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A Structural Jump Threshold Framework for Credit Risk∗

Pierre Garreau† and Alec Kercheval‡

Abstract. This paper presents a new structural framework for multidimensional default risk. We define the
time of default as the first time the log-return of the stock price of a firm jumps below a (possibly
nonconstant) default level. When stock prices are exponential Lévy, this framework is equivalent
to a reduced form approach, where the intensity process is parametrized by a Lévy measure. The
dependence between the default times of firms within a basket of credit securities is the result of
the jump dependence of their respective stock prices, making the link between the equity and credit
markets. We value a first-to-default basket credit default swap (CDS) as an application.
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1. Introduction. There currently exist two main classes of models for default risk: struc-
tural and reduced form models. We refer the reader to [4, 5, 15, 17, 21] for the first class of
models and to [6, 11, 12, 23] for the second. Both types of models define a framework for
understanding credit risk by modeling the timing of the default of a firm. In the framework of
structural models, the default time τ is the first passage time of the firm’s value process below
a given threshold. In reduced form models, τ is an ad hoc function of market observables such
as interest rates, which are not directly linked to the firm’s fundamentals, with spreads that
are estimated statistically.

A structural model has the advantage of a transparent economic interpretation with a
direct link to firm values. However, with the gradual abandonment of geometric Brownian
motion in favor of jump models for underlying stock prices, structural models generally lack
explicit formulas for default probabilities, especially in the multidimensional case. Reduced
form models tend to enjoy explicit default formulas for more general stock price processes but
are more loosely linked to asset fundamentals. In this paper we present a modeling approach
to pricing credit derivatives on firms and portfolios of firms that combines advantages of both
structural and reduced form models.

To motivate our approach, consider Figure 1, showing the stock price of MF Global near
its bankruptcy. The firm’s default occurred not at the largest drop in the firm’s value, but
later at the largest drop in the firm’s return.

Our approach is the following. We consider rapid changes in the stock price St as rep-
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(a) MF Global. Stock price.
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(b) MF Global. Daily log returns.

Figure 1. Bankruptcy of MF Global, October–November 2011. Bankruptcy occurred on October 31, 2011,
not at the largest absolute drop in stock price, but at the largest relative drop.

resented by the instantaneous log-return at time t, log(St/St−). The default time of a firm
is modeled as the first time that the log-return of the stock price jumps below a (possibly
nonconstant) default level. That is, we take the default time τ to be given by

τ = inf{t > 0 : log(St/St−) ≤ at},

where at is a (negative) default threshold and St is the stock price process. Our analysis
requires only that St be an exponential Lévy process, and yields simple pricing formulas that
are easy to compute even in the multidimensional case without the need for partial integro-
differential solvers or Monte Carlo simulation.

For a portfolio of N stocks, we only need to assume that the prices are driven by the
components of an R

N -valued Lévy process. By means of the use of Lévy copulas, we can
decouple the dependence structure of the jumps from the set of individual jump intensities
of the firms. As in the work of Marshall and Olkin [19], we restrict our attention throughout
this paper to the case N = 2 in order to simplify the analysis and notation, though the results
all carry over similarly for general N .

For purposes of illustration, we price a first-to-default basket credit default swap (CDS) on
two underliers. The formulas are explicit and allow for separate calibration of the individual
stock processes and the dependence structure.

Our approach enjoys these advantages:
1. As a structural model it is directly linked to the observable stock price process St. It

may be calibrated directly to St, giving us an advantage over typical structural models
formulated in terms of a firm value process that is not directly observable.

2. The framework allows for the use of a consistent set of underlying models to price
credit derivatives and options on the same assets.

3. Probabilities and prices are explicit, equivalent to reduced form models, and further-
more the dependence structure enters the model in an explicit way that can be sepa-
rately calibrated or studied.
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4. The method gives explicit solutions for multidimensional problems (e.g., basket CDS
pricing).

5. The general results do not depend on any ad hoc price modeling choices but hold
generally for any exponential Lévy stock price models, i.e., only rely on the mild
assumption that log-prices jointly have independent and stationary increments. This
provides the flexibility to use most of the currently popular price process models,
including pure jump processes like Variance Gamma, Normal Inverse Gaussian, and
tempered stable processes.

Because the instantaneous log-return vanishes except where the process St jumps, this
approach will not work for continuous price models like geometric Brownian motion. This
could explain why our approach would not have been obvious or tractable in the early days of
asset pricing theory when Brownian motion was the primary innovation. Since then, however,
we know that asset returns are not normal but require heavy-tailed distributions to describe
them [18]. As a result, Lévy models have generally replaced Gaussian models for price and
risk models that need to be sensitive to the distribution of extreme events. More recent work
on the dependence of Lévy processes, especially the Lévy copula theory of Tankov [25], now
make this new framework tractable in a way that it would not have been in the 1960s.

The event of default is determined by the relationship between the log-return of the stock
price and the default level at. The modeler may choose to think of the default level as
a quantity only accessible to the firm management, or, as in the reduced form framework,
as a statistical level estimated by credit derivatives. The possibility that the default level
might be stochastic provides quite a bit of flexibility for the modeler to adjust the probability
of default in relation to the variability of the stock price. In this sense, our jump-default
framework shifts attention regarding default events from the absolute level of the stock price
to its log-variability, which, in the case of pure jump processes, is wholly measured by the
jump distribution.

This jump-default framework has the disadvantage, from a structural perspective, that the
default event is only triggered by large downward price jumps. There is no level below which
the price can slowly diffuse to trigger default. For constant default thresholds, this means the
default framework presented here should be thought of as focused on relatively short term
sudden and unpredictable defaults that take the market by surprise. This is consistent with
the typical debt collection process of margin calls and debt payments incurred by a firm as a
discontinuous and somewhat unpredictable process. It is tempting to imagine that during a
slow decline, firms have more time to reorganize their assets and debts to avoid default. On
the other hand, a trend or diffusion could be incorporated into the default threshold process
at in order to reintroduce a version of a slow diffusion-related trend in default probability.

This paper is organized as follows. In section 2 we describe the default model in the
one-dimensional case and develop the single-name default probability formulas in terms of tail
integrals of the log-price process. Section 3 develops our analysis of the dependence structure
of jumps of a multidimensional Lévy process. We start by characterizing the dependence of
jumps of a two-dimensional homogeneous Poisson process in terms of the joint distribution
of survival times, which is bivariate exponential and always follows a Marshall–Olkin copula.
This is true independently of the choice of Lévy process, with parameters depending on the
Lévy measures. This result generalizes to two-dimensional Lévy processes in Theorem 3.15.
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Section 4 presents the joint survival probability formulas for constant, deterministic, and
stochastic default levels. These are applied in section 5 to the problem of pricing a first-to-
default basket CDS to illustrate the use of the results of section 4. We emphasize the fact
that the dependence structure is decoupled from the single-name default probabilities and so
can be modeled independently. Concluding remarks are in section 6, and proofs of most of
the propositions and theorems are collected in section 7.

2. A structural jump-threshold model. Before developing the dependence ideas needed
to describe multiname default probabilities and basket default prices, we describe our default
framework for a single asset. For standard definitions and basic concepts involving random
measures, Lévy processes, and Lévy measures, we refer the reader to any of a variety of
excellent available references, including [1, 2, 7, 8, 16, 22, 24].

We assume that the interest rate process (rt)t≥0 is a constant r. Let Yt be a one-
dimensional Lévy process on a filtered probability space (Ω,F ,P, (Ft)t≥0), and denote by
boldface i the imaginary unit and by ψ(u) = logE[eiuY1 ] the characteristic exponent of Y1.
With this notation, we model the movements of the stock price S of a firm as a general
exponential Lévy process by

(1) St = s exp{rt+ Yt + tψ(−i)}.

With this specification, the discounted value of the stock price S̃t = Ste
−rt is an (Ft)t≥0-

martingale under P. Recall that a Lévy process Y has an associated Lévy measure λ, such
that, for a Borel measurable set A ∈ B(R \ {0}), λ(A) is the expected number of jumps of Y
per unit time with jump size Yt − Yt− ∈ A.

The price process St is the solution of the stochastic differential equation

(2) dSt = St−
(
rdt+ σdWt +

∫
R
(ex − 1){X(dt × dx)− dt× λ(dx)}) , S0 = s > 0,

where X is the Poisson random measure on [0,∞)×(R\{0}) with intensity Leb×λ associated
to Y via the Lévy–Itô decomposition. (Leb denotes Lebesgue measure.) We call X a temporal
Poisson random measure (tprm) on R \ {0} with intensity λ.

An important quantity associated to Y is the tail integral of the process Y , defined to be
the function Λ(x) =

∫
(−∞,x] λ(dw) for x < 0. This can be interpreted as the intensity of a

Poisson process that jumps whenever Y jumps downward by more than −x, i.e., Yt−Yt− ≤ x.
(See section 3.2 for more details.)

Since Brownian motion is a Lévy process, we can think of this stock price model as a
natural generalization of the geometric Brownian model

dSt = St(rdt+ σdWt)

to a much wider class of processes that includes jump diffusions and many popular pure jump
processes [8].

Given a firm with stock price S, the event of default is defined as the first time the log-
return of the stock price jumps below a default threshold level a < 0, where a can in general
be nonconstant and nondeterministic. More precisely, we have the following.
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Definition 2.1 (default time, default level process). Given the exponential Lévy stock price
St defined above, a default level process is a real-valued Ft-progressively measurable random
process {at} uniformly bounded below zero. The corresponding default time τ is defined as

(3) τ(ω) = inf{t > 0 : log(St(ω)/St−(ω)) ≤ at(ω)}.
The default level at represents the percentage value of a shock observed in the stock price

at time t needed to trigger default. In many cases at can be deterministic or constant.
In order to price credit derivatives on S, we need to evaluate the survival probabilities,

described next.

