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Abstract We examine market dynamics in a discrete-time, Lucas-style asset-pricing model with
heterogeneous, utility-optimizing agents. Finitely many agents trade a single asset paying a stochastic
dividend. All agents know the probability distribution of the dividend but not the private informa-
tion such as wealth and asset holdings of other agents. The market clearing price is determined
endogenously in each period such that supply always equals demand.

Our aim is to determine whether and how the pricing function evolves toward equilibrium. In
the special case where all agents have logarithmic utility, but possibly different holdings and discount
factors, we completely describe the market dynamics, including the evolution of the pricing and de-
mand functions, and asset holdings of the agents. The market converges to a stable equilibrium state
where only the most patient agents remain, and the equilibrium pricing function is the same as the
one arising in the simple homogeneous setting.

1 Introduction

In a general equilibrium asset pricing model, the existence of a rational expectations equilibrium
(REE) implies that each trader solves a utility-optimization problem that incorporates all current
information about the market. In particular, traders implicitly must: (i) have full knowledge of the
problem including knowing the preferences and holdings of all the other agents, (ii) be able to deduce
their optimal behavior no matter how complex, and (iii) share common expectations including that
all the other agents are themselves rational and know all these things. In a sense, these agents must be
“super-rational”: they are “experienced masters” in a stable world where the past is a good indicator
of the future, and full rationality of all agents is common knowledge [1, ch. 1].

Access to full information has the advantage of making the REE, in many cases, unique and
computationally feasible [2]. However, real traders seldom know this much, because real markets are
always changing unpredictably. Since super-rational agents cannot evolve, we also cannot use the
REE concept to study market states away from equilibrium, or the dynamics of convergence toward
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equilibrium. Important prior work on REE-style equilibrium models, including [3, 4, 5], has naturally
focused solely on the equilibrium states themselves and do not illuminate the nearby disequilibrium
states and their evolution, which are typical initial states for boundedly-rational agents.

The agent-based computational economic (ACE) modeling literature, where agents follow formal,
often myopic, rules, which can evolve by natural selection takes a more general, econophysical view of
market dynamics [6, 7, 8]. This literature examines the resulting emergent properties of the market,
including the dynamics of prices and holdings as the market evolves and agents with poor rules die
and those with good rules prosper. These systems are typically studied by simulation. An excellent
and recent review of this literature is provided in [9].

In this paper we study a discrete-time, general equilibrium Lucas tree economy with one asset and
N > 1 infinitely lived agents who act to optimize an infinite-horizon utility. The asset (stock) is in
fixed supply and pays a random dividend in each period. The asset price is determined endogenously
in each period such that total (price-dependent) demand is equal to total supply. The dividend is
assumed to follow a Markov process whose distribution is known to the agents, but we need make no
further assumptions about it – it’s distribution may be discrete or continuous.

Each agent’s income (available for consumption or investment) in each period is just the stock
dividend multiplied by the number of shares held that period. In this sense we have a pure Lucas-style
economy with no exogenous income stream. The stock price, and therefore wealth of agents, is an
“emergent” property coming from the joint behavior of all the agents.

Agents determine how much to consume and how much to invest in the stock each period by op-
timizing a time-separable constant relative risk aversion (CRRA) utility function. As in the standard
Lucas model, at any time, agent i, 1 ≤ i ≤ N , holds a certain number of shares of stock si ≥ 0, which
can vary over time if the agent trades. (Short positions are not allowed.) Agents also have discount
factors βi and risk-aversion parameter γi. All of which are allowed to vary across the population of
agents.

Our agents are “boundedly rational” in the specific sense that they do not know the holdings or
parameters of the other agents. Therefore they cannot incorporate that information into the solution
of their personal optimization problems. As we will see, this allows us to model the economy both at
and away from equilibrium.

