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Abstract

The immune system is a robust and often untapped accomplice of many standard cancer therapies. 

A majority of tumors exist in a state of immune tolerance where the patient’s immune system has 

become insensitive to the cancer cells. Due to its lymphodepleting effects, chemotherapy has the 

potential to break this tolerance. In order to investigate this, we created a mathematical modeling 

framework of tumor-immune dynamics. Our results suggest that optimal chemotherapy scheduling 

must balance two opposing objectives: maximizing tumor reduction while preserving patient 

immune function. Successful treatment requires therapy to operate in a ‘Goldilocks Window’ 

where patient immune health is not overly compromised. By keeping therapy ‘just right’, we show 

that the synergistic effects of immune activation and chemotherapy can maximize tumor reduction 

and control.
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Introduction

Immune tolerance occurs when the immune system fails to respond to a target despite its 

potential to induce an immune response. In cancer, this failure leads to immune evasion and 

tumor growth. CD8+ effector T cells, also known as cytotoxic T lymphocytes (CTLs), are an 
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essential component of the adaptive immune system capable of responding to tumor antigens 

and inducing cell death. Immunologically inert tumors induce T-cell tolerance through 

multiple direct mechanisms such as inhibition of programmed death ligand 1 (PD-L1), 

activation of the T-cell regulatory protein CTLA4, and production of regulatory cytokines 

and metabolites [1], as well as indirect methods such as recruitment of regulatory T cells 

(Tregs), myeloid-derived suppressor cells (MDSC) and tolerogenic dendritic cells (DC) [2]. 

Tregs inhibit CTL cytotoxic activity via cell-cell contact [3, 4], and through secreted factors 

such as transforming growth factor beta (TGF-beta) [5, 6]. They have posed challenges for 

cancer immunotherapies as well as preventing the activation of the immune system during 

more traditional therapy approaches [4, 7].

Breaking tolerance requires removal of multiple suppressive factors and activation of 

cytotoxic immune cells. Chemotherapy, while toxic to CTLs, also has paradoxical and 

important immunostimulatory effects through dysregulation of the immunosuppressive 

tumor microenvironment by reducing regulatory cytokine levels, changes in oxygen levels, 

and reduced metabolites. Several chemotherapies, including cyclophosphamide, paclitaxel, 

gemcitabine, and 5-fluorouracil, can selectively target MDSC and Tregs [8, 9].

Additionally, highly cytotoxic chemotherapies with lymphodepleting effects create 

immunologic space [10, 11]. During homeostasis, the body maintains T-cell pools at 

consistent levels. When these pools are depleted, T cells refill this space through antigen-

independent proliferation, termed homeostatic repopulation, which favors memory T cells 

[12]. This homeostatic proliferation breaks tolerance, temporarily restoring immune 

response to previously tolerated antigens [2]. This was first characterized in the post-

transplant setting where memory T cells lose peripheral tolerance during homeostatic 

repopulation, leading to graft rejection [12].

Chemotherapy-induced tolerance breaking is dynamic and transient, often requiring 

treatment breaks to achieve full effect. Various studies report that regulatory cells return 5–

10 days posttreatment [8]. Homeostatic repopulation following moderate lymphopenia can 

fully restore the lymphocyte pool as early as 4 days following therapy in murine models 

[14]. Even in the case of nearly complete lymphodepletion using Alemtuzumab in non-

human primate transplant models, the T-cell pool is completely restored in 8 weeks, 

consisting of 96% memory T cells [15]. An obvious question then arises: is there an optimal 

chemotherapy schedule that could maximize tumor kill and also enhance immune response?

To investigate this question, we created a mathematical model of the complex tumor-

immune dynamics that occur during multiple cycles of chemotherapy. In particular, we 

investigated three, clinically relevant, therapeutic dynamics: immunodepletion, 

immunostimulation via vaccination, and immunosupportive prophylactics. We identified 

significant immune trade-offs during chemotherapy as well as the relevant patient metrics 

that determine the magnitude and severity of these compromises. Further, by exploring the 

impact of clinically-established therapy, as well as more experimental treatment decisions, 

we illustrate a more complex interplay between chemotherapy and patient immune dynamics 

than has been previously investigated. Our results indicate that optimal chemotherapy 

requires identification of a “Goldilocks Window” in which treatment can both induce 
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cytotoxic effects in the tumor and enhance the immune response to tumor antigens. 

Therefore, instead of the one-size-fits-all paradigm of fixed therapy regimens, patient 

immune biology should be a key consideration when developing personalized chemotherapy 

strategies.

Materials and Methods

Overall Model Design

A central assumption of this work is that a clinically-detectable tumor has induced a tolerant 

state in which the immune system can no longer respond to tumor antigens. Chemotherapy 

temporarily removes this tolerance through lymphodepletion, which eliminates Tregs and 

allows a burst of immune response. However, the lymphodepletion itself also kills CTLs and 

therefore reduces the potential cytotoxic efficacy. This double-edged response to 

chemotherapy implies that there is an optimal therapeutic strategy.

We develop a mathematical model that includes five major populations of cells: Tumor cells 

(T), CTLs (E), Tregs (R), memory T cells (M), and naïve T cells (N). Immune function is 

separated into two distinct temporal stages, relative to the time of application of each 

chemotherapy cycle: 1) a period of CTL expansion immediately following the application of 

chemotherapy (Figure 1, panel A); and 2) CTL contraction as tolerance returns (Figure 1, 

panel B). The transition time between these phases remains poorly characterized, but 

empirically occurs 5–10 days after the expansion starts [16]. This range has been observed 

in murine models and is dramatic, involving over a 90% decrease in population size [17]. A 

central assumption of this work is that a clinically-detectable tumor has induced a tolerant 

state in which the immune system can no longer respond to tumor antigens. Systemic 

lymphodepletion, including that caused by chemotherapy, can help break this tolerance. This 

can have drastically different effects depending on the type and strength of lymphodepletion 

[18, 19]. First, chemotherapy can selectively reduce Tregs [20, 21, 22] helping to break 

peripheral tolerance. Second, strong lymphodepletion will cause homeostatic proliferation in 

the lymphoid compartment, further reducing tolerance.

However, dead immune cells cannot elicit cytotoxic effects or engage in homeostatic 

proliferation. This implies that there is an optimal therapeutic strategy. If the dose is too 

high, then the few remaining immune cells will not be able to take advantage of the 

tolerance breaking; if the dose is too low, then the lymphodepleting effects will be 

insufficient to break tolerance. In addition to these immune effects, the chemotherapy itself 

can induce cancer cell death affecting both the tumor size directly and releasing tumor 

antigens, adding another layer of complexity to the tumor-immune dynamics.

