Section 5.3

Periodic functions

Look at the unit circle and note that

 $\sin (\theta \pm 2\pi) = \sin \theta$, in fact $\sin (\theta \pm 2n\pi)$, for all integer values of n $\cos (\theta \pm 2\pi) = \cos \theta$, in fact $\cos (\theta \pm 2n\pi)$, for all integer values of n

AND

 $\tan (\theta \pm \pi) = \tan \theta$, in fact $\tan (\theta \pm n\pi)$, for all integer values of n

The same is true for the reciprocal functions.

EXAMPLE 1: Use one of the facts above to find the exact value of sin 405°.

EVEN AND ODD FUNCTIONS

Definition of an even function: A function f is even if f(-x) = f(x) for all values of x.

Which trigonometric functions are even?

NOTE: Even functions are symmetric to the y-axis (see $y = x^2$, for example).

Definition of an odd function: A function f is odd if f(-x) = -f(x) for all values of x.

Which trigonometric functions are odd?

NOTE: Even functions are symmetric to the origin (see $y = x^3$, for example).

EXAMPLE 2: If $\cot \theta = -3$, then $\cot \theta + \cot (\pi - \theta) + \cot (2\pi - \theta)$

EXAMPLE 3: Find the quadrant containing the terminal side of the angle θ .

A)
$$\theta = 16\pi/3$$

B)
$$\theta = -2\pi/3$$

EXAMPLE 4: Find csc $(-\pi/6)$ + cot (-6π) .

EXAMPLE 5: If $\csc \theta < 0$ and $\sec \theta < 0$, then θ lies in which quadrant?

EXAMPLE 6: If $\cos \theta = -\frac{3}{4}$ and $\sin \theta = \frac{\sqrt{7}}{4}$, then the exact value of $\cot \theta = ?$

EXAMPLE 7: If $\cos \theta = -\frac{3}{5}$ and θ lies in quadrant III, then the exact value of $\tan \theta$ is?

EXAMPLE 8: If $\cot \theta = -3$ and θ lies in quadrant II, then the exact value of $\csc \theta$ is?

GRAPHS OF TRIGONOMETRIC FUNCTIONS

Function	Domain	Range
$y = \sin x$	$(-\infty,\infty)$	
$y = \csc x$		
$y = \cos x$	$(-\infty,\infty)$	
$y = \sec x$		
y = tan x		(-∞,∞)
$y = \cot x$		(-∞,∞)

A HANDOUT WITH THE BASIC TRIG FUNCTION GRAPHS WILL BE PROVIDED IN CLASS.

NOTATION

$$\sin^2\theta = (\sin\,\theta)^2$$

$$\sin^2\theta = (\sin \theta)^2$$
 $\cos^2\theta = (\cos \theta)^2$

$$tan^2\theta = (tan \ \theta)^2$$

PYTHAGOREAN IDENTITIES

$$\cos^2\theta + \sin^2\theta = 1$$

Dividing by $\sin^2\theta$ we get:

Dividing by $\cos^2\theta$ we get: