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Growth, collapse, and stalling in a mechanical model for neurite motility
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Neurites, the long cellular protrusions that form the routes of the neuronal network, are capable of actively
extending during early morphogenesis or regenerating after trauma. To perform this task, they rely on their
cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes
neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states
arise from an interplay between the physical forces driven by the growth of the microtubule-rich inner core of the
neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear
as a mechanical balance between traction and compression of these two parallel structures. The model predicts
how the response of a neurite to a towing force depends on the force magnitude and recovers the response of
neurites to several drug treatments that modulate the cytoskeleton active and passive properties.
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I. INTRODUCTION

Neurons are cells with long and thin (∼1 μm in diameter)
quasi-one-dimensional processes called neurites, a term that
comprises the axon, which emits electric signals, and den-
drites, which are generally shorter and receive the signals.
These processes emerge from the cell body (the soma), and are
able to crawl over large distances to reach targets from other
neurons, thus forming a complex nervous network essential
for both perception and motion. Understanding how neurites
can establish these long-distance connections is a problem that
was pioneered more then a century ago [1] and is of paramount
therapeutic importance. For instance, injuries of the spinal cord
are often characterized by an irreversible and debilitating loss
of motor and sensory functions of the lower body (paraplegia,
tetraplegia) because disrupted neurites cannot overcome the
inflammation and are incapable of initiating extensions that
would rebuild the broken connections [2–4].

The cytoskeleton of neurites is the mechanical scaffold
that maintains their morphology and motility [5–8]. Extrinsic
and intrinsic guidance clues may be viewed as agents that
influence the physical state of the cytoskeleton via biochemical
pathways [9–12]. For example, the concentration of calcium is
known to influence the Rho pathway, which in turn modulates
the neurite contractility and can lead to a reversible collapse
that shortens the axon [13].

The neuronal cytoskeleton (see Ref. [8] for an extensive
review and Fig. 1 for a simplified scheme) is a meshwork of
three main types of biological polymers: F-actin, microtubules,
and neurofilaments, all of which contribute mechanically [14].
While neurofilaments are passive and apolar, both F-actin and
microtubules are capable of polymerizing at one end (with
the addition of G-actin and tubulin subunits, respectively)
and depolymerizing at the other (by the removal of subunits)
with potentially low (∼1 min) turnover duration. They can
also both be cross-linked by molecular motors (myosin II
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for F-actin, dynein, or kinesin for microtubules) that are
able to exert active stresses inside the meshwork [15–17].
Following Ref. [5], we define two different compartments of
the neurite where the cytoskeleton is organized in a different
way: the kinetoplasm, or growth cone (GC), at the proximal
end of the neurite, and the axoplasm, which connects the
GC to the soma. The axoplasm contains a core array of
para-axial microtubules connected by passive cross-linkers
[microtubules associated proteins (MAP)] that generate a
network with a quasilattice structure [18]. These microtubules
are highly stable (turnover duration of hours) possibly due
to the presence of MAPs. In the axoplasm, F-actin is mostly
organized into a cortical mesh around the microtubule’s inner
core and the presence of myosin II motors in this cortex
leads to the presence of contractile stresses [19]. These two
meshworks are physically connected by different types of
special proteins (such as +TIP; see Ref. [8]) that mediate force
transmission between them. In continuity with this cortex, the
GC is almost free of microtubules, apart from those engaging
into filopodia, while F-actin is organized in a lamellipodium
similar to the ones found in cells specialized in crawling (such
as keratocytes [20]). Filaments polymerizing at the leading
edge (the P-domain) protrude from the membrane and are
then advected backward by a retrograde flow powered by
myosin II motors that concentrate at the trailing edge of
the GC (the T-domain) [21]. Actin then accumulates into
thick bundles in the T-domain, which constitutes the main
obstacle preventing microtubules from entering the GC. The
cytoskeleton is connected to the external substrate/cellular
matrix by special proteins specialized in adhesion, such as
integrins and cadherins [22,23].

Numerous authors have proposed physical models to
explain how the neurite cytoskeleton drives its motility
[7,25–27]. These models can be divided into two main classes
depending on whether they imply that the GC pulls the
trailing axoplasm thanks to F-actin polymerization pushing the
membrane in the P-domain [28,29] and myosin II contractility
pulling from the T-domain [30–33], or whether it is instead
microtubules that, from the axoplasm, polymerize against the
T-domain and propel the GC [34,35], or both [36]. As the
rate of polymerization of microtubules depends on the force
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FIG. 1. Schematic representation of the cytoskeleton of a neurite
extending from the soma. Adapted from Ref. [24].

applied at their tip [37], both effects have been considered
in a single simple model [38]. Experimentally, the physical
forces arising from the F-actin or the microtubule mesh-
works are important since drug treatments that lower myosin
II contractility (blebbistatin), prevent actin polymerization
(cytochalasin B), depolymerize microtubules (nocodazole), or
on the contrary stabilize them (taxol), each influence the tip
velocity of a crawling neurite in a concentration-dependent
manner [15,24,39–42]. Interestingly, different levels of cy-
tochalasin B can lead to either an increase [40] (high level)
or a decrease [43] (low level) in speed. This dependence
suggests an antagonistic role of the acto-myosin meshwork
in the propulsion.

Mechanical models require a rheological characterization
of the axoplasm and the GC. The axoplasm has been described
as a Burgers viscoelastic material based on its fast elastic
response (seconds to minutes) to a force applied laterally or
at the tip [44–46] while it elongates at a constant rate on
longer time scales (a few hours) in response to a constant
high force [32,33]. In Refs. [32,33], experiments tracking
mitochondria docked on the microtubule array have shown
that, close to the T-domain, this network flows forward with
a velocity comparable to the velocity of the neurite. Away
from the T-domain toward the soma, the velocity decays
exponentially, suggesting a fluidlike behavior of the neurite.
However, if the applied force is not large enough, the neurite
may undergo a finite deformation instead of acquiring a finite
velocity [47], and both rheological models of Refs. [44]
and [46] indicate a long-term stiffness of the neurite two orders
of magnitude smaller than the short-time one. Furthermore,
the loading rate is also known to play an important role in
the possible action potential impairment of the axon or in
the transport properties alteration resulting from a loss of

connectivity of the microtubule network [18,48–50]. Dynamic
loading is not studied in this article, and the loading is assumed
to be quasistatic. Axoplasm active growth and contractility
have been proposed as the potential drivers for retraction
or elongation of the neurite in the presence of an applied
force [44], and contractility is explicitly incorporated as a
force opposing elongation in Refs. [33,46].