Whilst the full course of lymphocyte recoveries are not observed in the treatment course, 

measurements of lymphocyte populations over time have shown that a stable equilibrium is 

reached between chemotherapeutic depletion and population sizes [23]. Therefore, in the 

model, there is a window of 5 days immediately following each chemotherapy cycle in 

which the immune system is sensitive, and outside of these periods, it is tolerant. We explore 

the length of this window more thoroughly below.
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Our efforts to use mathematical modeling to inform chemotherapy build upon previous 

immune and personalized medicine works. Mathematical models of tumor-immune activity 

are numerous, given the complexity of the mechanisms involved (see [24, 25, 26, 27, 28] for 

examples relevant to the present work). Explained more fully below, we extend the modeling 

work of Robertson-Tessi et al. [29] to a more clinically-oriented setting by simplifying the 

immunosuppressive dynamics while maintaining Treg recruitment and function. There have 

been efforts to study explicit spatial dynamics of the growing cancer cell population in the 

context of healthy tissue [30, 31]. Here, we implement an implicit spatial limitation on 

growth (see explanation of f(T) below); our model may be extended in the future to 

incorporate explicit spatial dynamics. Our initial framework choices have been to 

incorporate patient immune parameters to build towards a model for personalized oncology 

[32].

During the phase in which the immune system is sensitive to the tumor, a few key processes 

occur. CTLs, which target and kill the tumor, are recruited from a memory cell population 

due to response to tumor antigens [16]. Recent studies indicate that memory T cells make up 

the majority of T cells engaged in homeostatic repopulation [15, 33]. These memory cells 

are constantly undergoing a low level of replenishing proliferation, but they only convert to 

CTLs during the sensitive expansion phase following lymphodepletion. During this phase, 

there is also tumor-mediated recruitment of Tregs. This eventually causes a significant shift 

in immune dynamics, leading to a contraction of the CTL compartment during the tolerized 

phase. Under tolerance, there is no longer a significant recruitment of CTLs from the 

memory cell compartment. Instead, while the existing CTLs do carry out some tumor-killing 

function, the Tregs decrease the CTL number.

Quick guide to equations and assumptions

dT
dt = T

f (T) − k0
TE

T + E 1 − b R
R + E

f (T) = 1
Ttrans

m − 1rT

P
+ T1 − m

rT

P
1
P

dE
dt = H to f f − t 1 − M + N

Kmax
γα TM

T + M − H t − to f f ρE 1 + c R
R + E + δEE

dM
dt = rMM 1 − M + N

Kmax
− H to f f − t 1 − M + N

Kmax
α TM

T + M + H t − to f f ρωE

dR
dt = σT − δRR

dN
dt = rNN 1 − M + N

Kmax
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Our immune tolerance model assumes that the growth of tumor cells (T) can be checked by 

CTLs (E). However, CTLs are themselves inhibited by Tregs (R) that are recruited at a rate 

σ by tumor antigens. This leads to CTL-mediated tumor cell death being moderated by the 

quantity of Tregs R
R + E . CTLs exhibit different behaviors during immune expansion and 

immune contraction. This switching behavior is modeled with the Heaviside function 

H to f f − t . During the immune expansion phase, CTLs are recruited from the memory 

pool based on both available memory cells (M) and the tumor burden TM
T + M . During 

immune expansion, the antigenicity of the tumor α  induces differentiation to CTLs TM
T + M . 

However, as immune tolerance sets in, there is a contraction in the CTL population, caused 

by degradation of CTLs by Tregs b . During immune contraction, CTLs can convert back to 

memory T cells ωE, ω < 1 . Finally, the total remaining lymphocyte population that is not 

sensitive to the tumor (N) replicates in a logistic growth model rNN 1 − M + N
Kmax

.

Tumor dynamics

dT
dt = T

f (T)
1

− k0
TE

T + E 1 − b R
R + E

2

(1)

Tumor growth dynamics (term 1) are approximated via a combination of exponential growth 

for smaller tumors and power law growth for larger tumors. This growth model includes a 

few key assumptions about the limitations which a growing tumor faces before clinical 

detection. In the absence of effector cells attacking the tumor population, tumor cells first 

grow exponentially but then transition to power-law growth. This growth dynamic is typical 

of early-stage, preclinical malignant growths and is based on mathematical modeling as well 

as experimental observation [29]. Furthermore, there are also practical limitations to the 

biological validity of the tumor population sizes which the model can approximate. While 

the model can simulate unbounded tumor growth, this is obviously clinically impossible due 

to the resulting morbidity and eventual patient mortality. Here, we restrict the analysis to the 

range of tumor sizes which are typical for clinically detectable masses, namely T < 1010

cells. The transition between exponential and power law growth dynamics is governed by 

f(T) as defined in eq. (2).
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f (T) = 1
T trans

m − 1rT

P

+ T1 − m

rT

P
1
P

(2)

The function f(T) employs the method of modeling tumor growth in [29]. Beyond a certain 

size (Ttrans), small tumors are not able to sustain their early exponential growth due to 

physical and nutrient limitations, and therefore transition to power law growth at larger 

tumor sizes. The smoothness of this transition is governed by the exponent P. The parameter 

rT represents the tumor growth coefficient.

Term 2 of Equation 1 represents the tumor loss due to killing by CTLs. Parameter k0 

represents the CTL cytotoxic efficacy, with the actual tumor kill rate dependent upon the 

relative numbers of tumor and CTLs TE
T + E . An estimate of this efficacy was initially set at 

1 day−1 based on the potency of CTLs in preventing tumor growth when stimulated by 

multiple types of tumor antigen [34]. In vivo killing capacities of CTLs have also been 

measured in the 1 – 10 day−1 range by real-time imaging in viral systems, although there is 

significant heterogeneity [35]. However, this rate is mitigated by the presence of Tregs, with 

b representing their inhibition efficacy. As Tregs increase in density, the CTL-mediated 

tumor death rate decreases.