To compute their optimal asset demand and consumption functions each agent must solve an
expectation involving future market-clearing prices. Tomorrow’s market clearing price P ′ depends on
tomorrow’s unknown dividend D′ (the only source of randomness in our model). While agents know
the probability distribution of D′, they do not know how the market clearing price P (D′) depends
on D′ since this depends in part on the behavior of other agents.

Therefore, solving for the demand equations requires agents, individually, to hypothesize “best
guess” market-clearing pricing functions pi(D

′). This allows them to compute optimal demands,
conditional on pi(·), and to trade if indicated. The market will actually clear today at a price Pm(D),
such that supply equals demand. (Here we make explicit the dependence of Pm(·) on the dividend D,
but in general, in disequilibrium, this function also depends on all the agents’ holdings, parameters,
and pricing functions pi [2].)

Using the terminology from [1], we will say that the market is at a “correct expectations equilib-
rium” (CEE), if all agents are using the same pricing function Pm(·) to solve for optimal demand, and
this pricing function is correct in the sense that the actual resulting market clearing price is Pm(D)
in every period. This framework has the advantage that agent behavior is well-defined whether or
not the market is at equilibrium.

We may now ask whether CEE exist in our framework and, if so, whether they are unique and how
we can characterize market dynamics. Specifically, how do the asset holdings and market clearing
pricing function Pm evolve over time, both at and away from equilibrium?

In general, we do not expect to find closed formulas describing the dynamics of such markets and
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so would investigate these questions via numerical simulation, as is common in the ACE literature.
However, we can give rigorous and complete answers to these questions in the special (but reasonable)
case where all agents have log utility (γi = 1).

In summary, we will find that there is a unique CEE pricing function given by

P ∗(D) =
β

1− β
D, (1)

where β is the discount factor of the most patient agent. CEE stock holdings are zero for agents
with discount factor less than β, and can be distributed arbitrarily among agents with discount factor
equal to β. This result is consistent with the long-known principle (e.g. [3]) for REE equilibria that
the most patient agent eventually holds all the wealth. Our work confirms this principle in the CEE
boundedly rational context typical of ACE and furthermore we provide a formal proof of convergence
to the familiar pricing function well-known in the homogeneous case.

Finally, we formally prove that asset holdings and market pricing functions evolve according
to explicit formulas given below (equations (11), (12)). The market dynamics do not depend on
the individual pricing functions pi, on the learning mechanism used, if any, or on the probability
distribution of dividends. Each CEE is a fixed point of the dynamics. From any disequilibrium initial
condition, markets will converge deterministically and exponentially fast to a CEE given by equations
(1) and (15). Therefore we are able to use methods of deterministic dynamics to analyze the evolution
in this paper, rather than the statistical methods used in many ACE models with stochastic inputs.

Since [3] there has been a renewed interest in the role of heterogeneous discount rates in deter-
mining market dynamics. In his 2011 Presidential address to the American Finance Association,
Cochrane [10] emphasizes the importance of discount rates in discussing many of the “puzzles” in
asset pricing. The role of discount rate heterogeneity in explaining wealth inequality is discussed by
[11], [12, 13] focus specifically on heterogeneity of time preferences and asset prices, and [14] con-
siders the effects of heterogeneous patience on the terms structure of interest rates. An interesting
example of how heterogeneous rates of time preference can help describe personal behaviors such as
the decision to smoke is given in [15]. Our work contributes to this literature by adding a formal
mathematical analysis of the dynamical behavior of asset markets in a general equilibrium model
with heterogeneous agents.

2 Model framework

Consider the standard Lucas asset pricing model [16, 17] with N possibly heterogeneous agents
and a single risky asset with period t market clearing spot price denoted Pt. The number of shares
of the asset is normalized to be N and the asset pays a random dividend Dt per share, described by
some Markov process and so determined solely by the observed state of the world at the beginning of
each period t. All agents are assumed to know the distribution of dividend payments across states,
which can be arbitrary, discrete or continuous, stationary or not.