The GC has been characterized as a Maxwell viscoelastic
fluid with a relaxation time of a few seconds and an active
contractile prestress stemming from the motor activity at
the rear of the cone [51]. The F-actin polymerization-driven
formation of filopodia extension and retraction has been
physically described in Refs. [52,53].

In the present paper, we follow the suggestion of Ref. [33]
that the theory of active gel may be used to unify these
aforementioned models in order to obtain a global picture
of neurite motility. Our one-dimensional model is based
on the particular geometry of the neurite cytoskeleton and
fundamental balance laws. An analysis of its solutions reveals
that, depending on the neurite passive and active rheology,
the neurite can collapse to the soma, remain static, or grow
at finite velocity. The interchangeability of these three states
is consistent with experiments that modify the state of the
cytoskeleton and its substrate adhesivity with drugs.

In particular, we recover within a common framework the
following general trends emerging from different sets of ex-
periments probing the mechanical and structural environment
of growing neurites:

(i) Growth under axial force. As mentioned above and
already observed 30 years ago [30], a steady axial force applied
by a cantilever at the proximal tip of a neurite elongates
it [31–33,44,47,54,55]. This elongation is elastic if the force
is below a certain threshold. Above that threshold, the neurite
grows with finite velocity [56].

(ii) Retraction under microtubules depletion. As shown
in Ref. [57], neurites retract in response to microtubule
depletion and elongate (even in vivo) following stimulation
of microtubules polymerization [58].

(iii) Retraction with reduction of adhesivity. By culturing
neurites on different substrates, it was shown that retraction is
promoted when the substrate adhesivity is reduced [33].

(iv) Motility is related to contractility. Finally, neurites
initiate their motility in a robust way when exposed to drugs
that impair their active contractility [42,59].

The last item [60] is particularly relevant as possible thera-
peutic targets to promote axon regeneration after trauma [59].

The paper is organized as follows: In Sec. II, we develop
a mechanical model for the axoplasm (acto-myosin and
microtubule phases) alone and study its motility properties
under an applied proximal traction force. In Sec. III, we model
the GC (acto-myosin phase only) motile properties in response
to a traction force applied at the trailing edge. In Sec. IV, we
combine both models by assuming stress continuity at the
T-domain to obtain a complete model of a growing neurite,
and we show that it compares well with experiments.

II. AXOPLASM PROPULSION

Following Ref. [61], we model the microtubule network
core of the axoplasm as a one-dimensional morphoelastic
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FIG. 2. Schematic of the neurite model geometry.

rod whose material points are indexed by the coordinate
x ∈ [0,ln(t)], 0 denoting the connection with the soma and
ln(t) the moving boundary between the GC and the axoplasm
(T-domain), as shown in Fig. 2. Notice that our model does not
separate the contribution of the neurofilaments from that of the
microtubules. They are thus viewed as a passive reinforcing
structure contributing to the overall network elasticity [14].
This rod can only deform along the axis and is in frictional
contact with a viscous contractile “sleeve” (the cortex) that
is supported by a static background. The tip of the neurite is
subjected to a given traction force exerted either by the GC in
normal growth conditions or by a micropipette, in experiments
where the GC is lifted from the substrate [33].

A. Balance of mass

1. Microtubule network

Let ρμ denote the mass density of microtubules and vμ their
velocity in the laboratory reference frame. The mass balance
equation reads

∂tρμ + ∂x(ρμvμ) = Sμ, (1)

where the source term

Sμ = kμ
p − k

μ

d ρμ (2)

follows a first-order kinetic with a polymerization rate
k

μ
p and a depolymerization term k

μ

d ρμ, proportional
to the density [62]. We assume here that the tubulin
(microtubule subunits) concentration is homogeneous [63]
along the neurite because its motor-driven transport
along the axon is much faster (∼1 μm s−1) than the
crawling velocity (∼10 μm h−1). We can rewrite Eq. (2)
as Sμ = (ρ̄ − ρμ)/τ , where ρ̄ = k

μ
p /k

μ

d is the density at
chemical equilibrium and τ = 1/k

μ

d is the turnover time scale
associated with microtubule renewal. Here we have adopted
a mean-field description of the network, and we do not consider
the microtubule polarity. Indeed, while this information is
likely to be important for transport properties along the
neurite, microtubules have a clear forward polarity in the axon
and a mixed one in dendrites [8]. Yet, these two structures can
both move, suggesting that polarity may not be a fundamental
variable in this physical process. Also note that while we do
not account for the influence of a potential loading on the
kinetic rates k

μ
p and k

μ

d , our mean-field description captures
the load-dependent dynamic of the whole microtubule array
(see Sec. II E).

Assuming that no microtubule comes from the growth cone,
Eq. (1) is equipped with a no-flux boundary condition at the
tip of the neurite,

l̇n = vμ(ln(t),t). (3)

For simplicity, we also impose a no-flux boundary condition
at the connection with the soma, so that vμ(0,t) = 0. Notice
that at both ends, there is no assumption on the flux of
tubulin, which adjusts to maintain a constant concentration
as hypothesized in Eq. (2).

2. Cortical network

Denoting by ρc the mass density of actin in the cortex, we
can write a conservation equation similar to Eq. (1):

∂tρc + ∂x(ρcvc) = Sc, (4)

where vc is the velocity of the actin network in the cortex in the
laboratory reference frame. However, we assume that the actin
network is highly compressible compared to the microtubule
network. Therefore, this equation decouples from the rest of
the system, and the actin density can be found post-factum
when the velocity field vc is known using the method of
characteristics [64]. This point is not tackled in the present
paper, and Sc is thus left unspecified.

We again assume that there is no filamentous actin flux from
the soma to the cortex: vc(0,t) = 0. Unlike the microtubule
network, the cortical actin is not stopped at the T-domain and
can flow freely in the growth cone. Thus, there is no condition
such as Eq. (3) for the cortical flow.