CTL dynamics

dE
dt = H to f f − t

1

1 − M + N
Kmax
2

γα TM
T + M

3

− H t − to f f
4

ρE(1 + c R
R + E )

5

+ δEE
6

(3)

CTL dynamics are modeled in two phases, expansion (terms 1–3) and contraction into 

tolerance (terms 4–6). Terms 1 and 4 switch between these phases via the Heaviside 

function, with toff being the length of the expansion phase (5 days, unless noted) 

immediately following each round of chemotherapy. Terms 2 and 3 govern the growth of 

CTLs during immune sensitivity to the tumor. CTLs are generated based upon the 

antigenicity of the tumor (α) as well as the number of tumor and memory cells. Modulating 

this is an amplification rate, γ, since one memory cell can yield multiple CTLs. Term 2 

accounts for the maximum number of lymphocytes that can be supported by the cytokine 

pool. This paradigm of CTL function being limited by cytokine availability is supported by 

lymphodepletion studies showing increased CTL activity when IL-7 and IL-15 cytokine-
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responsive cells were removed [36]. When the immune compartment is full and in 

homeostasis, this term will be near zero, effectively shutting down CTL recruitment; 

however, immediately after a dose of chemotherapy, memory and naïve T cells are depleted, 

which promotes CTL expansion.

Term 5 represents the contraction of the CTL compartment that occurs due to immune 

tolerance. The death rate of CTLs during contraction, ρ, is due to decreases in the level of 

supportive cytokines. This rate is increased by the relative fraction of Tregs that are present, 
R

R + E . The modifying constant c represents the sensitivity of CTL suppression to Tregs 

through a variety of mechanisms [37]. Lastly, term 6 represents the rate of conversion of 

CTLs back into memory cells, an active mechanism during immune contraction [38, 39].

Memory T cell dynamics

dM
dt = rMM 1 − M + N

Kmax
1

− H to f f − t
2

1 − M + N
Kmax
3

α TM
T + M

4

+ H t − to f f
5

δEωE
6

(4)

Memory cells continually replenish themselves through homeostatic growth in term 1. 

Parameter rM is the maximum memory-cell growth rate, subject to a carrying capacity, 

Kmax. During the immune expansion phase (terms 2–4), memory cells convert to CTLs, 

governed by the relative abundances of tumor and memory cells, TM
T + M , as well as the 

antigenicity (α). As described in Eq. (3), the rate of recruitment is moderated by the 

homeostatic fraction of the overall immune system (term 3). During the contraction phase 

(terms 5 and 6), memory cells are replenished from the CTL compartment. A fraction (ω) of 

the CTLs is successfully converted back to memory cells [38]. Due to some loss and 

inefficiency in conversion, ω<1 [40].

Treg and naïve T cell dynamics

dR
dt = σT − δRR

(5)

Tregs are recruited by tumor cells with rate σ, and they decay with a rate δR [41, 42].
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dN
dt = rNN 1 − M + N

Kmax

(6)

Naïve T-cell dynamics follow homeostatic proliferation with rate rN, up to a common 

carrying capacity of Kmax, which is the maximum number of memory and naïve T cells in 

the immune system [43].

The model was parameterized based on literature sources when possible, as shown in Table 

1. For many cases, there was evidence of variation in parameters, and some cannot be easily 

measured. Where possible, we have tried to make a biologically reasonable order-of-

magnitude approximation. In order to address this parameter uncertainty we explicitly 

consider the impact of parameter variation on model results.

Simulating chemotherapy and evaluating outcomes

To establish tolerance in the system and allow transients from initial conditions to dampen 

before applying therapy, the simulation was initialized with a tumor size of 107 cells. 

Chemotherapy was started when the tumor reached 108 cells and was simulated as periodic 

doses of cytotoxic therapy at 14-day intervals. In total, 10 cycles of chemotherapy were 

applied. At the time of each treatment cycle, all cell populations (immune and tumor) were 

instantaneously reduced by a fraction C0 representing the cytotoxic effect of chemotherapy 

on that population. This instantaneous death fraction can be understood as lethal dose (LD) 

values with, for example, C0 = 0.5 representing LD50. The choice for an instantaneous 

decrease is simplifying, allowing us to omit pharmacodynamics; however this approach 

reflects the general potency of many therapy agents. For example, in vitro studies have 

shown that cellular uptake and incorporation into RNA for 5-fluorouracil occurs as soon as 3 

hours after exposure [44]. Uptake levels were directly shown to correlate with cytotoxicity. 

For doxorubicin, cytotoxicity studies have found that just 1 hour of exposure is enough to 

induce a 90% decrease in viable, colony forming cells [45].

Immune cells were reduced by the same fraction (C0) on each chemotherapy cycle. 

However, to account for tumor resistance to therapy, the fractional tumor reduction for cycle 

i (Ci) was linearly reduced with each cycle, such that the cytotoxic fraction on the last cycle 

was 75% of the initial fraction C0. Approximating the impact of chemoresistance on drug 

efficacy is challenging since values vary for different classes of drugs. Furthermore, Hao et 

al. [46] noted dose-dependent differences of up to 400% between resistant and resensitized 

prostate cancer cell populations to docetaxel. Here, the value of 75% chemotherapy efficacy 

at the last cycle represents a 33% advantage of survivorship for a resistant population versus 

a susceptible population. It is a conservative estimate of the impact of resistance, but we 

believe it is reasonable given that tumor populations are unlikely to be entirely resistant. 

Varying this range is a relevant question for future research. For our purposes, Ci is given by:

Park et al. Page 8

Cancer Res. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ci = C0 1 − 0.25 i
10

(7)

The final tumor size after 10 cycles of chemotherapy was compared to the tumor size at the 

start of treatment (108 cells) and evaluated according to RECIST categories. Specifically, a 

total loss of tumor (<−99% change in size) is a complete response (CR). A change between 

−30% and −99% is considered a partial response (PR). Tumor changes between −30% and 

+20% are classified as stable disease (SD) and increases of greater than +20% are seen as 

progressive disease (PD) [47]. While there are many different methods of measuring therapy 

efficacy impact on disease, RECIST categories were chosen here since they have correlated 

well with overall survival in patients across a variety of cancers.

Simulation environment

The model was programmed in the Python language (ver. 2.7.11). The open-source packages 

Scipy (ver. 0.17.0), Numpy (ver. 1.10.4), and Matplotlib (ver. 1.5.1) were used for 

simulation of the ODEs as well as visualization of the results. The platform for the program 

was both an Intel(R) Core (TM) i7–6820 HQ processor as well as the high performance 

computing cluster at Moffitt Cancer Center, Tampa, Florida, USA. The source code is 

available at the github repository for the Integrated Mathematical Oncology department at 

github.com/MathOnco/Goldilocks.