Proposition 2.2 (default probability, hazard rate, stochastic default level). Suppose the stock
price St is an exponential Lévy process and at is a predictable default level process independent
of St.

Then
1. the survival probability is given by

(4) P(τ > t) = E

[
exp

{
−
∫ t

0
Λ(au)du

}]
,

where Λ(a) =
∫
(−∞,a] λ(dw) is the tail integral of the process Y .

2. The hazard rate (also sometimes called the instantaneous default rate or local default
rate) Ht is, for a.e. t,

(5) Ht ≡ lim
h↓0

P(τ ≤ t+ h | τ > t)

h
= E[Λ(at) | τ > t] =

E

[
Λ(at)e

− ∫ t
0 Λ(as)ds

]
E

[
e−

∫ t
0 Λ(as)ds

] .

An important special case for applications is the case where the default level at is a
deterministic function of time (for example, piecewise constant, as in [11]).

Corollary 2.3 (default probability, hazard rate, deterministic default level). Let the stock price
S of a firm be an exponential Lévy process (1), and suppose the default level at is deterministic.
The survival probability up to time t > 0 is given by

(6) P(τ > t) = exp

{
−
∫ t

0
Λ(au)du

}
.

Furthermore, for a.e. t ≥ 0, the hazard rate Ht exists and is given by

(7) Ht ≡ lim
h↓0

P(τ ≤ t+ h | τ > t)

h
= Λ(at).

If, in addition, the default level at is right continuous and the Lévy measure λ of Y is
nonatomic, then (7) holds for all t ≥ 0.

If the default threshold level at is constant, at = a, then we obtain the even simpler
formulas

(8) P(τ > t) = e−tΛ(a)
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and

(9) Ht ≡ lim
h↓0

P(τ ≤ t+ h | τ > t)

h
= Λ(a).

We notice that the typical formulas of reduced form models are appearing here in this
structural context. In this simplest case of constant default level, the default time is expo-
nential, and the average waiting time to default, Λ(a), is parametrized by the Lévy measure
of the underlying process. The reason for this is that the “tail process” Nt marking jumps of
Yt beyond the default threshold is a homogeneous Poisson process with mean Λ(a).

To be more specific, we write E = R \ {0} and I(z,A) to be the indicator function with
value 1 if z ∈ A and value 0 otherwise. If we define

(10) Nt(ω) =

∫
[0,t]×E

I(z, (−∞, a])X(ω, ds × dz),

then N is a homogeneous Poisson process. The proof of the nonconstant case proceeds by
establishing that the tail process

(11) Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds × dz)

is a nonstationary Poisson process with intensity (Λ(at))t≥0. (All proofs appear in section 7.)

Example 2.4. Assume that the dynamics of the the stock price S of a firm is given by (1),
where λ is the Lévy measure of an α-stable process,

(12) λ(dx) = α

(
c+
x1+α

1x>0 +
c−

| x |1+α 1x<0

)
,

α ∈ (0, 1) ∪ (1, 2), c−, c+ > 0. Then the tail integral of λ on the negative axis becomes

(13) ∀ x ∈ (−∞, 0), Λ(x) =
c−

| x |α .

Therefore, the survival probability for a constant default level a is

(14) P(τ > t) = e−tc−/|a|
α
.

The following two examples show how one can construct models with nonconstant deter-
ministic intensities.

Example 2.5 (piecewise constant default level). Let 0 = t0 < t1 < · · · < tI , and define the
default level a such that

(15) ∀ t ≥ 0, at =

I∑
i=1

ai1[ti−1,ti)(t) + aI1t≥tI ,

where ai < 0, i = 1, . . . , I. For t ∈ [tk, tk+1), k = 1, . . . , I − 1, the survival probability up to
time t is

(16) P(τ > t) = exp

{
−

k∑
i=1

Λ(ai)(ti − ti−1)− Λ(ak)(t− tk)

}
.
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Example 2.6 (linear default level, α-stable process). Assume that the Lévy measure of Y is
as in Example 2.4 with α ∈ (1, 2) and that the default level is represented by the function
a : t→ at = min(βt− γ,−ε) for ε > 0. Then, for t < (γ − ε)/β, the hazard rate (Ht)t≥0 is

(17) Ht = Λ(at) =
c−

| βt− γ |α ,

and the survival probability is

(18) P(τ > t) = exp

{
c−

β(α− 1)

[
(γ − βt)1−α − γ1−α

]}
.

We plot the default level (at)t≥0 for the piecewise constant and linear models of Examples
2.5 and 2.6 in Figure 2.
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(a) Survival probability P(τ > t).
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Figure 2. Survival probabilities (left) and default level (at)t≥0 (right) in a jump threshold model with
deterministic default level and α-stable Lévy measure. α = 3/2; c− = 1/100. Market value taken from [24].

Further discussion, and examples with stochastic default levels, may be found in [9]. We
emphasize that our results for stochastic default levels are limited to the case when the default
level process at is assumed independent of the stock price process St. When this is the case,
the extension from the deterministic to the stochastic case is straightforward. The hazard
rates are included in the statements above to add some intuition to the results, but we only
need the survival probabilities to compute CDS prices in later sections.

3. Jump dependence for Lévy processes. We need to develop a few ideas and notations
for the dependence of jumps of Lévy processes in this section, in terms of which the default
pricing formulas will be expressed later. We follow some of the literature and choose to
simplify notation by restricting our attention to two dimensions. However, nothing changes
except notational complexity in considering higher dimensional dependence.

3.1. Two-dimensional homogeneous Poisson processes. It’s helpful to start with the
special case of homogeneous Poisson processes and then move to general Lévy processes.
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Here the term “Poisson process,” with no other modifiers, will always mean a classical one-
dimensional homogeneous Poisson process on R

+.
Because the survival times of a Poisson process are exponential random variables, we need

to understand univariate and bivariate exponential variables.
First we recall the two-dimensional version of the memoryless property as developed by

Marshall and Olkin [19].

Definition 3.1 (see [19]; two-dimensional memoryless property). A pair of nonnegative ran-
dom variables (S, T ) has the memoryless property if

(19) ∀ s1, s2, t ≥ 0, P(S > s1 + t, T > s2 + t | S > t, T > t) = P(S > s1, T > s2).

Marshall and Olkin showed that the only pair of random variables (S, T ) which satisfies
Definition 3.1 is the bivariate exponential random vector.

Definition 3.2 (see [19]; bivariate exponential random vector). A pair of random variables
S and T forms a bivariate exponential random vector if there exist λ, μ, ρ ≥ 0, with ρ ∈
[0,min(λ, μ)], such that

(20) ∀s, t ≥ 0, P(S > s, T > t) = e−(λ−ρ)s−(μ−ρ)t−ρmax(s,t).

We write (S, T ) ∼ bE(λ, μ, ρ).
If (S, T ) ∼ bE(λ, μ, ρ), it follows that S and T are exponential with parameters λ and μ,

respectively, written S ∼ E(λ) and T ∼ E(μ).
We can understand the bivariate exponentials in terms of exponential marginals and the

classical notion of copulas (e.g., Nelsen [20]; to be distinguished from the Lévy copulas de-
scribed below). Given two one-dimensional exponential random variables S and T with re-
spective parameters λ and μ, it is a remarkable fact that the only copula making (S, T ) a
bivariate exponential random vector is the three parameter Marshall–Olkin copula.

Definition 3.3 (three parameter Marshall–Olkin copula). Let λ, μ ∈ R+ and ρ ∈ [0,min(λ, μ)].

The three parameter Marshall–Olkin copula is the function Cλ,μρ : [0, 1]2 → [0, 1] defined by

(21) Cλ,μρ (u, v) = uvmin(u−ρ/λ, v−ρ/μ).

The claims above are included in the following summarizing statement.

Theorem 3.4 (see [19, 20]; characterization of a bivariate exponential). Let S, T be random
variables on a probability space (Ω,F ,P). The following are equivalent:

(i) (S, T ) satisfies the two-dimensional memoryless property.
(ii) (S, T ) is a bivariate exponential random vector.
(iii) S and T are exponential, and there exist three independent exponential random vari-

ables U, V,W such that S = min(U,W ) and T = min(V,W ).
(iv) There exist λ, μ ≥ 0 and 0 ≤ ρ ≤ min(λ, μ) such that

(22) ∀ s, t ≥ 0, P(S > s, T > t) = Cλ,μρ (e−λs, e−μt).
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Condition (iv) above immediately implies that S and T are exponential E(λ) and E(μ),
respectively. A simple fact about exponential random variables is that if Y1 ∼ E(μ1) and
Y2 ∼ E(μ2) are independent, then Z = min(Y1, Y2) ∼ E(μ1+μ2). Hence, in case the conditions
of Theorem 3.4 hold, we can take U ∼ E(λ− ρ), V ∼ E(μ− ρ), and W ∼ E(ρ).

We now are interested in two-dimensional processes Y = (N,M), where N and M are
one-dimensional Poisson processes. It is not difficult to see that not all such processes Y need
be two-dimensional Lévy processes, because the jumps of N could depend on past values of
M , for example. We therefore introduce the following definition.

Definition 3.5 (two-dimensional Poisson process). A two-dimensional Poisson process Y =
(N,M) is a two-dimensional Lévy process where N and M are one-dimensional Poisson pro-
cesses.