B. Balance of linear momentum

1. Microtubule network

The microtubule network is in contact with the cortical actin
network through different types of cross-linking proteins that
can actively bind and unbind (see Ref. [8] for a review). As-
suming a sufficiently fast binding and unbinding dynamic [65],
we model this contact as a viscous friction. Neglecting inertia,
the balance of linear momentum reads

∂xσμ = ζμ(vμ − vc), (5)

where ζμ is a friction coefficient and σμ is the internal axial
stress rescaled by the microtubule network width, that is, if hc

is the width of the cortex and hμ is the width of the microtubule
network, both assumed to be constant, then σμ = (1 − w)�μ,
where �μ is the axial Cauchy stress (axial force per unit area).
We denote

w = hc

hμ + hc

∈ [0,1]

as the ratio of the cortical over the total width of the axon.
At the leading edge, the axoplasm is subjected to a traction

stress Q. Thus, the boundary condition associated with Eq. (5)
reads

σμ(ln(t),t) = (1 − w)Q.

2. Cortical network

Similarly, the linear momentum balance in the cortical layer
reads

∂xσc = −ζμ(vμ − vc) + ζcvc, (6)

where ζc is a friction coefficient of the cortex with respect to
the substrate through adhesive proteins [22]. Here, σc = w�c
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is the rescaled axial stress, so that the boundary condition at
the leading edge is

σc(ln(t),t) = wQ.

C. Constitutive relations

To close our system of equations, we posit two assumptions
about the rheology of the microtubules and cortical networks.

1. Microtubule network

Given the long turnover time of microtubules inside the
axoplasm (which are highly stabilized [5,8]) and their high
stiffness compared to F-actin filaments, we consider this
network to be elastic for the time scale of interest (hours).
We assume a logarithmic elastic stress-strain dependence

σμ = −(1 − w)E log

(
ρμ

ρ0

)
, (7)

which has the advantage of preventing both infinite contraction
and dilution. The natural density of microtubules at which
no stress is created is ρ0. In principle, this density can
be modulated by the presence of molecular motors in the
microtubule array [33]. It is worth mentioning that our results
are robust with respect to the choice of increasing concave
functions other than log. In fact, realistic parameters show that
ρμ is rather close to ρ0, thus implying that in the range of
strain considered in physiological conditions, a linear relation
between the stress and the local density (representing the strain
in one dimension) could potentially be acceptable as well.

2. Cortical network

The turnover duration of an actin fiber in the cortex is fast
(a few seconds [8,51]), and we use a linear viscous law for
this phase to relate the stress to the strain rate. In addition, we
assume that there is an active contractile stress created by the
myosin II motor activity [19]:

σc = w(η∂xvc + χc). (8)

The bulk viscosity of F-actin is η, χ > 0 is the contractility
coefficient, and c is the concentration of motors. The conser-
vation equation for c is (see Refs. [66,67] for further details)

∂tc + ∂x(cvc) − D∂xxc = c̄ − c

τc

. (9)

The motors are advected with the actin filament that they
bind but can also thermally diffuse with a diffusion coefficient
D. The linear reaction term accounts for the attachment and
detachment of motors with a cycle time τc. The concentration
of motors at chemical equilibrium is c̄. We can supplement
this equation with a no-flux boundary condition at the soma,
∂xc(0,t) = 0, and assume that the motor concentration in the
T-domain is a constant, c(ln(t),t) = c0.

Note that we do not resolve the radial component of the
stress in our model (similarly to a neurite constrained in
a channel [68]). Radial stress will be important for further
investigation on the shape and turning of neurites, which is
beyond the scope of this paper.

D. Final system

Denoting by σ = σc + σμ the total stress, v = vc the
velocity of actin, and ρ = ρμ the density of microtubules,
combining our model equations, we obtain the final system,

−wη

ζc

∂xxσ + σ = wχc − E(1 − w) log

(
ρ

ρ0

)
,

∂tρ + ∂x(ρv) − E(1 − w)

ζμ

∂xxρ = ρ̄ − ρ

τ
, (10)

∂tc + ∂x(cv) − D∂xxc = c̄ − c

τc

,

where the velocity field is related to the stress by v = ∂xσ/ζc.
The boundary conditions are

∂xσ |0 = 0, ∂xρ|0 = 0, and ∂xc|0 = 0,
(11)

σ |ln = Q, ρ|ln = ρ0e−Q/E, and c|ln = c0.

The last no-flux boundary condition,

l̇n = v|ln − E(1 − w)

ζμ

∂xρ

ρ
|ln(t), (12)

is a Stefan condition needed to compute the unknown time
dependence of the free boundary ln(t). In general, initial
conditions should also be given, but here we focus on steady
states only.

We comment on the structure of Eqs. (10): the stress is
created nonlocally over the so-called hydrodynamic length
lc = √

η/ζc by two active agents. Motors from the cortex
are pullers creating a contractile stress, and microtubules,
provided their density is larger than ρ0, are pushers creating
a tensile stress due to the addition of tubulin subunits in the
network (growth). If tubulin subunits are removed (shrinking),
the microtubules are also pullers. In the context of cell
motility, such structures with pushers and pullers have been
investigated in Refs. [69,70], where it was shown that growing
and contracting agents can conspire to achieve robust motile
properties of an active segment. Here, we supplement the
picture with the two simple and similar dynamic equations
in Eqs. (10) (second and third equations in that group) ruling
the distribution of pushers and pullers that are relevant in the
case of axonal motility.

Having already investigated the pullers-dominated case in
Ref. [71] for motility properties and for the formation of
periodic F-actin rings [67], which are actually observed in
axons [8,72], we turn our attention to the pushers-dominated
case. To understand this regime, from hereon we restrict our
attention to the case in which the concentration of motors is
homogeneous in the cortex, i.e., c ≡ c̄. The resulting system
can then be rewritten in the following minimal form:

wη∂xxv − ζcv = E(1 − w)
∂xρ

ρ
,

(13)
∂tρ + ∂x(ρv) − E(1 − w)

ζμ

∂xxρ = ρ̄ − ρ

τ
,

with boundary conditions

v|0 = 0 and ∂xρ|0 = 0,
(14)

η∂xv|ln = Q − χc̄ and ρ|ln = ρ0e
−Q/E,
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along with the Stefan condition in Eq. (12). Substituting the
nondimensional quantities,

σ̃ = σ

E
, x̃ = x√

η/ζμ

, t̃ = t

η/E
,

(15)
ρ̃ = ρ

ρ
, and Q̃ = Q/E,

in Eqs. (13) and (14) and dropping the tildes for clarity, we
obtain the system

w∂xxv − av = (1 − w)
∂xρ

ρ
,

(16)
∂tρ + ∂x(ρv) − (1 − w)∂xxρ = ε(1 − ρ),

with boundary conditions

v|0 = 0 and ∂xρ|0 = 0,
(17)