Results

Patient memory cell populations determine a ‘Goldilocks Window’ of optimal dosing

Memory cell population sizes are variable among patients; Arstila et al. have estimated there 

to be 106 – 107 T-cell clones in the human body with approximately 105 memory T cells per 

antigen [29, 48]. However, due to antigen responses being polyclonal, this suggests multiple 

orders of magnitude of potential variation in memory T-cell numbers. Therefore, varying 

doses of chemotherapy were simulated for a range of memory cell population sizes (Figure 

2A and 2B). Results from the model show that patient memory-cell numbers significantly 

influence the optimum chemotherapy dose. Generally, there is a minimum memory-cell 

population size that is necessary for any given strength of chemotherapy to be successful. 

Above this threshold, the more memory cells there are, the better the improvement with 

stronger doses of therapy. Conversely, this means that when memory-cell populations are 

close to the minimum threshold, chemotherapy should be similarly weak for a more 

favorable outcome. Furthermore, if memory cells are below the minimum threshold, then the 

optimal strategy is to use strong chemotherapy (Figure 2A and B), since the immune system 

will not contribute to tumor regression.

The double-edged nature of chemotherapy on the immune system can be better understood 

through the transient dynamics during therapy (Figure 2C and D). In cases with stronger 
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chemotherapy dosing, there is an early decrease in tumor population levels due to the 

cytotoxic strength of the therapy. However, we observe a trend that these strong therapies 

tend to lead to failure and larger final tumor sizes than if treated with a ‘weaker’ 

chemotherapy regimen, which provides lower cytotoxicity on the tumor but maintain tumor 

size reduction for the duration of therapy.

This counterintuitive result stems from the fact that cytotoxicity alone is insufficient for 

suppressing tumor growth, especially due to the accumulating chemoresistance. Rather, it is 

the synergistic effect of cytotoxicity as well as the breaking of immune tolerance and 

consequent recruitment of CTLs that keeps tumor populations in check. Our in silico 
treatments consistently show that there is an inherent disadvantage to high-dose 

chemotherapy. There is a gradual decrease in the CTL population over multiple rounds of 

treatment due to the net loss that stronger dosing causes in memory T-cell populations 

(Figure 2D). It is these memory cells that are affected the most by chemotherapy since they 

can only recover relatively slowly. If the cytotoxic pressure on memory cells is greater than 

the recovery rate of that compartment, then even with a resensitized immune system, 

expansion will lead to fewer total CTLs and ultimate treatment failure. In contrast, if the 

immunodepleting side effects of chemotherapy can be balanced with immune recovery, then 

more sustainable treatment responses are possible. In short, there is a tradeoff between 

having chemotherapy strong enough to sufficiently break tolerance, but mild enough to leave 

sufficient memory T cells for adequate CTL expansion. Akin to the story of Goldilocks and 

the three bears, the balancing of these two immunological goals leads to an intermediary 

chemotherapy strength that is ‘just right’. In silico simulation shows that this “Goldilocks 

Window” is highly dependent upon patient-specific, pre-existing memory T-cell populations.

Patient-specific tumor growth rate and immune strength determine chemotherapeutic 
flexibility

While we identified this Goldilocks Window of optimal, sub-maximal chemotherapy dosing, 

we also sought to explore it in the broader context of patient-specific disease and immune 

variation. For tumor growth rates, we found that successful treatment outcomes are more 

sensitive to chemotherapy dosing for faster growing tumors and less sensitive for slower 

growing tumors. Experimental and model analyses have shown that selection pressures on 

growing tumors can lead to significant heterogeneity in metabolism and growth rates [49]. In 

our framework, the tumor growth rate parameter (rT) was set to the maximum speed for 

doubling during the exponential growth phase (1000 cell−1 per day, representing a doubling 

time of 1 day), but we also explored faster and slower growth rates (Figure 3A and 3B).

In slower growing tumors (rT < 1000), chemotherapy’s cytotoxic effects are sufficient for 

tumor control. After the partial tumor clearance due to each cycle, there is regrowth of the 

cancer cell population (Figure 2A and B). For slower growing tumors, there is less intercycle 

regrowth and therefore cancer cell populations can be controlled by chemotherapy alone 

without the need for CTL killing. The result is that, for slower growing tumors, there is no 

Goldilocks Window.

However, for faster growing tumors (rT > 1000) it becomes necessary to maintain 

chemotherapeutic strength within the Goldilocks Window in order to achieve optimal 
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outcomes. For these tumors, regrowth between chemotherapy doses is significant and 

demands the addition of CTL-mediated tumor killing for disease control. Chemotherapy that 

is stronger than the Goldilocks Window hamstrings the patient’s immune activation.

Importantly, for the most aggressively growing tumors, there is actually a ‘worst-case 

scenario’ of intermediary chemotherapy strength (Figure 3B). Here, the worst option for 

chemotherapy is not the strongest possible dose but is instead a ‘mid-range’ strength in 

treatment. At this chemotherapeutic strength, the drug alone is insufficient to cause a 

reduction in tumor size. However, the dose is still strong enough to lead to severe memory 

cell depletion, undermining any immune efforts at constraining tumor growth.

Separate from tumor parameters, patient immune characteristics can also impact the 

sensitivity of treatment outcomes to chemotherapy dosing. One important parameter we 

sought to explore was the rate of CTLs in killing tumor cells (k0, Figure 3C and 3D). 

Without changing the initial patient memory-cell populations (M0 = 106), or the tumor 

growth rate (rT = 1000), the CTL-mediated cytotoxicity rate was varied around the 

biologically realistic parameter of k0 = 0.9 [34]. CTL efficacy was found to dramatically 

impact sensitivity chemotherapy dosing and the Goldilocks Window. Lower rates of CTL-

mediated tumor cell death lead to greater sensitivity of treatment outcomes on chemotherapy 

dosing (Figure 2C and D). With a lower value of k0, more CTLs are necessary to exert the 

same degree of immune control over the tumor. However, strong chemotherapy on a patient 

with lower k0 values prevents sufficient CTL expansion by rapidly diminishing the memory-

cell populations. Higher CTL killing rates, though, removed the restriction of this 

Goldilocks Window and made successful treatment outcomes less sensitive to dosing. While 

higher chemotherapy doses may lead to larger immune depletion, more efficient CTLs mean 

that these smaller immune populations still lead to successful treatment outcomes.

