can be substantially modified through non-reproducible circumstances.
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1 Introduction

Science is built upon experimentation, theory, and more re-
cently computer simulations. An issue which causing consid-
erable concern, especially in the experimental community, is
how to enforce and check whether experimental results are
reproducible. This also affects results generated by computer
simulations, despite their supposedly deterministic nature.

Computational simulation of real phenomena typically re-
quires the use of floating-point arithmetic (FPA) to calculate
numerical solutions. Mathematical models, typically

described through equations, are implemented as source code
via a high-level computer language. Code can be executed
through computational simulations, which are meant to repre-
sent a real experiment. The simulation output values are ana-
lyzed to verify how well the model was able to provide data
that resemble the results found in the real event (i.e. reproduc-
ibility); or if the model can precisely provide the same results -
a replica - already found in real events (i.e. replicability).
Replicating a real process or experiment by a computer simu-
lation is not possible. On the other hand, replicating computer
simulations seems to be achievable when considering that
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having the source code is enough to provide replicability
(Mcdougal et al. 2016).

Computer simulations sometimes need to be reproduced or
replicated to reuse previous results/models to achieve new
goals (Mcdougal et al. 2016). Nevertheless, there are impor-
tant aspects which need to be considered when replications are
computed. A detailed description of the model is the starting
point, which could be achievable following best-practices
(Nordlie et al. 2009; Waltemath et al. 2011). However, the
issues related to the limitations in representing real numbers
in computers is far from being resolved. These limitations lead
to rounding and truncation errors (Higham 2002), which are
unavoidable consequences of working with finite precision
arithmetic, i.e. the limited-digit number to represent floating-
point numbers, which is an intrinsic fact in digital computers
(Datta 2010). This is the reason why numerical computation
executed on different hardware architectures (32 bits or 64
bits) produce different errors. This fact also compromises re-
sults which are based on replicability.Many groups do not pay
attention to this issue, believing that these errors are infre-
quent; even worse, they are seen as a potentially wasteful
distraction (Drummond 2009).

The purpose of this article is to discuss aspects of replicabil-
ity in a numerical model. As an example, a typical mathematical
model from the field of computational neuroscience will be
used, specifically simulating the activity of neural networks.

1.1 Neural network case study

This study models a recurrent all-to-all neural network’s ac-
tivity during early development, in which inhibitory neurons
still play an excitatory role (Ben-ari 2002; Ben-ari et al. 2007).
Different proportions of excitatory and inhibitory neurons
were previously simulated in this biological scenario
(Blanco et al. 2017), and the excitatory and inhibitory activi-
ties of pre-synaptic neurons were integrated separately.
Excitatory and inhibitory neurons are modeled using the same
equations but changing their reversal potential value. This
allowed us to label neurons as inhibitory but treat them as
excitatory.

The model contains two population variables, the spontane-
ous network activity and the network synaptic efficacy, repre-
sented by <A> and <S> respectively. Both variable profiles are
characterized by cyclic dynamics: <A>, a fast profile variable
with high activity episodes separated by quiescent periods (in-
ter-episode intervals), and <S>, a slow profile during quiescent
periods of <A>, but fast depression during the high activity
episodes (Blanco et al. 2017; Tabak et al. 2010).
Reproducibility occurs when network activity <A> and <S>
preserve the cyclic dynamics, but not necessarily with the same
values over time between simulations. On the order hand, rep-
licability is achieved when <A> and <S> values are identical at
each time step between simulations.

2 Methods

A small neural network model composed of 100 Hodgkin-
Huxley (HH) type neuronswith all-to-all couplingwas simulated.
All neurons were identical, except for the value of their input
currents (Iapp vector), which were randomly chosen (the same
for all simulations). The cells were modeled as a single compart-
ment via an ordinary differential equation (ODE) system for the
voltage. It is well known that network activity profile differs with
the time step dt and the chosen numerical method (Hansel et al.
1998; Morrison et al. 2007; Shelley and Tao 2001), a fixed
dt = 0.01 ms was used to replicate (Blanco et al. 2017) and to
guarantee no significant difference in episode durations or inter-
episode interval distributions as seen in other experiments (Tabak
et al. 2010). The neural network model was originally taken from
(Tabak et al. 2010), simulating only excitatory neurons.

The ODEs were solved by the Runge–Kutta fourth-order
method (RK4) using the Boost C++ library v1.71.0 (Schling
2011). The equations and parameters were taken from (Blanco
et al. 2017). The C/C++ source code files and documentation
are available as freeware on GitHub via https://github.com/
wblancof/neural-numerical-replicability.

2.1 Platform specifications

The same source files were compiled using GCC v9.2.0 and
executed on Windows, Linux and Mac platforms. Hardware
platforms and OS specifications are shown in Table 1. The
command lines to execute the simulations are in the
README file in the GitHub repository.