∂xv|ln = Q − Qc and ρ|ln = eQμ−Q,

and the free boundary condition,

l̇n = v

∣∣∣∣
ln

− (1 − w)
∂xρ

ρ

∣∣∣∣
ln(t)

. (18)

The second equation in Eqs. (16) is obtained by expressing the
velocity vμ using Eq. (5) and combining it with Eq. (1). We
have now six nondimensional parameters:

(i) w, the relative width of the cortex with respect to the
microtubule network,

(ii) a = ζc/ζμ, the ratio of friction coefficients,
(iii) ε = η/(τE), the ratio of the acto-myosin over micro-

tubule network viscosities,
(iv) Q, the applied load at ln scaled by E,
(v) Qc = χc̄/E > 0, the scaled contractile load,
(vi) Qμ = − log(ρ̄/ρ0) (see below).
Note that these six nondimensional parameters could be

reduced to five by defining Q̂ = Q − Qμ and �Qc
μ = Qc −

Qμ. However, to keep the treatment of the microtubule and
acto-myosin meshwork parallel, we keep the three distinct
loads.

The system of Eqs. (16)–(18) cannot be explicitly solved,
but some asymptotic cases provide insight into the physics of
such a medium.

E. “Solid” and “fluid” asymptotic cases

1. The no-microtubule case, w → 1

In the absence of microtubules, the velocity field can be
solved directly from the first equation in Eqs. (18) and we
obtain

v(x,t) = Q − Qc√
a

sinh(
√

ax)

cosh[
√

aln(t)]
.

Plugging this expression into Eq. (18) leads to

l̇n(t) = Q − Qc√
a

tanh[
√

aln(t)].

This case was investigated in the absence of contraction
(Qc = 0) in Ref. [32] and successfully compared to ex-
periments in which the GC was lifted and the axon was
mechanically pulled with a cantilever. Notice, however, that

FIG. 3. (a) Velocity-force relation in the absence of a cortical
acto-myosin network. (b) Velocity-force relation in the absence of a
microtubule network. (c) Two thresholds velocity force in the general
case.

in Ref. [32] v is the microtubule velocity, while here v is the
velocity of F-actin.

The importance of axoplasmic contraction (Qc �= 0) was
recently demonstrated in Ref. [33]. In this case, there are
two possible steady states. Either the loading is larger than
the contractile stress, Q � Qc, and the axon then extends at
the finite velocity Vn = l̇n = (Q − Qc)/

√
a, or the loading is

weaker than the contractile stress, Q < Qc, and the neurite
then collapses back to the soma. We sketch the force velocity
Vn(Q) relation in Fig. 3 (middle panel). This case can be
referred to as “fluidlike” growth given that the axoplasm is ef-
fectively modeled as a contractile viscous fluid. Alternatively,
it was shown in Ref. [73] that this case can also be described
as a morphoelastic rod by combining an elastic response with
a fast evolution of the reference configuration.

2. The no-cortex case, w → 0

In the absence of a cortex, we combine Eqs. (16) to obtain
the linear equation

∂tρ − (1 + a−1)∂xxρ = ε(1 − ρ).

Its long-time asymptotics, on a semi-infinite domain x � ln(t),
can be found by considering the traveling-wave reduction
y = x − ln(t) in the domain y < 0, with ln(t) = Vnt . Denoting
by ( )′ the derivative with respect to y, we obtain

−Vnρ − (1 + a−1)ρ ′′ = ε(1 − ρ),

with boundary conditions

ρ|0 = eQ−Qμ, ∂xρ|−∞ = 0,

and the front velocity given by

Vn = −(1 + a−1)eQμ−Q∂xρ|0.
The solution of this linear problem is given by

ρ(y) = 1 − p(Q)

1 + p(Q)
ey/l(Q).

This expression depends on l(Q), which can be interpreted
as the typical size of a boundary layer, over which the
chemical reaction of polymerization and depolymerization of
microtubules is maintained out of equilibrium at the tip of the
neurite:

l(Q) =
√

(1 + a−1)[1 + p(Q)]

ε
.

The parameter p(Q) = eQ−Qμ − 1 > −1 represents the
driving force leading to expansion or retraction. Indeed, the
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tip velocity can be expressed as

Vn = p
√

ε(1 + a−1)√
1 + p

.

If p < 0 (Q < Qμ), then the combined effect of external
force and shrinking of microtubules leads to a collapse back
to the soma, while if p > 0 (Q > Qμ) the stress provided
from microtubule growth is large enough to overcome an
external load, and a steady expansion is predicted. In the
absence of molecular motors, that is, without contraction,
Qμ < 0 as microtubules are able to push [37]. However, in
the presence of molecular motors, the sign of Qμ cannot
be readily established [33]. We sketched the force velocity
Vn(Q) relation in Fig. 3 (left panel). In this case, the neurite is
effectively modeled as a growing elastic solid.

Notice that the velocity of the microtubules,

vμ = (1 + a−1)
∂yρ

ρ
= p(1 + a−1)ey/l

l(1 + p − pey/l)
,

also displays an exponential decay away from the tip of the
neurite. This behavior is consistent with the experiments of
Ref. [32].

From the two limiting cases discussed above, we can obtain
a general picture of the dynamics when 0 < w < 1 for small
and large values of the applied load Q:

(i) if Q < Qμ, the axoplasm will collapse back to the soma;
indeed, both the cortex and the microtubule networks are in a
collapse mode,

(ii) if Q > Qc, the axon length will increase at a finite
velocity given that both the cortex and the microtubule network
are in extension.

Next, we consider the interval Q ∈ [Qμ,Qc] by studying
possible static states in which a finite load does not lead to
motion.

F. Static states

Static states are the solutions of the following problem:

w∂xxv − av = (1 − w)
∂xρ

ρ
,

(19)
∂x[ρv − (1 − w)∂xρ] = ε(1 − ρ),

with the boundary conditions of Eq. (17) and where ln is a
constant given by the condition

v|ln = (1 − w)
∂xρ

ρ
|ln(t).

While there is no obvious solution to this nonlinear problem,
the following two limiting cases shed light on the general case.