In addition, we examined the impact of changing the window duration for immune 

expansion immediately following each chemotherapy dose. Current literature indicates that 

immune contraction can begin to occur anywhere from 4 to 8 days after treatment [8, 14, 

17]. When these extremes were explored (see Figure S1), there was no significant qualitative 

difference to our observation of a sub-maximal optimal dosing range when compared 

between 4 days (Figure S1A) and 8 days (Figure S1B). While a longer window of immune 

expansion (Figure S1B) leads to more favorable outcomes for more rapidly growing tumors 

when treated in the optimal dosing range, the actual presence of this sub-maximal dosing 

range does not change. Furthermore, there is almost no difference in the outcomes of 

patients who are overtreated. This also implicitly addresses our mathematical 

implementation of a switch via a Heaviside Function. Specifically, while there might be any 

number of less abrupt and more gradual transitions between immune expansion and immune 

contraction, our exploration of the dynamics at the extremes of this transition range would 

give an idea of what the intermediate behaviors due to a smoother transition might cause. 

That is, our qualitative results would not significantly change with a smoother function.

In a broader exploration of the model’s immune parameters, a general trend was observed 

that a more robust immune response would improve the outcome (Figures S2–S7). For 

certain model parameters that were more difficult to accurately estimate from the literature, 
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we explored their variation for the default tumor growth rate and a chemotherapy strength of 

25%. If the patient had a stronger immune system characterized by lower CTL death rate 

(δE), lower sensitivity to Tregs (c), greater memory cell expansion (γ), regrowth (rM), and 

back-conversion (ω), the final tumor population was smaller. Furthermore, more robust anti-

tumor immune responses led to greater maximum possible reductions over the range of 

chemotherapy. In addition, these changes led to expansions of the Goldilocks Window in 

terms of chemotherapy doses that could achieve tumor reductions.

In short, patient-specific disease and immune biology determines the sensitivity of treatment 

outcomes to chemotherapy dosing. For rapidly growing tumors, chemotherapy must be 

maintained in a sub-maximal Goldilocks Window to optimize drug and immune synergies. 

However patient immune biology matters as well, with weaker immune characteristics also 

leading to a greater necessity to stay within the Goldilocks Window. Importantly, this 

presents potentially counterintuitive guidance since an initial motivation may suggest that, in 

a situation where a patient has a weaker immune system, chemotherapy strength should be 

increased in order to compensate. However, our model suggests that the lymphodepleting 

impact of heavy chemotherapy on an already weakened immune system will only worsen 

outcomes. When confronted with weaker patient immune systems, chemotherapy needs to 

be maintained within the Goldilocks Window for successful outcomes.

Improvements to therapy outcomes from immunostimulatory vaccines

Patient-specific vaccines have become a recent hallmark in personalized cancer therapy. One 

of the first to acquire FDA approval was Sipuleucel-T, for treating metastatic castrate 

resistant prostate cancer [50]. Each vaccine is tailored to a specific patient by culturing 

dendritic cells from patients using a specific tumor antigen. Reinjection into the patient 

would potentially stimulate a T-cell mediated antitumor immune response. Three doses were 

administered in 2 week intervals with significant clinical responses being observed. 

Vaccination led to a 22% reduction in the relative risk of death, although there was no 

noticeable decrease in the rate of progression of disease [50]. The specific effect on T cells 

was quantified by looking at T-cell receptor changes in response to vaccination. Certain 

receptor sequences were enriched, while others were significantly decreased [51], suggesting 

that the vaccine promoted an antigen-specific immune response against the tumor.

To study the effects and potential synergy of chemotherapy with this method of T-cell 

stimulation, we simulated a vaccine regime similar to that used for Sipuleucel-T (3 doses, 

spaced 14 days apart), with different vaccine strengths. Mathematically, this was modeled by 

modifying the ODEs that govern CTL expansion, without explicitly representing the 

complex DC-to-T-cell cascade that the vaccine induces. Other models have examined the 

DC cascade in more detail. For example, the explicit migration of dendritic cells between 

blood, spleen, and tumor have been modeled via delay-differential equations in order to 

better characterize the specific dose timing-dependent responses to therapy [28]. For 

simplicity, here we focus solely on the net effect of the vaccine on T-cell numbers by 

changing the antigenicity parameter of the tumor, α, from a constant coefficient to a 

variable, time-dependent function, αv(t):
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αv(t) = α + v 1
2

t
thal f

(9)

Total antigenicity is modeled as the result of both the constant, baseline antigenicity of the 

tumor, α, and an exponentially decaying vaccine-augmented component, v, which decays 

with a half-life, thalf = 3 days, a biologically realistic timespan [52]. This model of dynamic 

antigenicity can be expanded for multiple vaccinations, as used in the clinical protocol (Eq. 

10).

αv(t) = α + ∑
n = 1

nvac
H t − tn v 1

2

t − tn
thal f

(10)

Here, H(t) is again the Heaviside function. The constant nvac represents the total number of 

vaccine injections and tn represents the time of the nth vaccination. The ODEs used for the 

simulation of immune and tumor cell populations are then dependent on the instantaneous 

current value of αv(t) throughout the course of simulated therapy.

Here, we explored a range of antigenic increases due to potential patient-to-patient variation 

in responses to immunostimulatory vaccines. While dendritic cell vaccines like Sipuleucel-T 

administer all of the available dendritic cells, responses in individual patients vary in how 

much the antigenicity is changed. In our range of exploration, though, we found some 

commonalities in vaccine interaction for chemotherapy.

Results show that vaccine therapy can improve outcomes, but only within a specific range of 

chemotherapy strengths (Figure 4). Treatment outcomes improve when a vaccine is used 

with moderate chemotherapy (Figure 4A), but for very high chemotherapy doses, the 

beneficial effects of a vaccine are diminished. As before, the underlying cause for decreasing 

efficacy is the persistent lymphodepletion due to the chemotherapy. Antigenicity 

augmentation due to vaccine stimulation is offset by reduced CTL expansion. However, very 

low-dose chemotherapy poses its own challenges, because with insufficient 

lymphodepletion, tolerogenic mechanisms and greater Treg recruitment inhibit any CTL 

response augmented by the vaccine. The immune system remains closer to tumor-tolerized 

homeostasis, and as a result vaccine stimulation is mitigated because the immune system is 

already suppressed. Therefore, the width of the optimal window is not significantly affected 
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by the vaccine, since the vaccine has no effect on a highly depleted or tolerized immune 

system.

Therefore, even with immunostimulatory vaccines, there exists an optimal “Goldilocks” 

Window. Quantitatively, we define this window to be the region in which a therapy dose can 

offer at least a 20% reduction in tumor size since this is the necessary amount for disease to 

become classified as a partial response. In order for there to be this maximized benefit from 

vaccine application, the chemotherapy regimen must be ‘just right’. Chemotherapy must 

have sufficient lymphodepletion to resensitize the immune system, but must leave enough 

immune cells such that vaccine stimulation leads to a large CTL response. Similar to the 

results of chemotherapy without the vaccine, the specific range of this Goldilocks Window 

depends upon the initial patient memory cell (M0) numbers.