2.2 Simulations executed on windows

Twomain scenarios were tested: (1) A neural network composed
of 100 excitatory neurons; and (2) a neural network composed of
80/20 excitatory/inhibitory neurons, respectively. All
implementations used double floating-point precision
(size = 64bits) defined in theC/C++ language. In order to increase
precision, code variables were re-defined using two floating-point
precision types: C/C++ long double precision (size = 128bits),
and a cpp_dec_float_100 type floating-point with a hundred dec-
imal digit precision (size = 640bits) implemented in Boost. A
parameter was added into the compilation command line to re-
define the variables (via tydedef specifier) to the specific floating-
point type.

All decimal numeric values were saved in files with fourteen-
digit accuracy because rounding and truncation errors are intro-
duced (IEEE Standard for FPA 2019) when real numbers are
represented with more than fifteen decimal digits (Datta 2010).

The absolute error equation ϵ(t) = |Ai(t) − Aj(t)| was
used for calculating the discrepancies at each timestep
of the spontaneous network activity <A> between sim-
ulations i and j.
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3 Results

This section will illustrate the activity derived from an all-to-
all coupling neural network model during early development.
Here, inhibitory neurons play an excitatory role; however, pre-
synaptic activity integration used to calculate the post-
synaptic neuron activity is still calculated separately: one for
the excitatory neurons and another for the inhibitory neurons.
The numerical simulations based on these ODEs was used to
check computational replicability in this paper.

3.1 Simulations on several platforms caused different
results

The same source code was compiled on three computational
platforms across three different operating systems (OSs)
(Table 1). Simulations with the same parameters were execut-
ed, and the results of the network activity <A> and synaptic
efficacy <S> are shown in Fig. 1. Although there was a per-
sistent attempt to control the software issues, different results
caused by the diversity of OSs and hardware were expected

Table 1 Hardware and software
specification Hardware/

Software
Windows Mac Linux - Ubuntu

CPUs Intel i7-8550U 1.80GHz Intel Core (TM) i5-4250U 1.30GHz Intel Core i5 M460 2.53GHz

RAM 8GB, DDR3 4GB, DDR3 4GB, DDR3

OS Windows 10 MacOS Mojave v10.14.6 Ubuntu 18.04.2 LTS

Fig. 1 Implementations across hardware platforms and OS induce
“errors”. The network activity (A, black curve) and synaptic efficacy
(S, red curve) over time are shown under Windows (top panel), Mac

(middle panel) and Ubuntu Linux (bottom panel). Check Table 1 for
more hardware/software specifications
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(Waltemath et al. 2011) since our system is sensitive to round-
off and truncation errors. Moreover, these errors are mostly
system dependent. However, the size of divergence occurring
in a short period of time, visually perceptible after the first 3 s
of the simulation (Fig. 1), was not expected.

Previous simulations were executed under a different
compiler version (not shown). However, since we had less
familiarity with the Mac OS compiler, we decided to see if
we could account for the differences we observed when
varying the version of Unix. The only mathematical func-
tions used in this code were the exp() and pow() functions
from <math.h > and they are housed in the standard library
named glibc. In particular, this is the case in Mint and
Gentoo Linux. In Cygwin, the C standard library is called
newlib, and so we ran our code in Gentoo, but linked our
code with newlib. This produced the behavior shown, and
had the effect of running the code on Gentoo with the
mathematical function definitions from Cygwin. This be-
havior begs the question of creating a standard set of
elementary functions that are used by all vendors. We
are currently exploring this avenue with our colleagues
at National Institute of Standards and Technology
(NIST).

3.2 Small difference in summation order on windows
caused different results

The hardware and software were invariant on different
Windows runs and the same source code was compiled
and executed. However, the parameter related to the pro-
portions of excitatory and inhibitory neurons was
changed, splitting the summation of the network pre-
synaptic activity in two blocks. Two scenarios were cre-
ated: (1) the network had 100 excitatory neurons, thus the
simulation only went through only the first inner-loop to
calculate the summation of the pre-synaptic activity
(atotExc variable) (Fig. 2a, light red graphics elements);
(2) the last 20 neurons were labeled as inhibitory (keeping
reversal potential Vexc = Vinh = 70 mV). Hence, excitatory
and inhibitory pre-synaptic contribution were calculated
through the first and second inner-loops respectively
(Fig. 2a, light red and blue graphics elements). The net-
work activity (A, black curve) and synaptic efficacy (S,
red curve) are shown for these two cases in Fig. 2b, c.
Identical results were expected since the network topolo-
gy is all-to-all connected. However, when t > 3 s, the plots
already show significant discrepancies, which are visually
perceptible (even with a new activity episode) in the
<A> and <S> profiles. Moreover, the absolute error is
>10−6 for t > =1.69 s (vertical black line), indicating that
discrepancies in population activity take place earlier than
the spike time differences (Fig. 2c, black diamond
markers on raster plot). Although 10−6 is an arbitrary

threshold, the idea is to identify that discrepancies in pop-
ulational activity <A > are happening earlier, and are
eventually causing further differences between spikes.

3.3 Using higher precision floating-point still
produced different results

Since double precision seemed inadequate, the source code
was adapted to use two higher precision floating point
types: C/C++ long double precision and a floating-point
with 100 decimal places precision implemented in Boost
(Schling 2011). The simulations were once again executed
for the two previously described computational scenarios.
This resulted in new profiles for the activity <A> and the
synaptic efficacy <S> of the network (Fig. 3).