There is no production in this economy so in time period t agent i will choose optimal consumption
ci,t ≥ 0 and investment in the asset si,t+1 ≥ 0 based upon the agent’s preferences and period budget
constraint

ci,t + Pt si,t+1 ≤ wi,t = (Pt +Dt) si,t, for all t, (2)

where wi,t is the agent’s period t wealth.
The order of events is as follows. Agent i begins period t knowing her asset holdings si,t. Next,

today’s stock dividend Dt is announced to all agents. At this point the agent does not yet know
her current wealth because the market price Pt has yet to be determined through market clearing.
Each agent must first compute her optimal demand as a function of price, si(P ), representing the
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optimal number of shares demanded at any given price P . These demand functions then collectively
determine the unique price Pt that clears the market according to

N∑
i=1

si(Pt) = N. (3)

The actual mechanism of market clearing is not important; we can imagine that there is some market
maker who collects the demand functions from each agent and publicly declares the market price
satisfying (3). (This price will be unique if, for example, demands are all monotone in P .) This
declared market price is the only source of information about the other agents.

Each agent is assumed to be an expected utility maximizer with constant relative risk aversion
preferences and risk aversion γi > 0. The one-period utility of consumption is

ui(c) =
c1−γi − 1

1− γi
, γi 6= 1,

or
ui(c) = log c, γi = 1,

and consumption and investment polices must be found that optimize the time-separable expected
utility

max
{ci,τ , si,τ+1}∞τ=t

Et

∞∑
τ=t

βτ−ti ui(ci,τ ) (4)

subject to the budget constraint (2). The agents’ discount factors, βi ∈ (0, 1), may differ and the
expectation in (4) is over the distribution of dividends and is conditional upon the information
available to the agent at the beginning of period t.

Denote by st ∈ RN the vector of all agents’ time-t asset holdings. We explicitly include the
time subscript to emphasize that these holdings may change over time. We describe two different
equilibrium concepts which we label REE and CEE.

Definition 1 A rational expectations equilibrium (REE) for this economy consists of an aggregate
pricing function P ∗(Dt, st) for the risky asset and a set of agent consumption demand functions
ci,t = ci(Dt, st) and asset demand functions si,t+1 = si(Dt, st) such that, for all future times t,
the asset market clears at Pt = P ∗(Dt, st), the budget constraint is satisfied for each agent, and
the demand functions solve the agents’ optimization problems (incorporating full knowledge of the
market).

Our boundedly rational agents, however, do not know st, and must optimize based upon more
limited knowledge. Therefore we use instead the notion of a CEE:

Definition 2 A correct expectations equilibrium (CEE) for this economy consists of an aggregate
pricing function P ∗(Dt) for the risky asset and a set of agent consumption demand functions ci,t =
ci(Dt, si,t) and asset demand functions si,t+1 = si(Dt, si,t) such that, for all future times t, the asset
market clears at Pt = P ∗(Dt), the budget constraint is satisfied for each agent, and the demand
functions solve the agents’ optimization problems (incorporating available knowledge).

To clarify the difference between “available knowledge” and “full knowledge”, we need to look at
the optimization problem more carefully.
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Solving the Bellman equation from the usual recursive dynamic programing approach leads to
the following standard Euler equation as viewed from time t, which must be satisfied by the optimal
consumption demand function ci,t+1:

Pt = Et

[
βi

(
ci,t+1

ci,t

)−γi
(Pt+1 +Dt+1)

]
. (5)

Using the budget constraint (2) to eliminate c, and using the notation s′i,t = si,t+1 = si(Dt, si,t), and
s′′i,t = si(Dt+1, si,t+1) = si(Dt+1, si(Dt, si,t)), we may rewrite (5) as

Pt = βEt

[(
si,t(Pt +Dt)− s′i,tPt

s′i,t(Pt+1 +Dt+1)− s′′i,tPt+1

)γi
(Pt+1 +Dt+1)

]
. (6)

Each agent, at equilibrium, must solve for the asset demand function si(D, s) that satisfies this
optimality condition.