We note that the small oscillations observed in the plots (Figure 4B) are a result of the use of 

dual growth laws for the tumor. Essentially, giving the vaccine causes the tumor to dip into 

the faster exponential growth phase at an earlier chemo cycle than when chemo is given 

alone. Since the chemo cycles are discrete and instantaneous, this generates an effective step 

function to the response with increasing chemo dose, superimposed on the single-peaked 

optimal curve; this step function is further rounded by both the smoothing exponent P 
between the growth laws and the non-linear interactions between tumor growth and immune 

response at small tumor sizes.

Impact of variation in immune support

Chemotherapeutic lymphodepletion in the clinical setting can pose a serious threat to the 

safety of the patient through neutropenia [53], which commonly leads to dose reductions and 

disruptions to the standard schedule of therapy for patients. Consequently, multiple tools 

have been developed to help mitigate the effects of chemotherapy on the immune system. 

For example, it was recognized that dexamethasone treatment before carboplatin and 

gemcitabine could not only increase chemotherapy efficacy but also reduce the 

lymphodepleting effects by preventing uptake in the spleen and bone marrow [54]. In 

contrast, other aspects of cancer therapy can potentially hamper CTL responses to tumor 

insults. For example, G-CSF application has been shown to reduce CTL activation and could 

conceivably impede the impact of lymphodepletion as a break from immune tolerance [55, 

56]. More generally, however, the broader impact of immune system augmentation or 

suppression during therapy remains unexamined.

In order to examine the effect of attenuated or augmented lymphodepletion on therapy 

outcome, we allowed for variable chemotherapeutic toxicity to immune populations, as 

compared to the tumor population. Mathematically, this simply means modifying the 

chemotherapy dose by a scaling factor h. The effect of chemotherapy on immune cell 

populations at a given treatment time is:
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I1 = I0 1 − hC

(8)

where I1 is the immunological population size after application of chemotherapy, I0 is the 

population size before therapy, and 0 < C < 1 is the dose strength. The specific numerical 

range in which h falls represents either attenuated or augmented chemotherapeutic toxicity. 

For values of 0 < h < 1, this represents an attenuated toxicity on the immune system relative 

to the toxicity on the tumor. In contrast, values of h > 1 represent higher toxicity on patient 

immune populations than on the tumor. This could be due to patient-dependent increased 

sensitivity to chemotherapy. The maximum possible reduction of cells by chemotherapy 

when modified by immune support is 100%. This leads to the resulting condition that hC < 
1. For our in silico therapies, h was varied across the allowable ranges for three different 

strengths of chemotherapy. Values of C were chosen to represent lower (C = 0.25), middle 

(C = 0.6), and higher (C = 0.9) dose chemotherapy (Figure 5A).

Interestingly, the results suggest that immune-supporting combination therapy has 

essentially no benefit when given with low dose chemotherapy. As shown in Figure 5, 

similar tumor reduction occurred for a wide range of values of h around h = 1. Furthermore, 

outcomes were worse when h was very low or very high. In situations where it was very low, 

final tumor sizes were large because a lack of lymphodepletion did not sufficiently break 

immune tolerance. In contrast, for larger h values, there was over-depletion which prevented 

an effective immune response despite significant tolerance breaking.

In contrast, high dose chemotherapy saw treatment failure or success highly dependent upon 

the amount of immune support. Similar to low dose therapy, a small value of h that 

mitigated the depleting effects of chemotherapy led to the best possible outcomes in terms of 

tumor shrinkage. Final tumor sizes were, in fact, multiple orders of magnitude lower than 

was possible with low-dose chemotherapy. As h increased (representing less toxicity 

mitigation) treatment outcomes rapidly worsened. The transition value h*, where the clinical 

outcome rapidly shifts, indicates a threshold effect with regard to immune support. For high 

chemotherapy doses, immune support treatments must have a significantly large mitigation 

(h < h*) of immunodepletion in order for successful treatment responses to occur. The 

position of this inflection point is influenced by the strength of the patient immune system to 

begin with. In expanded parameter analyses, the strength or weakness of the simulated 

patient’s immune system led to changes in the upper bound of the Goldilocks Window 

(Figures S2 – S7).

The moderate strength chemotherapy regimen yielded only partial benefits of either extreme. 

The greatest tumor reduction possible, with immune support, yielded tumors that were 

smaller than those achievable with low dose chemotherapy. However, these tumors were still 

multiple orders of magnitude larger than those achievable with high dose chemotherapy. For 
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treatment failure at lower immune support (h > h*) tumor sizes were actually larger than 

when high dose chemotherapy failed.

Clinically, the results suggest that chemotherapy dose strength can be used to mitigate 

uncertainty regarding the amount of immune support a certain treatment will give to a 

specific patient. Low dose therapy offers a wide range of potential immune support in which 

treatment can successfully reduce tumor sizes. The disadvantage is that the maximum tumor 

size reduction still leaves larger tumors than are possible using higher doses of 

chemotherapy. While our model has not analyzed this, a potential impact is that larger tumor 

sizes could lead to more heterogeneous populations and thus lead to a higher likelihood of 

resistant or metastatic populations. However, higher doses have a narrower range of immune 

support in which they are successful. Chemotherapy can be balanced, then, against how 

certain the clinician is of the benefit that G-CSF (or other immune supporting drug) will 

give. For patients where there is high certainty of a significant benefit due to the drug, high 

dose therapy is optimal. In contrast, lower dosing should be used when the drug may have 

lower or variable efficacy.

Finally, we sought to investigate how variation in the effectiveness of these immune 

adjuvants might impact treatment outcomes in a group of patients. Chemotherapy treatment 

leads to a wide range of responses, both successful and unsuccessful, across multiple types 

of cancer [47]. This variation has been attributed to both disease variation, patient variation, 

and interactions between the two. However, less attention has been given to variable patient 

responses to secondary drugs – such as G-CSF – and how they impact therapy. Patient 

responses to these secondary drugs are currently poorly measured and could have significant 

implications for therapy outcomes.

To better explore the effect of variable patient responses to immune support drugs, cohorts 

of 500 patients were randomly generated from a normal distribution with a mean immune 

support response value of h = 0.8 and variance of 0.2. These values were chosen to center 

the distribution around the model-derived threshold value h* = 0.8. While not directly 

describing patient responses to immune support drugs, a normal distribution for selection 

was chosen due to the fact that immune cell counts have been found to be normally 

distributed in population cohorts [57].