Definition 3.6 (joint survival times of a two-dimensional process with Poisson margins). Let
N,M be two Poisson processes on (Ω,F ,P, (Ft)t≥0). Define, for u ∈ [0,∞),

(23) τu = inf{t ≥ 0 : Nt+u > Nu} and γu = inf{t ≥ 0 :Mt+u > Mu}.
The collection {(τu, γu), u ≥ 0} is called the collection of joint survival times of the two-
dimensional process (N,M).

The following theorem summarizes the main properties of two-dimensional Poisson pro-
cesses we need in the next section. See also [8] for a related discussion of the decomposition
facts.

Theorem 3.7. Let N and M be two Poisson processes on (Ω,F ,P, (Ft)t≥0) with parameters
λ and μ. Suppose (N,M) is a two-dimensional Poisson process.

Then
(i) there exists ρ ≤ min(λ, μ), such that every pair of the collection {(τu, γu), u ≥ 0} of

joint survival times of N and M is bE(λ, μ, ρ), and for all s, t > 0,

(24) P(τu > s, γu > t) = Cλ,μρ (e−λs, e−μt),

and
(ii) there exist three independent adapted Poisson processes N⊥, M⊥, and L on

(Ω,F ,P, {Ft}t≥0), with respective parameters λ − ρ, μ − ρ, and ρ, such that the de-
composition (25) holds:

Nt = N⊥
t + Lt,

Mt =M⊥
t + Lt.(25)

It follows immediately that for any two-dimensional Poisson process (N,M), either N and
M are independent, or there is a positive probability that N and M jump together.

The survival times of a two-dimensional Poisson process actually enjoy a somewhat stronger
property than bivariate exponential. Define the piecewise linear function Θ : R+×R+ ×R →
R+ by

Θ(s, t, η) = Leb([0, t] ∪ [η, s + η]),

where Leb denotes Lebesgue measure. Notice that Θ(s, t, 0) = max(s, t).
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Proposition 3.8 (two-parameter family of survival times). If (N,M) is a two-dimensional
Poisson process with survival times (τu, γv), then there are nonnegative constants λ, μ, ρ with
ρ ≤ min(λ, μ), such that for all u, v, s, t ≥ 0,

P (τu > s, γv > t) = exp(−(λ− ρ)s− (μ− ρ)t− ρΘ(s, t, u− v)).

In particular, each member of the diagonal subfamily {(τu, γu), u ≥ 0} is bivariate exponential
bE(λ, μ, ρ) in the ordinary sense.

3.2. Two-dimensional Lévy processes. Theorem 3.7 extends to general Lévy processes,
for which we need to extend the notion of joint survival times. For general Lévy processes,
these are now dependent on the size of the jumps in each component. For a one-dimensional
Lévy process, we first summarize some convenient notation and terminology.

First, for x ∈ R \ {0}, the tail process Nx of N at level x is the counting process defined
by

(26) Nx
t (ω) = #{0 ≤ s ≤ t : �Ns(ω) ∈ I(x)}, ω ∈ Ω, t ≥ 0.

Writing I(x) = [x,∞) if x > 0 and I(x) = (−∞, x], if x < 0, we say that the tail integral
induced by N is

(27) Λ(x) =

∫
I(x)

λ(dw),

and for u ≥ 0, the survival time τxu of N at level x is

(28) τxu = inf{t ≥ 0 : Nx
t+u > Nx

u}.
If X denotes the tprm of N , and using the notation

Xt(I(x)) = X([0, t] × I(x)),
then we see that the tail processNx ofN is nothing more than the Poisson process (Xt(I(x)))t≥0

with mean Λ(x) and the survival time τxu is an exponential random variable with parameter
Λ(x).

Following our study of two-dimensional Poisson processes, we next define the notion of
memoryless property for processes.

Definition 3.9 (two-dimensional memoryless property for processes). Let N and M be two
one-dimensional Lévy processes. We say that the joint survival times of N and M satisfy the
two-dimensional memoryless property if, for all x, y ∈ R \ {0}, all u ≥ 0, and all s1, s2, t ≥ 0,

(29) P(τxu > s1 + t, γyu > s2 + t | τxu > t, γyu > t) = P(τx0 > s1, τ
y
0 > s2).

It is straightforward to verify, using Theorem 3.4, that the joint survival times of N and
M satisfy the two-dimensional memoryless property if and only if, for all x, y ∈ R \ {0}, there
exists ρ(x, y) ∈ [0,min{Λ(x),Γ(y)}] such that all the pairs of the collection {(τxu , γyu), u ≥ 0}
are bivariate exponential with parameters Λ(x), Γ(y), ρ(x, y).

In case the condition in Definition 3.9 appears to be rather strong, we note that every
two-dimensional Lévy process satisfies it.
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Proposition 3.10. Let (Nt,Mt)t≥0 be a two-dimensional Lévy process. Then the joint sur-
vival times of N and M satisfy the memoryless property Definition 3.9.

Since, for x, y ∈ (R\{0})2, the process (Nx,My) is a Lévy process with Poisson marginals,
we may apply Theorem 3.7.

3.3. Lévy copulas. In this subsection we describe the jump dependence of Lévy processes
in terms of Lévy copulas, introduced by Tankov in [25] for Lévy processes with positive jumps
and extended to general Lévy processes in [13]. Just as a classical copula connects the dis-
tribution of a multivariate random variable to its marginal distributions, in a similar way a
Lévy copula connects marginal tail integrals to a multidimensional tail integral.

Definition 3.11 (tail integral induced by a Lévy measure). Let π be a two-dimensional Lévy
measure. The tail integral Π induced by π is the function Π : (R \ {0})2 → (0,∞) such that

(30) Π(x, y) = π(I(x)× I(y)).
Definition 3.12 (see [8, 13]; two-dimensional Levy copula). A function ρ : [−∞,∞]2 →

[−∞,∞] is a Lévy copula if
(i) ρ(u, v) �= ∞ for (u, v) �= (∞,∞);
(ii) ρ(u, v) = 0 if u = 0 or v = 0;
(iii) ρ is 2-increasing: if a1 ≤ b1 and a2 ≤ b2, then

ρ(a1, a2) + ρ(b1, b2)− ρ(a1, b2)− ρ(b1, a2) ≥ 0;

(iv) ρ(∞, u)− ρ(−∞, u) = ρ(u,∞)− ρ(u,−∞) = u, u ∈ [0,∞).

Example 3.13 (Archimedian Lévy copulas). Examples of two-dimensional Lévy copulas can
be constructed [25] from a generator function φ with

ρ(u1, u2) = φ−1(φ(u1) + φ(u2))(1{uv≥0} − 1{uv<0})

so that ρ satisfies Definition 3.12.
(i) The Clayton Lévy copula

(31) ρ(u, v) = (| u |−θ + | v |−θ)−1/θ(1{uv≥0} − 1{uv<0}),

for values of the parameters θ > 0, was introduced in [25]. It has generator φ(θ) =
| u |−θ.

(ii) The Frank Lévy copula with generator φ(u) = − log(1− e−η|u|), η > 0, is

(32) ρ(u, v) = −1

η
log

{
1− (1− e−η|u|)(1− e−η|v|)

}
(1{uv≥0} − 1{uv<0}).

In our setting we will only be interested in u, v < 0 (corresponding to negative jumps), so
in that case the term (1{uv≥0} − 1{uv<0}) = 1 and can be ignored in the examples above. We
can restrict our attention to Lévy copulas ρ : [−∞, 0]2 → [0,∞].

Notation. Let sgn be the function that returns the sign of a real number, i.e., sgn(x) = 1 if
x > 0 and sgn(x) = −1 if x < 0. We denote by Π̄ the function such that, for (x, y) ∈ (R\{0})2,
Π̄(x, y) = sgn(xy)Π(x, y). Similarly, if Λ is a one-dimensional tail integral, we denote Λ̄ the
function such that x ∈ R \ {0}, Λ̄(x) = sgn(x)Λ(x).

The fundamental theorem for Lévy copulas is the following.
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Theorem 3.14 (see [13]; Sklar–Kallsen–Tankov theorem for Lévy processes). Let Y = (N,M)
be an R

2-valued Lévy process with Lévy measure π. Let Π be the tail integral induced by π
with marginal tail integrals Λ and Γ. Then, there exists a Lévy copula ρ so that for all
x, y ∈ (R \ {0})2,

(33) Π̄(x, y) = ρ(Λ̄(x), Γ̄(y)).

If Λ and Γ are continuous, then ρ is unique. Otherwise, it is unique on Range(Λ)×Range(Γ).
Conversely, let ρ be a two-dimensional Lévy copula, and let N and M be two one-

dimensional Lévy processes with respective tail integrals Λ and Γ. Then there exists a two-
dimensional Lévy process Y with marginal tail integrals Λ and Γ and Lévy copula ρ. The tail
integral Π induced by the Lévy measure of Y is given by (33).

Theorem 3.14 states that a two-dimensional Lévy measure can be constructed starting
from either side of (33). Given two one-dimensional Lévy measures λ and μ, there exists a
two-dimensional Lévy measure π such that the margins of π are precisely λ and μ, and for all
(x, y) ∈ (R \ {0})2,

(34) π(I(x)× I(y)) = Π(x, y) = sgn(xy)ρ(Λ̄(x), Γ̄(y)).

The meaning of (34) is that the intensity of the jumps of a two-dimensional Lévy process
Y = (N,M) jointly greater than (x, y) is a function of the intensities of the jumps in N and
M larger than x and y, respectively. For our application to credit risk, we pay particular
attention to pairs (x, y) in the third quadrant, i.e., (x, y) ∈ (−∞, 0)2. In this case, (34)
becomes

(35) Π(x, y) = π((−∞, x]× (−∞, y]) = ρ(Λ̄(x), Γ̄(y)).