Now our boundedly rational agents will have a problem computing the conditional expectation in
the Euler equation because they need to know the equilibrium pricing function P ∗ in order to know
the probability distribution of tomorrow’s prices which depends on the holdings and preferences of
the other agents. Worse, it depends on knowing that the other agents also know the equilibrium
pricing function, which will not be true in disequilibrium.

For illustration, consider a simple case where agents are super-rational and the REE is computable.
Suppose all agents are identical with log utility (βi = β, γi = 1, si,t = 1, for all i and t) and all agents
are aware of this. Knowing they are identical, agents can deduce that there will never be any trading
and so the budget constraint will thus imply that ci,t = Dt and si,t+1 = si,t = 1 for each agent. The
Euler equation (5) simplifies to

Pt = Et

[
βi

(
Dt

Dt+1

)
(Pt+1 +Dt+1)

]
(7)

which is now easy to solve. The REE aggregate pricing function satisfying this equation is

P ∗(Dt) =
β

1− β
Dt.

and holdings s = (s1, . . . , sN) remain fixed over time.
Note that the demand function s′ has vanished from the Euler equation, since demand s′ is fixed at

s. Furthermore, agents know a priori that the market is in equilibrium so the REE pricing function,
and hence the market clearing price, is known by all agents as soon as the dividend is announced so
there is no need to compute demand functions for a range of prices. This is a significant simplification
of the problem, but its operational validity is questionable: only if the agents know that all other
traders are identical to themselves can they justify setting ci,t = Dt in their Euler equation [18].

In our boundedly rational world, agents do not know holdings or preferences of the other agents,
nor what pricing functions the other agents are using. Therefore they cannot know whether the market
is at equilibrium. They can only know whether their own pricing function is correctly predicting
market clearing prices.

Our way forward is to allow agents to use private estimates pi(Dt+1) of the period t+ 1 aggregate
pricing function in their Euler equations (5). We assume that these functions depend upon D alone.
Although agents are aware that there are unobserved variables st and functions {pj}j 6=i influencing
market prices away from equilibrium, we can imagine they implicitly operate under the hypothesis
that the market will converge to a CEE, so that the dependence on these variables will vanish with
time. Thus, it is pragmatic for the agents to use pi(Dt+1) in the Euler equation.
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At a CEE, the demand functions si depend only on current holdings si,t and the current dividend
Dt, because the asset price Pt is implicitly determined by Dt. Away from equilibrium this is no
longer the case. In order for a market clearing price to be determined according to equation (3), each
agent’s demand function must include price Pt as an explicit independent variable. In other words,
agents must determine how much to demand at any potential price. These demand equations will
then determine the current period’s market clearing price, and, in turn, each agent’s actual realized
investment.

This framework now provides agents with enough information to derive optimal consumption
and asset demand functions ci,t = ci(Dt, si,t, P | pi) and si,t+1 = si(si,t, Dt, P | pi), where we indicate
explicitly the dependence on the choice of pricing function pi, which is allowed to change over time,
e.g. via some learning mechanism.

Now we can make precise the spaces and dynamics we are studying.

• Let D be the set of possible dividends and P the set of possible asset prices; in this case both
can be taken to be the set R+ of nonnegative real numbers.

• P will denote the set of all possible pricing functions p : D → P. This can be thought of as a
space of random processes depending on the underlying dividend process Dt.

• S ⊂ RN is the set of all possible holdings vectors s = (s1, . . . , sN)

• A = PN is the set of possible vectors of agents’ individual pricing functions (p1, . . . , pN).

The market clearing function M : S × A → P , given the agents’ holdings and pricing functions,
returns the resulting market clearing pricing function implied via (3) by the resulting agents’ optimal
demand functions.