The simulations using Long Double precision also
showed discrepancies (Fig. 3, left column). The absolute
error reached values >10−6 later, from t = 2.57 s (Fig. 3,
vertical black line), compared to previous simulations (Fig.
2b). Spike time differences (Fig. 3, black diamond markers
on raster plot) were also observed later than activity differ-
ences. By only using the hundred-digit precision from
Boost, the <A> and <S> values, as well as individual
spike time are identical (for the fourteen-digits saved) dur-
ing 8 s of the simulation (Fig. 2, right column). However,
this does not mean that discrepancies will not appear later
on. One important point to highlight is that these simula-
tions took more than 4 days to simulate 8 s of biological
time on Windows (see Methods).

4 Discussion

Results from this research suggest that computer preci-
sion may be a variable which affects computational rep-
licability. To illustrate this assumption, we used a com-
putational approach which simulated the activity in a
neural network with all-to-all coupling during its early
development.

The outcomes revealed that executing the same code
with the same parameters on different platforms presented
a similar activity profile (episodic bursts of intense activity
separated by quiescent periods), but were far from identi-
cal. In other words, the results were reproduced, but not
replicated. These results suggest that it is not sufficient to
have exactly the same source code to replicate a computa-
tional study, and moreover, rounding and truncation errors
are platform dependent.

The results in compiling and executing the same code on
the same hardware and software platform but splitting the
summation of pre-synaptic activity (excitatory and inhibito-
ry) were surprisingly not replicated. High absolute error
values at the very beginning of the simulation time were
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observed. The precision of the variables in the last scenario
was increased using higher precision types: long double and
cpp_dec_float_100 from Boost. Substantial differences ap-
peared in a short period of time, making further results un-
reliable for analysis. We only replicated the numerical com-
putational results during 8 s by using cpp_dec_float_100, in
which the rounding and truncation errors only take place
beyond 100 digits, but at a high computational cost.

Errors begin to appear if numbers are produced during
computation which exceed the established precision range
(Datta 2010). Although the IEEE Standard for floating-point
attempts to minimize these errors for most processors, we just
showed that the standard does not guarantee that operations,
defined by libraries or programming languages, will have the
same result on different OSs, or even different versions of the
same function on the same OS. Furthermore, simple

Fig. 2 Summation order generates different results. (a) Flowchart schema
of the main loop simulation over time. There are two inner-loops (light
red and blue colors highlighted) at each time step, and the simulations get
them to calculate the pre-synaptic contribution for excitatory and inhibi-
tory neurons, respectively. (b) The network activity (A, black curve) and
synaptic efficacy (S, red curve) over time are shown when the network is
composed of 100% of excitatory neurons. In this scenario, the simulation
only went through the first loop (light red). (c) A new scenario in which
20% of neurons are inhibitory, but they still preserved the excitatory

features; we executed the simulation with the main goal to slightly split
the summation of the input, i.e. 80% calculated in the first loop (light red
color, representing excitatory contribution) and 20% calculated in the
second loop (light blue color, representing a fake pre-synaptic inhibitory
loop). The blue traces in the raster plot correspond to inhibitory neurons,
while the red traces correspond to excitatory neurons. Black diamond
markers are located in the first spike time which differed for each neuron.
In this simulation, the vertical line at t=1.69 s marks the time moment in
which the error between the simulations (B, C panels) is greater than 10-6.
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summations are often affected due to the non-associativity of
FPA (IEEE Standard for FPA 2019; Datta 2010). After all, it is
important for the research community to investigate the be-
havior of complex biological systems to be aware that these
issues are still causing serious non-replicability risks. This can
be used to minimize the impact of these on conclusions drawn
from computations.

Acknowledgements This research started in 2016 when WB was hosted
by the Mathematics department and the Institute ofMolecular Biophysics

at Florida State University. WB was also supported by a scholarship
(Process #202320/2015-4) from the Brazilian National Council for
Scientific and Technological Development (Conselho Nacional de
Desenvolvimento Científico e Tecnológico - CNPq). PHL was supported
by an undergraduate scientific research scholarship from CNPq in 2017
and from the State University of Rio Grande do Norte (UERN) in 2018.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interests.

Fig. 3 Increasing double precision still generates different results. The
network activity (A, black curve) and synaptic efficacy (S, red curve) over
time are shown in the plots and they are under the same two scenarios, as
shown in Fig. 1 (first row with 100% excitatory neurons and second row
with 80/20% of excitatory/inhibitory neurons respectively). In the left
column the two scenarios are using Long Double precision and the right
column is using Boost precision. The A and S curves generated by using
Long Double precision (left column) are still showing large

discrepancies. The absolute error is already high (>10-6) starting from t
> 2.57 s (vertical black line). The corresponding raster plots are shown in
the last row, in which blue traces correspond to inhibitory neurons, while
the red traces correspond to excitatory neurons. Black diamond markers
are located at first time value where spikes differ for each neuron. The A,
S and individual spike time values are identical (for the fourteen-digits
places saved) during the 8 s of simulation when only using 100 decimal
place precision implemented by Boost library software.
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