3.4. Dependence theorem. The following theorem summarizes the main results of this
section.

Theorem 3.15 (dependent Lévy processes and survival times). Let N and M be two one-
dimensional Lévy processes on (Ω,F ,P, (Ft)t≥0) with respective Lévy measures λ and μ and
tail integrals Λ and Γ.

Suppose Y = (N,M) is a two-dimensional Lévy process. Let X denote its tprm, with
intensity π, and tail integral

Π(x, y) = E X1(I(x)× I(y)) = π(I(x)× I(y)), x, y ∈ R \ {0}.

Then the following statements hold.
(i) The joint survival times of N and M satisfy the two-dimensional memoryless property.
(ii) For each x, y ∈ R \ {0}, all the pairs of the collection {(τxu , γyu), u ≥ 0} are bivariate

exponential with parameters Λ(x), Γ(y), and Π(x, y).
(iii) For u ≥ 0, the joint survival times (τxu , γ

y
u) of N and M at the level (x, y) are such

that

(36) ∀ s, t ∈ R+, P(τxu > s, γyu > t) = Cλ,μρ (e−Λ(x)s, e−Γ(y)t),
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where Cλ,μρ is the three parameter Marshall–Olkin copula Definition 3.3 with parame-
ters

(37) ρ = Π(x, y), λ = Λ(x), and μ = Γ(y).

(iv) There exists a Lévy copula L : [−∞,∞]2 → [−∞,∞] such that

(38) ∀ x, y ∈ R \ {0}, Π(x, y) = sgn(xy)L(Λ̄(x), Γ̄(y)).

A few things are worth pointing out here. First, this theorem applies generally to all
two-dimensional Lévy processes Y = (N,M). Despite that generality, the joint survival
probabilities have a very specific structure, in which the marginal survival probabilities are
always coupled by a Marshall–Olkin copula with parameters determined by the Lévy measure
π of Y and the Lévy measures of the margins N andM . The three Marshall–Olkin parameters
are simply given by the three tail integrals of Y , N , and M , and so the dependence of
ρ(x, y), λ(x), μ(y) on x and y is completely determined by π.

From the modeling perspective, this conveniently provides an explicit expression for the
joint survival probabilities, and the modeler can choose or fit the marginal processes separately
from the choice of Lévy copula describing the jump dependence. This is directly analogous
to building a multivariate probability distribution by choosing the margins and the (classical)
copula separately.

4. A multiname structural default model. In order to price basket credit derivatives,
we need the two-dimensional version of our default survival probability formulas, presented
here. We work on the complete filtered probability space (Ω,F ,P, (Ft)t≥0) and assume that
the two stock prices S1 and S2 of firm 1 and firm 2, respectively, can be written in terms of
a two-dimensional Lévy process Y = (Y 1, Y 2),

(39) ∀ ω ∈ Ω, t ∈ R+, S1
t (ω) = ert+Y

1
t (ω)+tψ1(−i), S2

t (ω) = ert+Y
2
t (ω)+tψ2(−i),

where ψi is the characteristic exponent of Y i
1 , i = 1, 2, and i is the imaginary unit.

We denote by X the tprm on E = R
2 \ {0} of Y , and by π the Lévy measure of Y ,

satisfying π[| x |2 ∧1] <∞.
The tail integral (Definition 3.11) of Y is the function Π : (R \ {0})2 → (0,∞) such that

(40) ∀ (x, y) ∈ E, Π(x, y) = π(I(x)× I(y)) =
∫
I(x)×I(y)

π(du× dv),

and we write Π̄(x, y) = sgn(xy)Π(x, y).
Likewise, for the one-dimensional Lévy processes Y 1 and Y 2, we denote the respective

Lévy measures by λ and μ, and the tail integrals by Λ and Γ, with Λ̄(x) = sgn(x)Λ(x) and
Γ̄(x) = sgn(x)Γ(x).

As in Definition 2.1, the default of firm i ∈ {1, 2} is the first time the log-return of its
stock price jumps to or below the default level ait, with default times

(41) τi(ω) = inf{t > 0 : log(Sit(ω)/S
i
t−(ω)) ≤ ait(ω)}, i = 1, 2.



A STRUCTURAL JUMP THRESHOLD FRAMEWORK 655

Proposition 4.1 (joint survival probability, stochastic level). For i = 1, 2, let ait be a default
level and τi the default time for Si, as in (41), where the stock prices Si are given by (39) and
driven by a two-dimensional Lévy process Y with tail integral Π and marginal tail integrals Λ
and Γ. Assume the default levels are both independent of Y .

Then there exists a Lévy copula ρ(·, ·) such that ρ(Λ̄(x), Γ̄(y)) = Π(x, y) and for all s, t ≥ 0,

P(τ1 > s, τ2 > t) = E

[
exp−

{∫ s

0
Λ(a1u) du+

∫ t

0
Γ(a2u) du−

∫ s∧t

0
Π(a1u, a

2
u) du

}]
(42)

(43) = E

[
exp−

{∫ s

0
Λ(a1u)du+

∫ t

0
Γ(a2u)du−

∫ s∧t

0
ρ(Λ̄(a1u), Γ̄(a

2
u))du

}]
.

The proof (see section 7) proceeds by establishing the case of the deterministic default
level first.

Corollary 4.2 (joint survival probability, deterministic default level). Let τ1 and τ2 be the
default times, for deterministic default levels a1, a2, of two firms with respective stock prices
given by (39) driven by a two-dimensional Lévy process Y with marginal tail integrals Λ and
Γ. Then there exists a Lévy copula ρ(·, ·) such that ρ(Λ̄(x), Γ̄(y)) = Π(x, y) and for all s, t ≥ 0,

(44) P(τ1 > s, τ2 > t) = exp−
{∫ s

0
Λ(a1u)du+

∫ t

0
Γ(a2u)du−

∫ s∧t

0
ρ(Λ̄(a1u), Γ̄(a

2
u))du

}
.

Recall the notations x∧y = min(x, y) and x∨y = max(x, y). The previous corollary gives
information about the distribution of the first default time τ (1) = τ1 ∧ τ2. Since P(τ (1) > t) =
P(τ1 > t, τ2 > t), we immediately obtain the following corollary.

Corollary 4.3 (first-to-default survival probability, deterministic default level). Let τ1 and τ2
be the default times, for deterministic default levels a1t , a

2
t , of two firms with respective stock

prices given by (39) driven by a two-dimensional Lévy process Y with marginal tail integrals
Λ and Γ. Then there exists a Lévy copula ρ(·, ·) such that ρ(Λ̄(x), Γ̄(y)) = Π(x, y) and

(45) ∀ t ≥ 0, P(τ (1) > t) = exp−
∫ t

0
Λ(a1s) + Γ(a2s)− ρ(Λ̄(a1s), Γ̄(a

2
s))ds.

These formulas become simplified in case the default levels a1, a2 are constant:

P(τ1 > s, τ2 > t) = Cλ,μρ (e−Λ(a1)s, e−Γ(a2)t)(46)

= exp−
{
sΛ(a1s) + tΓ(a2t )− (s ∧ t)ρ(Λ̄(a1(s∧t)), Γ̄(a2(s∧t)))

}
,(47)

where Cλ,μρ is the three parameter Marshall–Olkin copula of Definition 3.3 with

(48) λ = Λ(a1), μ = Γ(a2), and ρ = ρ(Λ̄(a1), Γ̄(a2)).

Equivalently, (τ1, τ2) is bivariate exponential bE(λ, μ, ρ). Likewise the first-to-default distri-
bution simplifies to

(49) P(τ (1) ≤ t) = 1− exp−t{Λ(a1) + Γ(a2)− ρ(Λ̄(a1), Γ̄(a2))
}
.
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To gain some intuition, we can compute the joint hazard rate, stated here in the simplest
case.

Proposition 4.4 (joint hazard rate, constant default levels). For constant default levels
a1, a2, the joint hazard rate JHt is given by

(50) JHt ≡ lim
h↓0

P(τ1 ∨ τ2 ≤ t+ h | τ1 ∧ τ2 > t)

h
= ρ(Λ̄(a1), Γ̄(a2))

or, equivalently,

(51) JHt = π((−∞, a1)× (−∞, a2)).

Proposition 4.4 means that the Lévy copula ρ is responsible for the instantaneous joint
default of both firms. For example, in the case of the independent Lévy copula ρ⊥,

(52) ∀ (u, v) ∈ [−∞,∞]2, ρ⊥(u, v) = u1[v=∞] + v1[u=∞],

the joint local default rate is 0, and the default times τ1 and τ2 are independent.

Example 4.5. Consider the commonly used case of piecewise constant default levels. Let
0 = t0 < t1 < · · · < tI , and define the default levels ait, i ∈ {1, 2}, such that

(53) ∀ t ≥ 0, ait =

K−1∑
k=1

aik1[ti−1,ti)(t) + aiK1t≥tI ,

where ak < 0, i = 1, . . . ,K. For t ∈ [tk, tk+1), k = 1, . . . ,K − 1, the survival probability of the
first-to-default swap (FtD) up to time t is then

(54) P(τ (1) > t) = exp

{
−

k∑
i=1

θi(ti − ti−1)− θk(t− tk)

}
,

where the constants θk are given by

(55) θk = Λ1(a
1
k) + Λ2(a

2
k)− ρ(Λ̄1(a

1
k), Λ̄2(a

2
k)).

5. Pricing of a first-to-default basket CDS. In this section, we illustrate the pricing of
a first-to-default swap (FtD) with the multidimensional structural jump threshold framework
we have developed. We discuss how the modeler can choose a particular Lévy copula to obtain
a spectrum of dependence regimes, separately from the choice of the individual stock price
processes. We also give some examples of the first-to-default spread term structures.