The market dynamical state space is

X = {(s, p, a) ∈ S × P ×A : M(s, a) = p}.

An element of X specifies asset holdings s, individual pricing functions a, and the resulting market
pricing function p. (Note we suppress the space D, since the underlying dividend process is exogenous;
effectively we are studying the dynamics of random processes measurable with respect to the filtration
generated by {Dt}.)

The market dynamical system is the mapping f : X → X corresponding to updating the state
variables by one time step. The holdings vector s will change due to trading and the vector a of agent
pricing functions will change due to the particular learning mechanism chosen, if any. The passage
of time is tracked by the trajectory of an f -orbit {fn(x) : n = 0, 1, 2, 3, . . . } of an initial state x ∈ X,
where fn denotes the n-fold composition of f with itself.

In this framework, a CEE corresponds to a state (s, p∗, a) where a = (p∗, p∗, . . . , p∗) and f(s, p∗, a) =
(s′, p∗, a) for some s′. If there is no trading, then (s, p, a) will be a fixed point of f .1

We will now focus on a special case where it is possible to derive tractable analytical results.

3 The log utility case

Suppose all N > 1 agents have CRRA utility with a common risk aversion, γi = γ > 0 for all i,
but possibly differing discount factors βi and initial holdings si,0.

1If there is perpetual trading at equilibrium, none of these points will be fixed, but we could view a CEE as the
smallest f -invariant set containing such a point.

6



We assume the aggregate supply of stock is N shares, and that agents have limited information
in the sense that they may not make any assumptions about the preferences or holdings of the other
agents when solving for their optimal consumption in each time period. Agents are presumed to have
private estimates pi(·) of the pricing function, but we impose no assumptions yet on what these are
or how they evolve.

Using the budget constraint to substitute for c, the ith agent’s Euler equation (5) is given by the
following equation, where for convenience we use the notation D = Dt and D′ = Dt+1:

P

(si,t (P +D)− P si(D, si,t, P ))γi

= βiEt

[(
pi(D

′) +D′
)
/
(
si(D, si,t, P )

(
pi(D

′) +D′
)
− pi(D′) si (D′, si(D, si,t, P ), pi(D

′))
)γi]

. (8)

Here, P represents any current market price, si,t is the time-t number of shares of stock of agent i, pi
is the ith agent’s current pricing function, and si(D, s, P ) is the ith agent’s optimal demand function,
which is the unknown here. The agent’s optimization problem is to find a function si satisfying (8)
for all possible values of P ; the actual market price will be determined after all agents have done this.

Notice that the unknown demand function si appears in (8) in a highly nonlinear way. Nonetheless,
agents must solve this equation for si in order to be able to participate in the implicit price-calling
auction used to arrive at the market clearing price. (Though this poses a computational problem in
simulations, we assume our agents can solve this mathematical problem at no cost.)

In the log-utility case (γi = 1), it is easy to verify that (8) has the simple explicit solution

si(D, s, P ) = βi
(
1 + (D/P )

)
s. (9)

Unlike the general case γi 6= 1, this solution has the special property that it does not depend upon
the agent’s pricing function pi. This is a very important feature of log utility and is what makes this
special case analytically tractable.

Because the pricing functions pi do not influence agent behavior, the specific learning mechanism
used by the agent to update her pricing function guess is rendered irrelevant, and the dynamical
system f projects down to a mapping

g : Y → Y

on the reduced dynamical state space

Y = {(s, p) ∈ S × P : (s, p, a) ∈ X for some a ∈ A},

consisting of just asset holdings and market clearing price functions.
The market clearing price, which we now denote Pm = Pm(Dt), is determined from the market

clearing condition
N∑
i=1

si(si,t, Dt, Pm) = N. (10)

Substituting the demand function (9) for si and solving for the market clearing price, gives

Pm =

∑N
1 βj sj

N −
∑N

1 βj sj
D. (11)