Similar to our previous investigations, cohorts were then subjected to regimens of low (C = 
0.4) and high (C = 0.8) chemotherapy strengths (Figure 5B). Percent changes in tumor size 

after therapy were displayed for each individual patient in the cohort to generate a waterfall 

plot. In doing so, we used our model to simulate cohort responses as is commonly measured 

in aggregated studies of patient data [47]. The waterfall plots (Figure 5) illustrate that 

chemotherapy strength can significantly change the proportion of successfully responding 

patients in a population with variable responses to immune prophylactics. This is significant 

since the proportion of successful responses is often an important criterion for judging 

therapeutic efficacy. The simulated waterfall plots show how clinical outcomes could not 

only be the result of therapy, but also due to inherent immune variation within the cohort.
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Discussion

A major barrier to success for immunotherapy in cancer is tolerogenic mechanisms that 

reduce the immune response to tumor antigens [58, 4, 7]. A potential solution has come 

from observations that lymphodepletion stimulates homeostatic proliferation in the immune 

system which can transiently restore an immune response. This has led to increasing efforts 

to selectively apply chemotherapy to improve outcomes from immunotherapy [59].

To better understand this potential synergy, we constructed a mathematical model to frame 

these complex dynamics and identify critical parameters that govern the clinical outcomes. 

Our studies focused on three clinically-observed dynamics of immunodepletion, 

immunostimulatory vaccination, and immunosupportive prophylactics. With regard to 

immunodepletion, we demonstrated that chemotherapy results in a trade-off. At very high 

doses, chemotherapy has a maximal cytotoxic effect on the tumor but also maximally 

depletes T cells such that no effective CTL response can be mounted despite the transient 

loss of tolerance during re-expansion of the immune cells after completion of chemotherapy. 

Similarly, low doses of chemotherapy are insufficient to produce the post-treatment immune 

cell expansion that is necessary for reversal of immune tolerance.

Importantly, however, we find there is a Goldilocks Window of chemotherapy doses in 

which lymphodepletion causes adequate immune resensitization, but does not impose an 

overly large recovery burden. This window is governed by the patient-specific quantity of 

memory T cells so that larger pre-treatment T-cell populations allow more favorable 

outcomes with higher doses of chemotherapy. In contrast, fewer pretreatment CTLs can limit 

the immune response even in the Goldilocks window of chemotherapy. Thus, there is a 

necessary ‘minimum efficacy’ of CTLs for successful stimulation of immune response by 

chemotherapy. Below this threshold of immune activity, the benefit of chemotherapy is 

almost solely dependent on its inherent cytotoxicity (Figure 6).

Our model also provides insight into the potential effects of variation in the tumor growth 

rate. In slower growing tumors, chemotherapy alone can be sufficient to achieve optimal 

treatment response. Treatment of faster growing tumors, however, is best when the 

chemotherapy is administered to enhance the immune response. Unfortunately, if the pre-

treatment population of CTLs is small, we find chemotherapy for rapidly growing tumors 

will be ineffective if it is both highly lymphodepleting and insufficiently cytotoxic to 

significantly reduce tumor growth. Assessing the clinical importance of this question is 

challenging because it remains unclear from the literature as to the actual size of the 

population of tumor-specific T cells that are present during treatment. In spite of these 

difficulties, the impact and existence of anti-tumor immunity has been bolstered by recent 

immunotherapies which act to remove inhibitions to T-cell action [60].

Chemotherapy is increasingly being used in concert with vaccines to help stimulate the 

patient immune system. We investigated the interactions between vaccines and 

lymphodepletion and found that, as before, there is a window of chemotherapy ranges in 

which vaccines can improve outcomes versus chemotherapy alone. At very high doses, 

however, the resulting lymphodepletion substantially reduces benefits of immune 
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stimulation by vaccination. More broadly, other novel immunotherapies could also 

potentially be hampered by over-depletion of the immune system.

To further investigate the potential impact of this interaction, we modeled the effect of 

differential responses to immune prophylactics. G-CSF and other drugs have become 

common recourses in chemotherapy for mitigating the immunodepletion effects on patients 

[61]. However, recent studies have suggested that T cell response is hampered by G-CSF 

administration [55]. While G-CSF may help prevent neutropenia and cytopenia for patients, 

it may impede the ability of retolerized T cells to mount an anti-tumor response. In addition, 

responses to prophylactics are not constant but the significance of this variation remains 

relatively uninvestigated. Our model suggests that inter-patient variation in prophylactic 

response can lead to drastically different outcomes for the same dosing of chemotherapy. 

Across larger samples, this variation can further interact with chemotherapy to be a 

significant determinant of whether the chemotherapy dose leads to more success or failure 

across a range of patients.

In the clinical literature, our model results cautioning about balancing chemotherapy and 

immunogenic effects has been echoed in multiple situations. Previous studies have explored 

the mechanisms of action in monoclonal antibody-based treatments including targeting of 

HER2 [62, 63]. When quantifying the impact of antibody-dependent cytotoxicity mediated 

by CTLs, it was noted that addition of paclitaxel reduced the lasting impact of the immune 

response generated against the tumor. While in the short term higher doses of 

chemotherapeutic agents could induce larger tumor reductions, mice that were given both 

antigen and large chemotherapy doses were more susceptible to tumor rechallenge. 

Similarly, in radiotherapy it has been found that CTL priming occurs due to antigen-

dependent cell death [64]. However, the addition of even a small amount of paclitaxel was 

found to induce a significant reduction in CTL numbers. Adjuvant chemotherapy regimens 

were found to significantly abrogate the immunogenic benefits of radiotherapy-induced 

immune responses, while immunotherapies increased the efficacies. This result is also 

significant because it implicitly addresses whether our results might hold when antigen 

increase, due to cell death, is accounted for. In this mouse model, even with tumor-cell-

death-mediated antibodies, the loss of T cells leads to a worse overall outcome [64]. This 

presents a natural extension of our framework to be applied to a specific disease and 

chemotherapy dosing setting. While we created a general model of chemotherapy, there may 

be interesting dynamics unique to individual cancers that could be explored. It would also 

allow the employment of more complex pharmacodynamics modeling for specific treatment 

regimens.