5.1. The model set-up. An FtD is a contract which protects against the first default
observed in a basket of defaultable bonds. A spread over the risk-free rate is paid periodically
on the notional value of the contract. When default occurs, the difference between the recovery
value of the bond and its face value is paid back to the holder of the FtD.

We assume there are two defaultable bonds in the CDS basket. Each bond has the same
recovery value R. We denote by τ1 and τ2 the default times of firm 1 and 2, respectively, and
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m(1)�i m(1)�i m(1)�i m(1)�i

(1−R)

t0 = 0

τ (1)

tN = T

. . .

Figure 3. Cash flows involved in an FtD. Above T is the maturity of the contract, R is the recovery rate,
�i = ti − ti−1.

by τ (1) the time of the first default in the basket, τ (1) = min(τ1, τ2). The two legs of an FtD
are shown in Figure 3.

In order to price this two-defaultable bond FtD, we assume that the default-free rate r > 0
is constant and that the protection buyer pays the spreadm(1) continuously until the maturity
T of the contract. The price of the FtD contract is such that both legs have the same present
value (see Figure 3). If we denote P the risk neutral probability, the spread of an FtD is such
that the value of the default leg DLt at time t is equal to the fixed leg FLt. Explicitly,

DLt = (1−R)

∫ t

0
e−rsdP(τ (1) ≤ s),

FLt = m(1)

∫ t

0
e−rsP(τ (1) > s)ds.

Integration by parts for the expression of the default leg gives

DLt = (1−R)

[
e−rt(1− P(τ (1) > t))− (e−rt − 1)− r

∫ t

0
e−rsP(τ (1) > s)ds

]

so that the FtD spread at par is

(56) m(1) = (1−R)
1− e−rTP(τ (1) > T )− r

∫ T
0 e−rsP(τ (1) > s)ds∫ T

0 e−rsP(τ (1) > s)ds
.

In order to value this contract, one therefore only needs to know the joint survival prob-
ability P(τ1 > s, τ2 > t). We have already solved this problem explicitly in the previous
section.

In summary, we model the dynamics of the stock prices S1
t , S

2
t of firms 1 and 2 as expo-

nential Lévy according to

(57) ∀ ω ∈ Ω, t ∈ R+, Sjt (ω) = ert+Y
j
t (ω)+tψj (−i), j = 1, 2,

where the process Y = (Y 1, Y 2) is a two-dimensional Lévy process.
We denote by λ the (two-dimensional) Lévy measure of Y , which is determined uniquely

by the Lévy measures λ1, λ2 of Y
1 and Y 2, respectively, along with a Lévy copula ρ describing

the dependence between the jumps of Y 1 and Y 2 (and hence S1 and S2).
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In our structural model, the default times are the first time the stock returns cross the
default levels a1 and a2, respectively:

(58) τi = inf{t > 0 : log(Sit/S
i
t−) ≤ ai}, i = 1, 2.

With this set-up, Corollary 2.3 gives the survival probability of each firm up to time
0 < t < T ,

(59) P(τi > t) = e−tΛi(ai),

where Λi =
∫ ai
−∞ λi(dw) is the tail integral of the process Y i.

Furthermore, Corollary 4.3 gives us the first-to-default probabilities

(60) P(τ (1) > t) = exp−t{Λ1(a1) + Λ2(a2)− ρ(Λ̄1(a1), Λ̄2(a2))
}
,

where we recall that Λ̄i(ai) = −Λi(ai) since ai < 0.
This leads us to a simple explicit expression for the FtD spread:

(61) m(1) = (1−R)
[
Λ1(a1) + Λ2(a2)− ρ(Λ̄1(a1), Λ̄2(a2))

]
.

To see this, we use (56) to determine m(1), where the survival probability is given by (60).
For notational convenience, define

(62) Θ = Λ1(a1) + Λ2(a2)− ρ(Λ̄1(a1), Λ̄2(a2)).

From (60), we have

(63) P(τ (1) > t) = e−tΘ,

so we could call Θ the “intensity” of the first-to-default process, even though we have a
structural default framework. We have

(64) m(1) = (1−R)
[1− e−rT e−ΘT − r

∫ T
0 e−rse−Θsds]∫ T

0 e−rse−Θsds
.

These integrals are easily computed, and the expression simplifies to

(65) m(1) = (1 −R)Θ,

which is (61).
We can describe, via (61), two limiting cases of dependence. Since Lévy copulas are

bounded from above and from below [13], one can explicitly write an expression for m(1) when
S1 and S2 are

(I) Independent. The Lévy copula ρ is at its lower bound:

ρ(u, v) = u1[v=∞] + v1[u=∞].
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Then,

(66) m(1) = (1−R)
{
Λ1(a1) + Λ2(a2)− (Λ1(a1)1[Λ2(a2)=∞] + Λ2(a2)1[Λ1(a1)=∞])

}
,

and since a1, a2 < 0, this gives us

(67) m(1) = (1−R) {Λ1(a1) + Λ2(a2)} = m1 +m2.

In the equation above, m1 and m2 are the par spreads of CDS contracts on firm 1 and
firm 2, respectively. We therefore obtain that the price of the protection against the
first-to-default two-defaultable basket, when the two underlyings are independent, is
equal to the sum of the protections against each, respectively.

(II) Dependent. The Lévy copula ρ is at its upper bound

ρ(u, v) = min(u, v).

This yields the following expression for m(1):

(68) m(1) = (1−R)max(Λ1(a1),Λ2(a2)) = max(m1,m2).

Therefore, when the two underlyings are completely dependent, the price of the pro-
tection against the first to default in the basket is equal to the most expensive of the
two premia on each of the underlyings.

5.2. Choosing a dependence structure between stock prices. To illustrate the complete
computation of the FtD CDS spread, we now make some explicit choices for the model inputs.
We assume that λ1 and λ2 are the Lévy measures of two one-dimensional α-stable Lévy
processes:

(69) λi(dx) = αi

(
ci+

x1+αi
1x>0 +

ci−
| x |1+αi

1x<0

)
dx,

with 1 < αi < 2 and ci+, c
i− ≥ 0. The fact that αi ∈ (1, 2) places S1 and S2 in a regime

of infinite activity, i.e., that almost surely S1 and S2 have infinitely many jumps in compact
time intervals.

Since the measures λ1 and λ2 model the stock prices, these should be calibrated separately
either on historical log returns or option prices [8].

The tail integrals Λ1 and Λ2 of Y 1 and Y 2, respectively, are of the form

(70) ∀ x < 0, Λi(x) =

∫ x

−∞
λi(du) =

ci−
| x |αi

.

To model the jump dependence, we choose the Frank Lévy copula

(71) ρ(u, v) = −1

η
log

{
1− (1− e−η|u|)(1− e−η|v|)

}
.

The Frank Lévy copula is symmetric and parametrized by η > 0.
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We first illustrate the set-up of this framework in the case where the default levels a1, a2
are constant. In this case, we have seven parameters: our individual stock parameters αi, c

i−,
i = 1, 2, the jump dependence parameter η, and the constant default levels a1, a2. We might
expect the default levels to be estimated from single-name CDS prices, and the dependence
parameter from, for example, existing market basket CDS prices.

The FtD par spread now comes from (61):

(72) m(1) = (1 −R)Θ,

where the default intensity Θ is given by

(73) Θ = Λ1(a1) + Λ2(a2)− (1/η) log[1− (1− e−ηΛ1(a1))(1− e−ηΛ2(a2))],

and

(74) Λi(ai) =
ci−

| ai |αi
, i = 1, 2.

The joint survival probability of firms 1 and 2 until time T > 0 comes from (46). We show
this probability distribution in Figure 4 as a function of the default levels a1 and a2 for a fixed
maturity of T = 1 year and for various values of the dependence parameter η. Smaller values
of default levels lead to an immediate default, while higher values mean a lower probability
of default. The parameter η controls the shape of the joint distribution.

When jumps of S1 and S2 are nearly independent, η is near zero, and the first order
approximation of the intensity for small η gives us this simple linear formula for the dependence
of the spread on the jump dependence parameter:

(75) m(1) ≈ (1−R)[Λ1(a1) + Λ2(a2) + ηΛ1(a1)Λ2(a2)].

We conclude by computing the FtD spreads given in (56) for different maturities, when
the default level a(t) is a piecewise constant deterministic function. We assume that the
underlying stock process of each firm is an exponential α-stable process, with Lévy measure
given by (69). The tail integral corresponding to jumps in each component is therefore given
by (70). For this example, we choose the parameters α1 = α2 = 1.25 and c1− = c2− = 1/100.
The default level a(t) is given in Figure 5(a). The remaining parameter to choose is then
the dependence parameter η. We show in Figure 5(b) the term structure of FtD spreads for
three different values of η. By changing the value of this parameter, one can obtain the entire
spectrum of dependence regimes, from independence (see (66)) to the complete dependence
case (see (67)).

We note in closing that all these computations are straightforward and fast because we
need only implement explicit formulas for spread and survival probabilities in terms of our
explicit tail integrals.

6. Concluding remarks. The results above take advantage of recent advances in under-
standing the jump dependence of Lévy processes to formulate a multidimensional structural
default model framework that has explicit pricing formulas similar to those of familiar reduced
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(a) η = 0.01.
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(b) η = 1.
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(c) η = 5.

Figure 4. Joint default probability from (46) at the level a1, a2. The dependence is given by the Frank–
Lévy copula equation (71). Tail integrals are α-stable, given in (70). We choose α1 = 3/2, α2 = 7/4, and
c−1 = c−2 = 1/100. Small values of η correspond to the independent case. Larger values mean that a simultaneous
default is more likely.

form models. One way to think of this is that it is a way to interpret a reduced form model
in terms of the underlying price processes, which provides a way to link in a consistent way
the prices of various credit and option models with a common view of the underliers.