Substituting (11) into the demand function (9) gives the agent’s next period holdings at market
clearing prices as

si,t+1 = si(si,t, D, Pm) = βi

(
N∑N

1 βj sj,t

)
si,t. (12)
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The evolution of holdings has now become a deterministic dynamical system h : S → S given by
h = (h1, . . . , hN) where

hi(s1,t, . . . , sN,t) = βi

(
N∑N

1 βj sj,t

)
si,t. (13)

At any time, the market pricing function Pm is determined by the asset holdings according to (11),
so the market dynamical system is completely described by h. We now need only determine the
behavior of h-orbits on S in order to completely understand the time evolution of our market.

The following theorem establishes that this dynamical system converges and reports the limiting
asset holdings and pricing function.

Theorem 1 Consider a pure exchange economy of N infinitely-lived agents and N shares of a single
risky asset paying stochastic dividend D at the beginning of each period. Each agent maximizes her
discounted, expected life-time utility subject to the period budget constraint ci +P s′i ≤ (P +D) si. All
agents have log utility and have discount factors βi and initial asset holdings s◦i , where

∑N
i=1 s

◦
i = N .

Agents know the probability distribution of dividends but not the asset holdings, discount factors, or
utility functions of other agents.

For convenience, order the agents by decreasing discount factor and let k be the number of agents
who share the maximum discount factor β, so that

1 > β = β1 = · · · = βk > βk+1 ≥ · · · ≥ βN > 0.

Then the dynamic behavior of holdings and market clearing prices is given by the deterministic
equations (11) and (12). This system converges exponentially fast to

P ∗(D) =
β

1− β
D (14)

and

s∗i =
Ns◦i

s◦1 + · · ·+ s◦k
, i ≤ k, (15a)

= 0, i > k. (15b)

The theorem states that the asset holdings of all agents with less than the maximum subjective
discount factor converge to zero at an exponential rate. The asset holdings of the remaining most
patient agents, with the highest discount factor, converge to a limit proportional to the initial holdings
of this subset of agents. The patience of these agents is eventually rewarded by accumulating all of
the wealth in the economy while the impatient agents are driven out of the market as their wealth is
asymptotically driven to zero. Furthermore, the economy eventually collapses to a set of agents with
differing holdings but a common discount factor. The market clearing price globally converges to the
pricing function obtained in the classical and more restricted case of homogeneous, super-rational
agents.

In the special case where agents (unknowingly) have identical discount factors but possibly dif-
ferent initial holdings, there is never any trading and the market clears immediately in the first time
step at the familiar rational expectations equilibrium price

Pm =
β

1− β
D. (16)
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3.1 Proof of Theorem 1

Proof: It is easy to verify algebraically that the demand function (9) solves the Euler equation (8),
and therefore (11) and (12) describe the market clearing price and new stock holdings in each time
step.

Also, it is easy to see that the market clearing price Pm is given by the P ∗ in (14) if the stock
holdings are such that the only non-zero holdings are for agents with βi = β. Therefore it remains to
prove that holdings globally converge to the values described by (15).

It is convenient to rewrite the dynamical system (13) in terms of the relative holdings xi = si/N :

x′i =
βixi∑N
1 βjxj

. (17)

Here xj ∈ [0, 1] for all j and
∑

j xj = 1, so the state (x1, . . . , xN) lies on the (N − 1)-dimensional unit
simplex

∆N = {(x1, . . . , xN) ≥ 0 :
∑
i

xi = 1} (18)

in the positive orthant of RN . Since
∑

j x
′
j = 1, we can describe the dynamics as an iteration of the

mapping T : ∆N → ∆N where the ith coordinate of T (x) is defined to be x′i given by (17).
If Γ ⊂ ∆N denotes the k-dimensional simplicial face

Γ = {(x1, . . . , xk, 0, . . . , 0) :
k∑
j=1

xj = 1}, (19)

then it is easy to see that every point of Γ is fixed by T . From (17), if xj 6= 0 and βi = βj, then
T (xi)/T (xj) = xi/xj. Hence T always preserves the relative sizes of the coordinates x1, . . . , xk.
Therefore the limiting holdings must be given by (15) if we can show that every forward T -orbit
{T n(x)} converges to Γ.