In conclusion, our results suggest opportunities to increase the efficacy of immunotherapy 

with precise application of chemotherapy. Our model affirms the importance of CTL and 

memory T-cell expansion following chemotherapy to reduce immune tolerance to tumor 

antigens. However, we demonstrate that optimal chemotherapy requires identification of a 

Goldilocks Window in which treatment can both induce cytotoxic effects in the tumor and 

enhance the immune response to tumor antigens. Identifying optimal strategies for 

chemotherapy in each patient will likely benefit from the application of mathematical 

models which are parameterized by patient data pre-treatment to generate an optimal 
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treatment strategy for that patient. Importantly, these predicted strategies would most likely 

need to change as patient responses diverge from those predicted, leading to an iterative loop 

of ‘predict-apply-refine’. With the growing drive towards precision medicine, we believe 

that mathematical models are critical for the future of truly personalized therapy, where no 

two patients will receive the same therapeutic regimen, and where treatments adapt a change 

based on patient responses. The model presented here is a step towards describing the 

complex landscape of treatment decisions regarding dosing and combination of different 

therapies, and we have shown how these decisions can be sensitive to patient-specific 

parameters and guide clinical intuition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

To maximize the synergy between chemotherapy and anti-tumor immune response, 

lymphodepleting therapy must be balanced in a ‘Goldilocks Window’ of optimal dosing.
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Figure 1: 
Tumor-immune dynamics during the sensitive (A) and tolerant (B) stages of the immune 

response. During antigen-sensitive immune expansion, CTLs are recruited from memory 

cells to attack tumor cells. Tregs are being recruited but have not yet started significantly 

inhibiting CTL responses. During immune contraction once tolerance sets in, Tregs exert an 

active inhibitory pressure on CTLs. Expansion of memory cells into CTLs ceases. Both 

stages of the immune response are characterized by competition between memory and naïve 
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immune cells for common cytokine pools as well as homeostatic proliferation and 

lymphopoiesis.
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Figure 2: 
Interaction of memory-cell populations and chemotherapy strength on treatment outcomes. 

RECIST outcomes are shown in panel A with progressive disease (red), stable disease 

(yellow), partial response (light blue) and complete response (dark blue). (B) Finer grade 

responses are shown as percent changes in tumor size after therapy versus the initial starting 

size (108 cells). The underlying dynamic reasons for these differences can be seen in the 

memory populations during low (C) and high dose chemotherapy (D). Low dose 

chemotherapy allows memory populations (light blue) to be sustained for longer and 

generate larger CTL responses (green). High dose chemotherapy, however, depletes memory 

cells faster and leads to declining CTL responses and concurrent tumor escape.
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Figure 3: 
Treatment outcomes for variation in tumor growth rate (A and B) and CTL efficacy (C and 

D). Panels A and C represent RECIST outcomes. Red is progressive disease (PD), dark blue 

is complete response (CR), light blue is partial response (PR) and yellow is stable disease 

(SD). Treatment outcomes with faster growing tumors are more sensitive to maintaining 

chemotherapy dosing in the Goldilocks Window. For slower growing tumors, treatment 

outcomes are more successful and less sensitive to dose. Similarly, more efficient patient 

CTLs lead to more successful outcomes and have less dependence on chemotherapy. 

However, outcomes become more sensitive to dosing for patients with less efficiently killing 

CTLs.
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Figure 4: 
Improvements in tumor reduction due to vaccine application. Panel A shows the RECIST 

responses achieved for different vaccine strengths and chemotherapy strengths with black 

being the non-vaccine baseline. Vaccine strengths (v) are 1 (blue), 10 (green), 100 (red), 

1000 (light blue). Larger vaccine strengths lead to more successful RECIST responses for 

stronger chemotherapy doses. When looking at the absolute number of improvement in 

cellular reduction (B), a window of optimal chemotherapy ranges appears. Only when 

chemotherapy is in this range can vaccines provide a significant additional benefit.
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Figure 5: 
Therapeutic effects of differential response to immune prophylactics. (A) Final tumor sizes 

are shown for three different chemotherapy regimes (C = 0.25 as blue, C = 0.6 as green, and 
C = 0.9 as red) for a range of immune modifier efficacies (h). The asterisk denotes that 

simulations were only run up to this h value for the highest dose chemotherapy. The dotted 

line represents the tumor size at the start of therapy. (B) Cohorts are treated with these 

differing regimes of high and low chemotherapy, showing significant differences in the 

proportion of successful versus unsuccessful responders.
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Figure 6: 
A diagram explaining tumor outcomes at varying chemotherapy strengths and immune 

support doses. If therapy is too weak, then immune stimulation cannot be maximally 

effective and direct chemotherapy-mediated tumor cell death is also low. This yields a 

suboptimal tumor reduction. When chemotherapy is too strong, there may be more tumor 

cell death due to the drug, but insufficient immune activation due to over depletion of T 

cells. There is a moderate dose, however, that represents a Goldilocks Window of 

maximizing both T-cell activation as well as drug-induced tumor cell death. This range of 

dosing provides at least a 20% reduction in tumor size (relative to the initial tumor size of 

108 cells).
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Table 1:

Model parameters were estimated based upon both pre-existing models, chiefly Althaus et al., 2007 and 

Robertson-Tessi et al., 2012, as well as experimental studies. For some parameters, the literature often 

indicated significant variation, so order-of-magnitude approximations were made. Similarly, certain 

parameters were not succinctly captured in literature studies and were therefore estimated (*). We have 

addressed the impact of potential parameter variation through sensitivity studies (see Results).

Parameter Symbol Value Literature reference

Tumor Growth Coefficient rT 1000 cells1-m day−1 [29]

CTL kill rate k0 1 day−1 [34], [35]

Treg suppression efficacy b 0.75 [29]

Tumor growth transition size Ttrans 106 cells [49]

Power-Law growth exponent m 0.5 [29]

Exponential to power smoothing term P 3.0 [29]

Time till immune contraction toff 4–8 days [16] [8] [14]

Maximum sustainable number of effector, naïve, and memory cells Emax 1012 cells [40]

Tumor antigenicity α 1* [29]

CTL death/ apoptosis rate δE 0.05* [39]

CTL contraction rate ρ 0.13 [16]

CTL contraction augmentation due to Tregs c 0.01* [29]

Memory cell expansion factor γ 100* [16, 48]

Tumor-mediated Treg recruitment rate σ 0.01 [42, 29]

Treg death rate δR 0.1* [29]

Memory cell growth rate rM 0.01 day−1* [40]

Memory cell reconversion rate ω 0.01* [40]

Naïve cell growth rate rN 0.1 day−1 [40]

Maximum number of naïve T cells and memory cells Kmax 1012 cells [43]

Baseline chemotherapy strength C0 Varied in simulation
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