The results we have presented raise several additional questions. For the case N > 2, the
theory and formulas work out in the same way, except the notation becomes more burdensome.
However, since basket credit derivatives usually involve more than two underliers, a typical
application will require working things out for larger N . As a hint as to how the formulas look,
we mention here without proof the formula for the survival probability of the first-to-default
time for N = 3 and constant default levels a1, a2, a3.

As before, one needs to calibrate three Lévy measures λ1, λ2, and λ3 and choose a Lévy
copula L in order to construct the full three-dimensional tail integral Π. The two-dimensional
marginal tail integrals Πi,j, in dimensions i, j, are then obtained from Π, and we can write
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Figure 5. First-to-default spreads m
(1)
t in (56) (right) in the set-up of our structural jump threshold

framework with piecewise constant default levels (left). The dependence between firms is given by the Frank–Lévy
copula equation (71). Tail integrals are α-stable, given in (70). We choose α1 = α2 = 3/2 and c−1 = c−2 = 1/100.

A high value of the parameter η leads to a strong dependence, and the first-to-default spread m
(1)
t tends to

max(m1
t ,m

2
t ). When η is small, this is the independence case, m

(1)
t → m1

t +m2
t .

the survival probability of the first-to-default time as

P(τ (1) > t) = exp[−t{Λ1(a1) + Λ2(a2) + Λ3(a3)

−Π1,2(a1, a2)−Π1,3(a1, a3)−Π2,3(a2, a3) + Π(a1, a2, a3)}](76)

or

P(τ (1) > t) = exp{−t{1tΛ(1)1+Π(a1, a2, a3)}},(77)

where Λ(1) is the matrix

(78) Λ(1) =

⎡
⎣ Λ1(a1) −Π1,2(a1, a2) −Π1,3(a1, a3)

0 Λ2(a2) −Π2,3(a2, a3)
0 0 Λ3(a3)

⎤
⎦ ,

containing the contribution of each of the component to default risk.
We have deliberately avoided too much discussion of the stochastic default level, but there

are many interesting questions about how to compute prices conditional on partial information
about the default level, or when the default level is not independent of the stock price. (See
[10] for a discussion of partial information in the standard first-passage default model.) Also,
the question of how to model the default level at has been left mostly open in this paper. This
provides a significant source of extra flexibility. There are various interesting ways to think of
the process at as correlated to the stock price St to form a more delicate model. The problem
of developing pricing formulas in such cases is deferred to future work.
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7. Proofs.

7.1. Proof of Proposition 2.2. As a warm-up, consider the simple case of constant default
level a. From (1),

∀ ω ∈ Ω, t ≥ 0, log(St/St−) = Yt − Yt− = �Yt.(79)

The jump measure of Y is the tprm X on E = R \ {0} with intensity λ. The default time τ
is then

(80) τ = inf{t > 0 : �Yt ≤ a} = inf{t > 0 : Xt(−∞, a] > 0}.

The process N such that for t ∈ R+, Nt = Xt(−∞, a] is a homogeneous Poisson process of
intensity Λ(a). With these remarks, the probability of default is then

(81) P(τ ≤ t) = 1− P(Xt(−∞, a] = 0) = 1− e−tΛ(a).

This simple argument extends to the case of nonconstant deterministic default level at by
means of nonstationary Poisson processes.

Definition 7.1 (see [7]; nonstationary Poisson process). A nonstationary Poisson process M
with intensity (λ(t))t≥0, where λ is a measurable deterministic function of time, is a counting
process with independent increments such that for all 0 ≤ s ≤ t, the increment Mt −Ms has
a Poisson distribution with parameter

∫ t
s λudu.

Notation. I(z,A) denotes the indicator function with value 1 if z ∈ A and 0 otherwise.

Proposition 7.2. Let a : R+ → (−∞, 0) be a measurable deterministic function bounded
below zero, and X a tprm on E = R\{0} adapted to (Ft)t≥0 with intensity measure λ. Define
the process N such that

(82) ∀ ω ∈ Ω, t ≥ 0, Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds × dz).

Then N is a nonstationary Poisson process with intensity (Λ(at))t≥0.

Since a is bounded below zero, say, at ≤ −ε for some ε > 0, and λ is a Lévy measure,
λ(−∞, at] = Λ(at) is uniformly bounded in t by λ(−∞,−ε] <∞.

The mapping (s, z) → G(s, z) = I(z, (−∞, as]) from R+ × R → R+ is deterministic, and
as such F-predictable; hence N is adapted.

To see that N is almost surely right continuous, note first that Nt(ω) is monotone increas-
ing in t for each ω. Let tn be a sequence of times converging to t0 from above. Ntn is then
monotone decreasing, and so Ntn −Nt0 converges pointwise to a nonnegative random variable
L. Moreover,

Ntn −Nt0 =

∫
(t0,tn]×E

G(s, z)X(ω, ds × dz)

≤
∫
(t0,tn]×(−∞,−ε]

X(ω, ds × dz),
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and so E[Ntn −Nt0 ] ≤ (tn − t0)λ(−∞,−ε) converges to zero. By the dominated convergence
theorem, E[L] = 0, so L = 0 almost surely.

Since X is a Poisson random measure and G takes only values 0 or 1, N jumps by one
almost surely and has independent increments by the independence property of X. Hence N
is a counting process with independent increments.

It remains to show that the increment Nt − Nt′ is Poisson distributed with parameter∫ t
t′ Λ(as) ds; it suffices to compute the Laplace transform as

E e−β(Nt−Nt′) = exp

{
− (1− e−β)

∫ t

t′
Λ(as) ds

}
.

Since X is a Poisson random measure with intensity Leb× λ, where Leb is the Lebesgue
measure, for any measurable function f : [0,∞)×E → R+, we have the standard formula [7,
Thm. VI.2.9]

(83) E e−X[f ] = exp{−(Leb× λ)[1− e−f ]}.
Setting f(s, z) = β I(s, [t′, t]) I(z, (−∞, as]), we have

E e−β(Nt−Nt′) = E e−X[f ]

= exp{−(Leb× λ)[1 − e−βI(s,[t
′,t])I(z,(−∞,as])]}

= exp

{
−

∫ t

t′

∫ as

−∞
1− e−β dλds

}

= exp

{
− (1− e−β)

∫ t

t′
Λ(as) ds

}
.

Now our next step is to prove Corollary 2.3.
The default time τ is the time of the first jump of Y below the varying level at. Define

the process N such that

(84) ∀ ω ∈ Ω, t ≥ 0, Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds × dz).

N counts the number of jumps of Ys falling in (−∞, as] over the times s for s ∈ [0, t].
Proposition 7.2 shows that N is nonstationary Poisson with intensity (Λ(at))t≥0. Therefore,
the survival probability is

(85) P(τ > t) = P(Nt = 0) = exp

{
−

∫ t

0
Λ(as)ds

}
.

To compute the local default rate, note first that

P(τ ≤ t+ h | τ > t) =
P([Nt+h > 0] ∧ [Nt = 0])

P(Nt = 0)

=
P(Nt+h −Nt > 0)P(Nt = 0)

P(Nt = 0)

= P(Nt+h −Nt > 0) = 1− exp

{
−

∫ t+h

t
Λ(as) ds

}
.
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If we write F (s) = Λ(as) =
∫ as
−∞ λ(dw), then F is bounded and measurable, and hence

integrable on bounded intervals, so

P(τ ≤ t+ h | τ > t)

h
=

∫ t+h
t F (s) ds+ o(h)

h
,

and the right-hand side converges to F (t) = Λ(at) for almost every t by the Fundamental
Theorem of Calculus.

Additionally, if at is right continuous and λ has no atoms, then F (s) is right continuous
and the limit is equal to F (t) for all t.

To complete the proof for the case of stochastic default level, let Fa
t ⊂ Ft denote the

filtration generated by at. By the tower property of conditional expectation,

P(τ > t) = E[P(τ > t | Fa
t )].

Because of independence, conditioning on Fa does not affect the distribution of Y , so the
computations in the previous proof carry over for each fixed path of at. Therefore,

(86) P(τ > t) = E[P(Nt = 0 | Fa
t )] = E

[
exp

{
−

∫ t

0
Λ(as)ds

}]
.

The argument for the hazard rate is similar with conditioning on Fa
t+h, since F is uniformly

bounded, with the use of the dominated convergence theorem.

P(τ ≤ t+ h | τ > t) = E[1{τ≤t+h} | τ > t]

= E[E[1{τ≤t+h} | τ > t,Fa
t+h] | τ > t]

= E[P (Nt+h −Nt = 0 | Fa
t+h) | τ > t],

where

Nt(ω) =

∫
[0,t]×E

I(z, (−∞, as])X(ω, ds × dz)

is a Cox process with intensity Λ(at) (see [7, VI.6.2]), and conditional on at is a nonstationary
Poisson process. Therefore,

P(τ ≤ t+ h | τ > t) = E

[
1− exp

{
−

∫ t+h

t
Λ(as) ds

}
| τ > t

]
.

Dividing by h and taking the limit as h → 0, we can pass the limit through the expectation
since Λ(as) is uniformly bounded, and the same argument as before gives us

Ht = E[Λ(at) | τ > t]

for a.e. t.