1. Large microtubule network viscosity, ε → 0

In the limit in which the microtubule network viscosity
is much larger than the acto-myosin network viscosity, we
can take the limit ε → 0. In this case, the second equation in
Eqs. (19) can be solved exactly:

ρ(x) = exp

(
Qμ − Q + σ (x) − Q

a(1 − w)

)
, (20)

FIG. 4. Length-force relations for the static solutions given by
Eq. (21) for different values of (a) a and (b) w. Parameter �Qc

μ = 5.

which can then be substituted into the first equation in Eqs. (19)
to obtain

w∂xxv − (1 + a)v = 0.

The solution of this last equation is simply

v(x) = (Q − Qc)

√
w

1 + a

sinh
(

x√
w

1+a

)
cosh

(
ln√

w
1+a

) .

The stress is obtained by integrating v:

σ (x) = wa

1 + a
(Q − Qc)

cosh
(

ln√
w

1+a

)
− cosh

(
x√

w
1+a

)
cosh

(
ln√

w
1+a

) ,

which can be substituted back into Eq. (20) to obtain a closed
expression for the density. The last constraint is provided by
integrating the second equation in Eqs. (16) and requiring
that, for steady states, the average density of microtubules is
conserved, i.e.,

1

ln

∫ ln

0
ρ(x)dx = 1.

This constraint is now an integral equation for the static
length ln:

lne
Q−Qμ

=
∫ ln

0
exp

⎧⎪⎨
⎪⎩−f0(Q − Qc)

⎡
⎢⎣1 −

cosh
(

x√
w

1+a

)
cosh

(
ln√

w
1+a

)
⎤
⎥⎦
⎫⎪⎬
⎪⎭dx, (21)

where the constant f0 reads f0 = w/[(1 + a)(1 − w)]. In
Appendix A, we show that there exists a steady solution for
Q ∈ [Qμ,Q0

s ] with

Q0
s = Qμ + f0Qc

1 + f0
. (22)

The parameter Q0
s is an average of Qμ and Qc weighted by

the cortical width and the friction coefficients. The numerical
solution of Eq. (21) between the two threshold loads is given
in Fig. 4. The static length increases monotonically from 0 to
∞ between Qμ and Q0

s .
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FIG. 5. (a) Numerically constructed phase diagram of the axo-
plasm. Parameters are a = 0.1, w = 0.1, and �Qc

μ = 0.3. The dashed
line is the analytic approximation from the metamodel presented in
Sec. II G. (b) Typical steady-state profiles of the microtubule velocity
and density in the three phases for ε = 0.001. The numerical method
is presented in Appendix B.

2. Large cortex viscosity, ε → ∞
In this limit, it is clear from the right-hand side of the second

equation in Eqs. (16) that ρ converges to 1 almost everywhere
in the layer, except in a boundary layer close to the tip, where
it has to satisfy the constraint ρ|ln = eQμ−Q. To obtain the
dynamics of the moving front ln, we use the piecewise linear
ansatz:

ρε =
{

1 if x < ln − 1
ε
,

ε(eQμ−Q − 1)
(
x + 1

ε
− ln

)
+ 1 if x > ln − 1

ε
.

Using this ansatz, we solve the first equation in Eqs. (16)
to obtain v(ln) asymptotically in 1/ε. To leading order, we
have

v(ln) = (1 − w)(1 − eQμ−Q) + w(Q − Qc)

eQμ−Q
√

wa
th

(√
aln√
w

)
.

This value is finite because the left-hand side of the first
equation in Eqs. (16) is a regularizing elliptic operator. To
leading order, the front dynamics is then given by

V = l̇n ∼ (1 − w)
√

aε
1 − eQμ−Q

eQμ−Q
.

We conclude that in the large-ε regime, there is no static front
unless Q = Qμ. For Q > Qμ, the axon increases indefinitely
and collapses for Q < Qμ.

G. General behavior

Rather than tackling the difficult questions of uniqueness
and stability (both local and global) of the solutions that
we have given in the previous sections, we use a numerical
integration of problem (16) to build the phase diagram shown
in Fig. 5 (see Appendix B for the method). For a given set of
parameters w, a, and �Qc

μ, we show in the (Q,ε) plane the
domain of existence of the three observed behaviors: collapse,
static, and motile.

Essentially, the overall behavior at finite ε is as follows.

(i) For Q < Qμ, we observe a collapse of the neurite back
to the soma. This collapse is associated with a backward
flow of microtubules along the entire axoplasm (see Fig. 5)
as observed experimentally [33]. We find numerically that
the time to collapse decreases with increasing ε since the
effective resistance of the microtubule network to contraction
decays.

(ii) For Qμ � Q � Qs , where Qμ < Qs < Q0
s , we observe

a stabilization of the neurite in a static state stemming from an
interplay between the growing core and the surrounding con-
tractile sleeve. Therefore, these static states may be interpreted
as a tensile tightening of two parallel active networks.

(iii) For Q > Qs , we observe that the neurite tip moves
with a finite velocity that increases with ε. The microtubule
flow increases toward the tip and develops a boundary layer at
the junction with the GC, as observed experimentally [32,33].

Accordingly, the general qualitative picture for the velocity-
force relation is given in Fig. 3(c).

This double force thresholds system is in agreement with
experiments [56]. Physically, our model reveals that the
applied tip stress Q (positive when the neurite is pulled and
negative if it pushes against an obstacle) must be larger than the
stress created by the growing microtubule network Qμ to avoid
collapse, but it must also be larger than the effective stalling
stress Qs of the entire structure to lead to steady elongation,
see Fig. 3(c). Between these thresholds, the neurite effectively
behaves like a neutral solid in the sense that an increase of force
leads to a global strain of the neurite, which acquires a new rest
length. We further speculate that the oscillations in the loading
at the T-domain coming from oscillating filopodia [52] can
lead to the small-scale stop-and-go motion [22] experimentally
observed during elongation.

H. Further simplifications

Analytical estimates can be obtained if we further simplify
the model by using the fact that microtubule growths are
localized at the tip of the axoplasm and provide an effective
advection velocity of the free boundary [19,74,75].

We assume that the axoplasm is a mixture of the contractile
acto-myosin network (with fraction w) and the microtubule
network (with fraction 1 − w). In the nondimensional nota-
tions used previously, the mechanics of the contractile phase
is then given by

σc = ∂xvc + Qc,

∂xσc = ζeffvc, (23)

∂xσc|0 = 0 and σc|ln = Q.

