Problem: 1826 appearing in Mathematics Magazine Vol. 82, No. 4, Oct. 2009
Solver: Joe McKenna
Address: 2316 W. Superior St., Chicago, IL 60612
Email: joepatmckenna@gmail.com

Proposed by Michael Woltermann, Washington & Jefferson College, Washington, PA. A block fountain of coins is an arrangement of \(n \) identical coins in rows such that the coins in the first row form a contiguous block, and each row above that forms a contiguous block. If \(a_n \) denotes the number of block fountains with exactly \(n \) coins in the base, then \(a_n = F_{2n-1} \), where \(F_k \) denotes the \(k \)th Fibonacci number. (Wilf, generatingfunctionology, 1994.)

How many block fountains are there if two fountains that are mirror images of each other are considered to be the same?

Let \(B_n \) denote the set of block fountains that have exactly \(n \) coins in the base and that possess mirror symmetry. We prove \(|B_n| = F_{n+1} \) for \(n \geq 1 \) by strong induction. The case \(n = 1 \) is trivial. Assume \(|B_n| = F_{n+1} \) for \(1 \leq n < k \). A contiguous block of \(k \) coins is an element of \(B_k \), and centering an element of \(B_j \) atop a contiguous block of \(k \) coins, for \(1 \leq j < k \) with \(j \) and \(k \) of opposite parity, forms an element of \(B_k \). Conversely, deleting the base from an element of \(B_k \) reveals either the empty block fountain or an element of \(B_j \), for \(j \) as above. It follows that

\[
|B_k| = 1 + \sum_{j=1}^{\lfloor k/2 \rfloor} |B_{k-2j+1}| = 1 + \sum_{j=1}^{\lfloor k/2 \rfloor} F_{k-2(j-1)} = F_{k+1}.
\]

Now the set of block fountains that have exactly \(n \) coins in the base and that do not possess mirror symmetry may be partitioned into sets of mirror pairs. We conclude that \(a_n = |B_n| + \frac{F_{2n-1} - |B_n|}{2} = \frac{F_{n+1} + F_{2n-1}}{2} \).