It remains to show that E[Λ(at) | τ > t] = E[Λ(at)e
− ∫ t

0 Λ(as)ds]

E[e−
∫ t
0 Λ(as)ds]

.
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Following [3, Lemma 2.2.1, page 24] or [4, Sec. 4.1], let {Ht} be the smallest filtration that
makes τ a stopping time. It is observed that any integrable Ht measurable random variable
Y is of the form

(87) Y = h(τ ∧ t) = h(τ)1τ≤t + h(t)1τ>t

for some Borel function h.
Now let X = Λ(at), an integrable F-measurable random variable.
Since E[X | Ht] is Ht measurable, we have

(88) E[X | Ht] = h(τ)1τ≤t + h(t)1τ>t

for some Borel h. Multiplying both sides by 1τ>t and taking expectations gives

(89) E[1τ>tE[X | Ht]] = h(t)E[1τ>t] = h(t)P(τ > t).

Therefore,

(90) h(t) = E[X1τ>t]/P(τ > t).

So, from (88),

(91) E[X | τ > t] = h(t) = E[X1τ>t]/P(τ > t).

That is,

(92) Ht = E[Λ(at) | τ > t] = h(t) = E[Λ(at)1τ>t]/P(τ > t).

Furthermore, using the tower property and conditioning on the filtration (Fa
t )t≥0 generated

by the process {at}, we have

E[Λ(at)1τ>t] = E [E[Λ(at)1τ>t | Fa
t ]](93)

= E [Λ(at) E[1τ>t | Fa
t ]](94)

= E [Λ(at) P(τ > t | Fa
t ])](95)

= E [Λ(at) P(Nt = 0 | Fa
t ])](96)

= E

[
Λ(at)e

− ∫ t
0 Λ(as)ds

]
.(97)

Combining this with (86) yields

(98) Ht = E[Λ(at)1τ>t]/P(τ > t) =
E

[
Λ(at)e

− ∫ t
0
Λ(as)ds

]
E

[
e−

∫ t
0
Λ(as)ds

] .
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7.2. Theorem 3.7. The proof of Theorem 3.7 is separated into the following two propo-
sitions.

Proposition 7.3. Let (N,M) be a two-dimensional Poisson process with parameters λ, μ.
Then there exist ρ ≤ min(λ, μ) and three independent Poisson processes N⊥,M⊥, and L, with
respective parameters λ− ρ, μ− ρ, ρ, such that, for all t ≥ 0,

Nt = N⊥
t + Lt,

Mt =M⊥
t + Lt.

In particular, unless ρ = 0, then N = N⊥ is independent of M = M⊥, and jumps of L
correspond to simultaneous jumps of N and M .

Since N and M are Poisson, the jumps of the Lévy process (N,M) are limited to the
cases (ΔNt,ΔMt) = (1, 0), (0, 1), or (1, 1). By the Lévy–Itô decomposition [22], there is
a tprm X on E = [0,∞)2 \ {(0, 0)} with finite intensity π supported on the three points
(1, 0), (0, 1), (1, 1), and such that

(Nt,Mt) =

∫ t

0

∫
E
xX(ds × dx).

Recall our notation Xt(A) = X([0, t]×A). For convenience of notation, we temporarily write
A = {(1, 0)}, B = {(0, 1)}, C = {(1, 1)} in E.

The integral above can then be written

(99) (Nt,Mt) = (1, 0)Xt(A) + (0, 1)Xt(B) + (1, 1)Xt(C).

Since X is a Poisson random measure, N⊥
t = Xt(A), M

⊥
t = Xt(B), and Lt = Xt(C) are

Poisson processes with parameters π(A), π(B), and π(C), respectively, and are independent
because A,B,C are disjoint. Equation (99) says that

Nt = N⊥
t + Lt,

Mt =M⊥
t + Lt.

If we let ρ = π(C), this means the parameter of N⊥ must be λ− ρ, and the parameter of
M⊥ must be μ− ρ. This completes the proof.

Proposition 7.4. Let N⊥, M⊥, and L be three independent Poisson processes with param-
eters ν1, ν2, and ρ. If M and N are defined by

Nt = N⊥
t + Lt,

Mt =M⊥
t + Lt,(100)

then N and M are Poisson and the joint survival times of N and M are bivariate exponential
bE(ν1 + ρ, ν2 + ρ, ρ).

The sum of two independent F-Poisson processes is a Poisson process with respect to
(Ft)t≥0; see, for instance, [14]. Since N

⊥, M⊥, and L are independent, N and M are Poisson
processes by construction.
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For any u ≥ 0, we want to show that the joint survival times (τu, γu) have the bivariate
exponential distribution bE(ν1 + ρ, ν2 + ρ, ρ); in other words, for s, t ≥ 0,

(101) P(Ns+u −Nu = 0,Mt+u −Mu = 0) = e−ν1s−ν2t−ρmax(s,t).

The left-hand side of this equation is, by hypothesis,

(102) P(N⊥
s+u −N⊥

u = 0, Ls+u − Lu = 0,M⊥
t+u −M⊥

u = 0, Lt+u − Lu = 0).

Since N⊥, M⊥, and L are independent and have stationary and independent increments,
we obtain

P(N⊥
s+u −N⊥

u = 0, Ls+u − Lu = 0,M⊥
t+u −M⊥

u = 0, Lt+u − Lu = 0)

= P(N⊥
s+u −N⊥

u = 0)P(M⊥
t+u −M⊥

u = 0)P(Ls+u − Lu = 0, Lt+u − Lu = 0)

= P(N⊥
s = 0)P(M⊥

t = 0)P(Lmax(s,t)+u − Lu = 0)

= e−ν1se−ν2te−ρmax(s,t).

7.3. Proposition 3.8. Since (N,M) is a Lévy process, we have the usual decomposition
N = N⊥ + L, M = M⊥ + L, where N⊥, M⊥, L are independent Poisson with parameters
λ− ρ, μ− ρ, ρ.

Let u, v be possibly different times, and consider the distribution of the survival times
(τu, γv).

P (τu > s, γv > t) = P (Ns+u −Nu = 0,Mt+v −Mt = 0)

= P (N⊥
s+u −N⊥

u = 0, Ls+u − Lu = 0,M⊥
t+v −M⊥

v = 0, Lt+v − Lv = 0)

= P (N⊥
s+u −N⊥

u = 0)P (M⊥
t+v −M⊥

v = 0)P (Ls+u − Lu = 0, Lt+v − Lv = 0)

= e−(λ−ρ)se−(μ−ρ)tP (Ls+u − Lu = 0, Lt+v − Lv = 0).

We now claim P (Ls+u − Lu = 0, Lt+v − Lv = 0) = e−ρΘ(s,t,u−v). To see this, consider
the various cases in which [u, s + u] and [v, t + v] can overlap, and use the stationary and
independent increments properties of L.

7.4. Theorem 3.15. Part (i) is Proposition 3.10. For part (ii), denote by Nx and My

the tail processes of N and M at the level x and y, respectively, x, y ∈ R \ {0}. Nx and My

are Poisson processes with parameters Λ(x) and Γ(y), respectively. Since (N,M) is a two-
dimensional Lévy process, (Nx,My) is a two-dimensional Poisson process, and we proceed as
in the proof of Proposition 7.3.

By the Lévy–Itô decomposition, there is a tprm Xx,y on E = [0,∞)2 \{(0, 0)} with finite
intensity πx,y supported on the three points (1, 0), (0, 1), (1, 1), and such that

(Nx
t ,M

y
t ) =

∫ t

0

∫
E
zXx,y(ds × dz)

= (1, 0)Xx,y
t ({(1, 0)}) + (0, 1)Xx,y

t ({(0, 1)}) + (1, 1)Xx,y
t ({(1, 1)}).(103)

If we denote the three independent Poisson processes as N⊥
t = Xx,y

t ({(1, 0)}), M⊥
t =

Xx,y
t ({(0, 1)}), and Lt = Xx,y

t ({(1, 1)}), then the decomposition (103) satisfies the hypotheses
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of Proposition 7.4, and hence the joint survival times are bivariate exponential. Since the
parameters of Nx

t and My
t are Λ(x) and Γ(y), respectively, it remains only to determine the

parameter ρ(x, y) of L.
Recall that if P is any Poisson process, its parameter is given by E(P1). So

ρ(x, y) = E(L1) = EXx,y
1 ({1, 1)}).

The number of joint jumps of (Nx,My) corresponds to the number of jumps of (N,M) of
amplitude jointly larger than (x, y). Therefore,

(104) ρ(x, y) = E X1 (I(x)× I(y)) = Π(x, y)

and the proof of (ii) is complete.
Part (iii) follows from Theorem 3.7 and part (iv) from Theorem 3.14.

7.5. Proof of Proposition 4.1. As a warm-up, first consider the easiest case of constant
default levels a1, a2. With (39), an equivalent definition for the default times (41) is

(105) τi = inf{t > 0 : �Y i
t ∈ I(ai)}, i = 1, 2.

Clearly, τ1 and τ2 are the joint survival times of Y 1 and Y 2 at the level a1 and a2, respectively.
Since the process Y = (Y1, Y2) is a Lévy process, Proposition 3.10 shows that τ1 and τ2 satisfy
the two-dimensional memoryless property. Theorem 3.15 shows that τ1 and τ2 are exponential
random variables with parameters Λ(a1) and Γ(a2), and that there exists a parameter ρ ∈
[0,min(Λ(a1),Γ(a2))] such that

(106) ∀ s, t ≥ 0, P(τ1 > s, τ2 > t) = Cλ,μρ (e−Λ(a1)s, e−Γ(a2)t),

where Cλ,μρ is the three parameter Marshall–Olkin copula (Definition 3.3) with

(107) λ = Λ(a1) and μ = Γ(a2).