Similarly, the growing microtubule phase is given by

σμ = ηeff∂xvμ + Qμ,

∂xσμ = vμ, (24)

∂xσμ|0 = 0 and σμ|ln = Q,

where ζeff = (1 + a)n and ηeff = (1 + ε)−m with parameters
n > 0 and m > 0 chosen below. The front dynamics is given
by the no-flux boundary condition,

l̇n = wvc|ln + (1 − w)vμ|ln .
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Solving Eqs. (23) and (24) and assuming that
√

ηeff is small
enough (localized tip growth assumption) compared to ln, the
moving front dynamics is given by

l̇n = w(Q − Qc) tanh(
√

ζeffln) + (1 − w)
Q − Qμ√

ηeff
, (25)

which has a similar behavior to that of the full model.
(i) For Q < Qμ, ln → 0 and the neurite collapses to the

soma.
(ii) For Qμ < Q < Qs , we have ln → lsn and the neurite

reaches a finite length given by

lsn = 1√
ζeff

arctanh

(
Q − Qμ

feff(Qc − Q)

)
, (26)

where feff = w/(1 − w)
√

ηeff/ζeff. The threshold load is given
explicitly by

Qs = Qμ + feffQc

1 + feff
.

To recover the value Qs → Q0
s [see Eq. (22)] in the limit

ε → 0, we choose n = 2. Then, we also have Qs → Qμ in
the limit ε → ∞. Finally, the parameter m ∼ 1/5 is chosen
heuristically to approximate the value of Qs given by the
general phase diagram (see Fig. 5).

(iii) For Q > Qs , we have ln → ∞ and the neurite reaches
a finite velocity Vn given by

Vn = (1 − w)√
ηeff

(1 + feff)(Q − Qs). (27)

III. GROWTH CONE PROPULSION

Ahead of the axoplasm, we do not distinguish the lamel-
lipodial and filopodial phases of the GC in the following
one-dimensional model. The GC is continuous with the
acto-myosin cortex, and we will therefore model it as a
visco-contractile material. We use the index gc to denote
variables related to the GC.

A. Balance of mass

The mass balance for actin reads

∂tρgc + ∂x(ρgcvgc) = −kdρgc,

where ρgc is the density of F-actin and vgc is its velocity
in the laboratory reference frame. Here, kd is the bulk
depolymerization rate [66]. This equation is supplemented
with the kinetic boundary condition

l̇gc = v(lgc(t),t) + vp,

where vp is the localized polymerization (G-actin to F-actin)
velocity at the tip of the GC [19,52,74]. More generally,
vp may also depend on the microtubules extending into
the filopodium [35] and on the external loading [19] at
the proximal tip of the GC, but we will not consider this
dependence. Therefore, we assume here a stress-free leading
edge. As in the previous discussion, the high compressibility
of F-actin leads to the decoupling of the actin density with the
front dynamic.

B. Balance of momentum

In the viscous regimes, the balance of linear momentum
reads

∂xσgc = ζcvgc, (28)

where ζc is the friction coefficient with respect to the
substrate. This equation is supplemented with stress boundary
conditions,

σgc|ln(t) = Q and σgc|lgc(t) = 0, (29)

where, as before, Q denotes the common traction force in the
T-domain at the axoplasm/GC interface. The leading edge of
the cone is assumed to be stress-free.

C. Constitutive relation

The constitutive relation includes both a viscous and a
contractile term:

σgc = η∂xvgc + χc̄ − p. (30)

The pressure p is defined numerically as a constant La-
grange multiplier associated with the conservation of the
one-dimensional volume of the GC,

lgc(t) − ln(t) = L. (31)

This constraint follows from both osmotic effects [76,77] and
the fact that few compressible microtubules are engaged into
filopodia [78].

More general models taking into account global compress-
ibility of the GC may be required to access variation of L when
some rheological parameters such as the tip growth velocity or
the contractility are affected by drug treatments [79]. However,
our goal here is to describe the entire neurite, and we will not
discuss these finer effects further.

D. Crawling velocity of the cone

Combining Eqs. (28) and (30), we obtain

−l2
c ∂xxσgc + σgc = χc̄ − p. (32)

Solving Eq. (32) with boundary conditions [see Eq. (29)]
and satisfying the constraint of fixed length [see Eq. (31)],
we obtain a closed expression for σgc and vgc that we use
to compute the fronts dynamic (see Refs. [71,75] for further
details):

l̇gc = l̇n = Vgc = 1

2

(
vp − Q√

ηζc tanh(L/(2lc))

)
.

Introducing the dimensionless velocities Ṽgc = Vgc/(E/
√

ηζu)
and ṽp = vp/(E/

√
ηζu), Q̃ = Q/E, this last expression be-

comes

Ṽgc = 1

2

(
ṽp − Q̃√

a tanh(L/(2lc))

)
.

From simple physical parameter estimates (see Table I), we
have L 
 2lc so that tanh[L/(2lc)] ∼ 1, and we obtain, after
dropping the tildes,

Vgc = 1

2

(
vp − Q√

a

)
. (33)
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TABLE I. Estimates of material coefficients.

Name Symbol Typical value

F-actin viscosity η 103 Pa s [51]
Elasticity of microtubules E 200–400 Pa [44–46]
Microtubule viscosity Eτ (1–5) × 106 Pa s [32,33]
Viscous friction coefficient ζc 1014–1015 Pa m−2 s [23,32]
Contractility χc̄ 10–102 Pa [33,45,46,51]
F-actin polymerization velocity vp 2 × 10−8 m s−1 [19,52]
GC length L (1–2) × 10−5 m [33,51]
Cortex to axon width w 0.1 [72]

Friction cortex/microtubules ζμ 10ζc (estimated)

Hydrodynamic length lc
√

η/ζc ∼1.5 × 10−6 m

Characteristic length
√

η/ζμ ∼4.4 × 10−7 m
Characteristic time η/E ∼3 s
Characteristic velocity E/

√
ηζμ ∼1.5 × 10−7 m s−1

Characteristic stress E ∼300 Pa

The GC is propelled by the polymerization of the actin
network at the leading edge, which pushes the membrane
forward. However, the GC is also pulled by the traction force at
the interface with the axoplasm. This traction force decreases
the velocity of migration if Q > 0. The GC stops moving when
Q reaches the stall force,

Qgc = √
avp.

IV. FULL NEURITE CRAWLING

A. Overall behavior

We can now combine the models for the motion of the GC
and the axoplasm parts to obtain a full picture of the neurite
dynamics. We use the analytic relations derived in Secs. II G
and III as they capture the main effects. We can distinguish
three cases depending on the acto-myosin of the GC Qgc.

(i) If Qgc < Qμ, then the axon collapses to the soma in a
finite time.

(ii) If Qμ < Qgc < Qs , then the axon has a finite static
length. Using the approximation given by Eq. (26), we have

ls = 1√
ζeff

arctanh

(
Qgc − Qμ

feff(Qc − Qgc)

)
. (34)

(iii) If Qs < Qgc, the axon acquires a finite steady-state
velocity. Using the approximation given by Eqs. (27) and (33),

we obtain

V = Qgc − Qs

2
√

a + (1−w)√
ηeff

(1 + feff)
. (35)

We conclude that the main behavior of the system is
captured by the relative magnitude of the three stall forces
of the different neurite phases: the microtubule network (Qμ),
the entire axoplasm (Qs), and the acto-myosin of the GC (Qgc).

B. Parameter estimation

The three loads Qμ, Qs , and Qgc depend on six nondi-
mensional parameters directly related to measurable material
coefficients. Based on Table I, we have

a ∼ 0.1, ε ∼ 0.001, w ∼ 0.1, vp ∼ 0.14, and Qc ∼ 0.3.

It is more difficult to assess the value of the microtubule
network stall force Qμ as the presence of molecular motors
may induce contraction [33]. In Ref. [35], it is shown that the
growth of microtubules engaging in filopodia can lead to a
pushing stress of −90 Pa at the tip. However, in agreement
with Ref. [33], we assume that the axonal microtubules exert
a small pulling stress. Here, we choose 9 Pa by setting the
neurite velocity to about 10 μm h−1, leading to

Qμ ∼ 0.03.

C. Comparison with experiments

Now that our model has been validated against classical
pulling experiments, it is interesting to see how its predictions
compare with various pharmacological tests affecting the F-
actin and microtubules meshworks.

The effects of some classical drug treatments on the model
parameters are collected in Table II.

1. Retraction under microtubules depletion

Experiments have shown that the depolymerization of
microtubules with nocodazole stops or even leads to the
collapse of neurites depending on the concentration [40,57,79].
This treatment can be interpreted in our model as an increase
of k

μ

d and thus an increase of Qμ and is qualitatively captured
in Fig. 6.

Physically, the depolymerization of microtubules lowers
the resistance of this growing network to contractile acto-
myosin stress. As we show in the inset of Fig. 6 and as
experimentally confirmed in Ref. [57], nocodazole induced

TABLE II. Effects of classical drugs.

Drug Effect Parameters trend

blebbistatin inhibit myosin II contractility Qc ↓
BDM inhibit myosin II contractility Qc ↓
cytochalasin inhibit actin polymerization vp ↓ (Qc ↓ high concentration)
latrunculin destroys the actin meshwork vp ↓ ,Qc ↓
nocodazole depolymerizes microtubules Qμ ↑
epothilone B polymerizes microtubules Qμ ↓
taxol stabilizes microtubules ε ↓ (Qμ ↓ low concentration)
trypsin detaches the neurite a ↓
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FIG. 6. Perturbation of the microtubule network properties by
nocodazole and taxol (inset: latrunculin and BDM reducing Qc):
phase diagrams of the whole neurite state using expressions of the
three driving loads Qμ, Qs , and Qgc (default parameters are a ∼ 0.1,

ε ∼ 0.001, w ∼ 0.1, vp ∼ 0.14, Qc ∼ 0.3, and Qμ ∼ 0.03).

collapse can be counteracted by a latrunculin (which destroys
the acto-myosin cortex) or a BDM treatment (which inhibits
myosin II contractile activity), which effectively reduces Qc.

Conversely, initiation of motility due to blebbistatin treat-
ment (contractility inhibitor) is abolished if it is followed
by a nocodazole treatment [42]. Additionally, an increase of
microtubule polymerization using epothilone B points toward
a very promising therapeutic route to promote in vivo axonal
outgrowth after injury of the spinal cord through the inhibitory
environment due to the tissue scar [58]. Treatment with a high
concentration of taxol stabilizes microtubules and slows down
elongation [80–82]. This can be interpreted in the model as a
decrease of ε and is also correctly captured, as seen in Fig. 6.
However, the effect of a low concentration of taxol does not
block the microtubule dynamics completely [82] but primarily
lowers Qμ (by lowering k

μ

d ), thus leading to an increase of
axonal outgrowth [82,83].

2. Treatment of the acto-myosin meshwork

We now turn to the treatments affecting the acto-myosin
meshwork (Fig. 7), which has two antagonistic roles [25,39].
On the one hand, it is pulling the axoplasm thanks to F-actin
front polymerization (vp), but the contractile acto-myosin
cortex is also pulling the neurite backward. Remarkably,
treatment with a low concentration of cytochalasin [43]
reduces only the front F-actin protrusion (no filopodia) and can
be interpreted as lowering vp effectively reducing the neurite
velocity. Larger concentrations, on the contrary, destroy the
whole F-actin meshwork, which strongly impacts the cortical
contractility (Qc) and leads to an increase of neurite velocity
as captured by the model [40]. More focused experiments
inhibiting contractility with blebbistatin [42,59] confirm that
contractility impairment robustly initiates neurite motility.
Note again that cytochalasin (vp decrease) abolishes this

FIG. 7. Perturbations of the acto-myosin meshwork by cytocha-
lasin and blebbistatin: phase diagram of the whole neurite state
using expressions of the three driving loads Qμ, Qs , and Qgc

(default parameters are a ∼ 0.1, ε ∼ 0.001, w ∼ 0.1, vp ∼ 0.14,
Qc ∼ 0.3, and Qμ ∼ 0.03).

blebbistatin induced motility [42] as the model also predicts;
see Fig. 7.