Furthermore, Theorem 3.15(iv) implies, since sgn(a1a2) = 1, that there exists a Lévy copula
ρ(·, ·) such that

(108) ρ = Π(a1, a2) = π(I(a1)× I(a2)) = ρ(Λ̄(a1), Γ̄(a2)).

The next step is to prove Corollary 4.2. The proof relies on a slight extension of Proposition
7.2 to sets of R2. For convenience of notation we write B(ε) for the disk of radius ε, i.e., for
ε > 0, B(ε) = {x ∈ R

2 : | x |≤ ε}, and denote B(ε)c its complement.

Definition 7.5. Let (E,B(E)) be a measurable space. We say that the function B : R+ →
B(E) is a measurable set function in E if the mapping I : R+ × E → R, defined by I(s, z) =
I(z,Bs), is measurable on R+ × E.

Proposition 7.6. Let E = R
2 \ {(0, 0)} with B(E) the Lebesgue measurable subsets of E.

Let B : R+ → B(E) be a measurable set function in E that is bounded away from 0, i.e.,
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∃ ε > 0, Bt ∈ B(ε)c ∀t ≥ 0. Let X be a tprm on E adapted to Ft with intensity π, where π
is a Lévy measure. Define the process N such that

(109) ∀ ω ∈ Ω, t ≥ 0, Nt(ω) =

∫
[0,t]×E

I(z,Bs)X(ω, ds × dz).

Then N is a nonstationary Poisson process with intensity (π(Bt))t≥0.

The mapping (s, z) → I(z,Bs) = 1 if z ∈ Bs, 0 otherwise, is deterministic and therefore F-
predictable, so N is adapted. Furthermore, N jumps by 1 almost surely and has independent
increments by construction from X.

Since Bt ⊂ Bc
ε for some ε > 0, and π is a Lévy measure, π(Bt) ≤ π(B(ε)c) < ∞. As

before, since Nt is increasing, given a sequence of times tn converging to t from above, the
random variables Ln = Ntn −Nt are monotone decreasing and bounded below by 0. Thus Ln
converges to a nonnegative random variable L. Furthermore,

Ln =

∫
(t,tn]×E

I(z,Bs)X(ω, ds × dz) ≤
∫
(t,tn]×E

I(z,B(ε)c)X(ω, ds × dz)

≤
∫
(t,tn]×B(ε)c

X(ω, ds × dz).

Therefore, E[Ln] ≤ (tn− t)π(B(ε)c) <∞ converges to 0. The dominated convergence theorem
implies that E[L] = 0, and hence L = 0 almost surely, so N is a right continuous process.

To show that N is a nonstationary Poisson process with intensity π(Bt), it remains to
show that, for 0 ≤ s ≤ t, the increments Nt − Ns of N have the Poisson distribution with
parameter

∫ t
s π(Bu)du. It is sufficient to compute its Laplace transform, 0 ≤ s ≤ t, β ≥ 0,

E exp−β(Nt −Ns) = exp

{
−(1− e−β)

∫ t

s
π(Bu)du

}
.(110)

The result above is obtained by letting f : [0,∞) × E → R+ be the function defined as
f(u, z) = βI(u, [s, t])I(z,Bu). Since f is measurable, we can use the formula (83)

(111) Ee−X[f ] = exp{−(Leb× π)[1− e−f ]}.
Equation (110) follows from the same computations as those for the proof of Proposition 7.2.

Lemma 7.7. Let Y be a two-dimensional Lévy process with Lévy measure π and tail inte-
grals Λ and Γ. Let a, b ∈ (−∞, 0), and define the set A = R

2 \ (a,∞) × (b,∞). Then there
exists a Lévy copula ρ(·, ·) such that

(112) π(A) = Λ(a) + Γ(b)− ρ(Λ̄(a), Γ̄(b)).

For convenience of notation we define the sets

B = (−∞, a)× R, C = (−∞, a)× (−∞, b), D = R× (−∞, b).

The set A can be decomposed in the following disjoint sets:

A = (B \ C) ∪ (D \ C) ∪ C.
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Considering the margins of π, we have π(B) = Λ(a) and π(D) = Γ(b), and since π is a
measure, this gives

π(A) = Λ(a) + Γ(b)− π((−∞, a)× (−∞, b)).

We conclude with an application of Theorem 3.14, which gives the existence of a Lévy copula
ρ such that

π((−∞, a) × (−∞, b)) = ρ(Λ̄(a), Γ̄(b)).

This concludes the proof of Lemma 7.7.
Continuing the proof of Corollary 4.2, define two Borel measurable functions A,B :

[0,∞) → B(E) by

At = R
2 \ ((a1t ,∞)× (a2t ,∞)), Bt = (−∞, a1t ]×R.

Since a1 and a2 are bounded below 0, there exists ε > 0 such that At, Bt ⊂ B(ε)c for all t ≥ 0.
Define the processes P and Q as

Pt =

∫
[0,t]×E

I(z,As)X(ω, ds × dz), Qt =

∫
[0,t]×E

I(z,Bs)X(ω, ds × dz).

By Proposition 7.6, P and Q are nonstationary Poisson processes with intensity π(At) and
π(Bt), respectively. P counts the number of jumps of Y = (Y 1, Y 2) falling into At, and Q
counts the number of jumps of Y falling into Bt.

Without loss of generality, assume 0 ≤ t ≤ s. We have

[τ1 > s, τ2 > t] = [�Y 1
u �∈ (−∞, a1u] : u ≤ s,�Y 2

u �∈ (−∞, a2u] : u ≤ t]

= [(�Y 1
u ,�Y 2

u ) �∈ Au : u ≤ t, (�Y 1
u ,�Y 2

u ) �∈ Bu : t < u ≤ s]

= [Pt − P0 = 0, Qs −Qt = 0].

Furthermore, the increments Pt − P0 = 0 and Qs −Qt are independent by construction since
X is a tprm and the intervals [0, t] and [t, s] are disjoint. Then

P(τ1 > s, τ2 > t) = P(Pt − P0 = 0, Qs −Qt = 0)

= P(Pt − P0 = 0)P(Qs −Qt = 0)

= exp−
{∫ t

0
π(Au)du+

∫ s

t
π(Bu)du

}
.

Using Lemma 7.7,
π(Au) = Λ(a1u) + Γ(a2u)− ρ(Λ̄(a1u), Γ̄(a

2
u)),

and π(Bu) = λ(−∞, a1u] = Λ(a1u). Therefore,

P(τ1 > s, τ2 > t) = exp−
{∫ t

0
Λ(a1u) + Γ(a2u)− ρ(Λ̄(a1u), Γ̄(a

2
u))du +

∫ s

t
Λ(a1u)du

}

= exp−
{∫ s

0
Λ(a1u) +

∫ t

0
Γ(a2u)−

∫ t

0
ρ(Λ̄(a1u), Γ̄(a

2
u))du

}
.
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The case where 0 ≤ s < t is symmetric and gives

P(τ1 > s, τ2 > t) = exp−
{∫ s

0
Λ(a1u) +

∫ t

0
Γ(a2u)−

∫ s

0
ρ(Λ̄(a1u), Γ̄(a

2
u))du

}
.

The extension of Corollary 4.2 proceeds as in the one-dimensional case. Because of the
independence assumption, conditioning on (a1, a2) does not affect the distribution of Y , so
the arguments carry over via the tower property for each fixed path of the default levels.

7.6. Proposition 4.4. The proof is based on the little-o property for stationary processes.
Define three disjoint regions B1, B2, B12 ⊂ R

2 of the plane as

(113) B1 = (−∞, a1]× (a2, 0), B2 = (a1, 0)× (−∞, a2], B1,2 = (−∞, a1]× (−∞, a2].

Define the disjoint sets

E1 = (t, t+ h]×B1,

E2 = (t, t+ h]×B2,

E3 = (t, t+ h]×B1,2,

E4 = [0, t]× (B1 ∪B2 ∪B1,2).

Then we have the following four independent events:

Fi = [X(Ei) > 0], i = 1, 2, 3, and F4 = [X(E4) = 0].

From our definitions, F1 is the event that there exists s ∈ (t, t+h] such that (�Y 1
s ,�Y 2

s ) ∈
B1, F2 is the event that there exists u ∈ (t, t+h] such that (�Y 1

u ,�Y 2
u ) ∈ B2, F3 is the event

that there exists w ∈ (t, t + h] such that (�Y 1
w ,�Y 2

w) ∈ B1,2, and F4 is the event that there
are no jumps in B1,2 up to time t.

With this notation, the event that neither firm defaults by time t is

[τ1 ∧ τ2 > t] = F4,

and the event that both firms default between times t and t+ h is

[τ1 ∨ τ2 ≤ t+ h, τ1 ∧ τ2 > t] = ((F1 ∩ F2) ∪ F3) ∩ F4.

We can then compute the conditional probability in the statement of the proposition:

P(τ1 ∨ τ2 ≤ t+ h | τ1 ∧ τ2 > t) =
P(((F1 ∩ F2) ∪ F3) ∩ F4)

P(F4)
= P(((F1 ∩ F2) ∪ F3))

= P(X((t, t+ h]×B1) > 0)P(X((t, t + h]×B2) > 0) + P(X((t, t + h]×B1,2 > 0)

= P(X((t, t+ h]×B1) = 1)P(X((t, t + h]×B2) = 1) + P(X((t, t + h]×B1,2 = 1) + o(h)

= π(B1)π(B2)h
2e−h(π(B1)+π(B2)) + π(B1,2)he

−hπ(B1,2) + o(h).

Finally,

(114) lim
h↓0

P(τ1 ∨ τ2 ≤ t+ h | τ1 ∧ τ2 > t)

h
= π(B1,2) = Π(a1, a2),

and we conclude with (108).
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