3. Treatment of the substrate to modify adhesions

Adhesion of the neurite with the substrate can also be
strongly reduced with trypsin, which leads to a collapse or
a stall of the neurite [33]. Such treatment can be modeled
by lowering a. In Fig. 8(a), we show that this effect is
correctly captured by our model. It is also known that
the motility-promoting effect of myosin II inhibition is
adhesiveness-dependent [42]. While blebbistatin promotes
motility on polylysine substrates, it lowers motility on less
adherent laminin substrates [60]. We can speculate that this
is due to myosin II being strongly involved in the creation
of focal adhesions for laminin substrates [15,60]. As a result,
in this case, a blebbistatin treatment also considerably lowers
adhesion (a), thus potentially leading to arrest [see Fig. 8(a)].
Finally, we also show in Fig. 8(b) the effect of a cytochalasin
treatment depending on the substrate adhesivity. While a low

FIG. 8. Perturbations of the substrate adhesion by trypsin, bleb-
bistatin, and cytochalasin: phase diagrams of the whole neurite
state using expressions of the three driving loads Qμ, Qs , and Qgc

(default parameters are a ∼ 0.1, ε ∼ 0.001, w ∼ 0.1, vp ∼ 0.14,
Qc ∼ 0.3, and Qμ ∼ 0.03).
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level of cyotchalasin reduces the neurite velocity, we expect
this effect to be attenuated on more adhesive substrates.

V. CONCLUSION

Starting from conservation laws, we have developed and an-
alyzed a one-dimensional mechanical model of neurite motil-
ity based on a three-compartment cytoskeletal structure. The
model supports three robust states: collapse, static, and motile.
Collapse arises when the growth of the microtubules and the
GC-induced traction cannot overcome the cortical acto-myosin
contractility. On the contrary, extension at a finite velocity is
provoked by the GC F-actin frontal polymerization, which gen-
erates a tension promoting growth of the microtubule network
and overcoming cortical contractility. Interestingly, between
these two states, the neurite can also remain static as a result of
a tensile tightening between the microtubule growing network
and the contractile actomyosin sleeve operating in parallel.

The respective positions of the three stall forces of the
microtubules, the axoplasm, and the GC can be used to predict
the state of the neurite, and we explicitly relate these loads to
measurable material parameters. This framework allows for a
number of model predictions in remarkable agreement with
experimental drug treatments. It is our hope that the model
will be used as a guideline to design focused experiments
to discriminate the respective role of active (contractility,
growth) and passive (elasticity, viscosity, substrate stiffness)
effects impacting neurite motility and leading to a better
understanding of the neuronal regeneration after trauma.

We did not investigate the shape of neurites, which is also
known to be an important signature of trauma [18,84] as
neurons swell or bead in response to fast pulling. To deal
with this complex problem, a two-dimensional model must be
used and the osmotic pressure regulation between the inside
and the outside of the neurite must be taken into account [84].
More generally, coupling of the cytoskeletal mechanics with
the ions trafficking through channels and pumps at the plasmic
membrane is an important challenge that will lead to better
insight into neurite guidance by chemical gradients as well as
the swelling of neurons during injury.
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APPENDIX A: EXISTENCE OF SOLUTIONS TO EQ. (21)

Equation (21) can be rewritten in the following form:

eQ̂ = ψ(ln), where ψ(ln) =
∫ 1

0
e[(1+f0)Q0

s −f0Q̂]g(u,ln)du,

with

g(u,ln) = 1 − cosh
(

uln
lw

)
cosh

(
ln
lw

)

and lw =
√

wa
1+a

. Using the dominated convergence theorem, it

follows that

ψ(0) = 1 and ψ(∞) = e[(1+f0)Q0
s −f0Q̂].

We also have

dψ

dln
= (1 + f0)Q0

s − f0Q̂

lw cosh
(

ln
lw

)2

∫ 1

0
du e[(1+f0)Q0

s −f0Q̂]g(u,ln)

×
[

cosh

(
uln

lw

)
sinh

(
ln

lw

)
−u cosh

(
ln

lw

)
sinh

(
uln

lw

)]
︸ ︷︷ ︸

�sinh
(

ln (1−u)
lw

)
�0

.

As a result, if Q̂ < Qs , then ψ(ln) is an increasing function.
If we additionally have Q̂ > 0, then eQ̂ is strictly between
ψ(0) and ψ(∞) leading to the existence of a single solution
of Eq. (21).

APPENDIX B: NUMERICAL METHOD

To solve the Cauchy problem of Eqs. (16) and (17), we use
the scaled space coordinate to deal with the moving boundary,

y = x

ln(t)
, (B1)

and we denote the new unknown functions v̂(y,t) = v[ln(t)y,t]
and ρ̂(y,t) = ln(t) ρ[ln(t)y,t]. The second equation in
Eqs. (16) becomes

∂t ρ̂ + 1

ln
∂y

(
ρ̂(v̂ − yl̇n) − 1 − w

ln
∂yρ̂

)
= lnε

(
1 − ρ̂

ln

)
, (B2)

where the velocity field can be expressed through the first
equation in Eqs. (16) as

w

l2
n

∂yy v̂ − av̂ = 1 − w

ln

∂yρ̂

ρ̂
. (B3)

Accordingly, the boundary conditions of Eq. (17) become

v̂|0 = 0 and ∂yv̂|1 = ln(Q − Qc), (B4)

∂yρ̂|0 = 0 and ρ̂|1 = lne
Qμ−Q, (B5)

l̇n = v̂

∣∣∣∣1 − (1 − w)∂yρ̂

lnρ̂

∣∣∣∣
1

. (B6)

To fully specify the system, we impose the initial conditions

ln(0) = l0
n and ρ̂(y,0) = ρ̂0(y).

Numerically, we did not find that the steady-state phase
reported in Fig. 5 was sensitive to the choice of initial
conditions.

The numerical scheme used to solve the Cauchy problem,
Eqs. (B2)–(B6), is based on the finite volume method [85],
which allows to conserve mass while handling localized states
without spurious oscillations. Two regularly spaced grids on
the same interval [0,1], denoted Z and Zd for its dual, are
considered in parallel. An initial condition on ρ̂ being given
on Z, Eq. (B3) is solved using the boundary conditions of
Eq. (B4), and the effective drift term v̂ − yl̇n is computed on Zd
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using Eq. (B3). We then apply an upwind finite volume scheme
to Eq. (B2) using the no-flux boundary conditions of Eq. (B5).
This allows the computation of the updated concentration
profile ρ̂ on Z, which gives in turn the new initial data used

for the next time step and the front dynamic through Eq. (B6).
The same procedure is then repeated. The time interval for
each time step is adapted so that the Courant-Friedrichs-Lewy
condition is uniformly satisfied on Zd [85].
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