Define πΓ : ∆N → Γ to be the projection fixing the first k coordinates and setting the remaining
N − k coordinates to zero. Let ∆N+ = {x ∈ ∆N : πΓ(x) 6= 0}.

Lemma 2 Define F : ∆N → R by F (x) =
∑

i βixi, where β = β1 and the βi are ordered as in
Theorem 1. Then for any x ∈ ∆N+, F (T n(x)) increases monotonically with limit β as n→∞.

Proof: Let Υ denote the (N − k)-dimensional sub-simplicial face

Υ = {(0, . . . , 0, xk+1, . . . , xN) :
N∑

j=k+1

xj = 1}, (20)

and πΥ : ∆N → Υ the projection fixing the last N − k coordinates and setting the first k to zero.
F (x) is is simply a weighted average of the β’s, weighted by the x’s.
Using the definition of T , we have, for any x,

F (T (x)) =

∑
i β

2
i xi

F (x)
(21)

and so F (x)F (T (x)) =
∑

i β
2
i xi. Also, F 2(x) = (

∑
i βixi)

2.
Now F (T (x)) ≥ F (x) follows from Jensen’s inequality

φ(
∑
i

βi xi) ≤
∑
i

φ(βi)xi (22)
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for the convex function φ(x) = x2. The inequality is strict if both πΓ(x) and πΥ(x) are nonzero.
Fix x ∈ ∆N+. If πΥ(x) = 0 then x ∈ Γ, T (x) = x, and F (x) = β, so there is nothing further

to prove. Hence suppose πΥ(x) is nonzero. This means πΓ(T (x)) and πΥ(T (x)) are also nonzero, so
F (T n(x)) is a strictly monotone sequence bounded by β. It must therefore converge to it’s supremum,
call it β∗.

Suppose β∗ < β. By compactness of ∆N , the sequence {T n(x)} has a convergent subsequence
yk = T nk(x) → x∗ ∈ ∆N , and by continuity of F , F (x∗) = β∗. By the definition of T , (T n(x))i is
monotone increasing for i = 1, . . . , k. Therefore x∗ ∈ ∆N+. Since F (x∗) < β, πΥ(x∗) 6= 0, and so

F (T (x∗)) > F (x∗) = β∗. (23)

However, we also have F (T (yk)) ≤ β∗, and since yk → x∗ this contradicts the continuity of F and T .
Therefore we must have β∗ = β. This completes the proof of the lemma.

�
From the lemma above, the limit of F (T n(x)) is β for all x ∈ ∆N+. Since F is continuous and

F−1(β) = Γ, every forward T -orbit starting in ∆N+ must converge to Γ. From equation (12), we see
that if holdings are close to zero for agents j = k + 1, . . . , N , then we have, approximately,

s′j =
βj
β1

sj, (24)

which gives us, asymptotically, an exponential rate of convergence to zero all j > k. This completes
the proof of Theorem 1.

�

3.2 An Illustration with Two Agents

For the special case of two agents with different discount factors β1 > β2 it is possible to describe
the market dynamics with a simple diagram. The asset demand functions are

si(s1,t, s2,t) = βi
2si,t

β1s1,t + β2s2,t

, i = 1, 2. (25)

Using the market clearing constraint s1,t + s2,t = 2 gives

s1(s1,t) =
β1s1,t

β2 + (β1 − β2)(s1,t/2)
(26a)

and

s2(s2,t) =
β2s2,t

β1 + (β2 − β1)(s2,t/2)
. (26b)

These two functions are plotted in Figure 1 for the discount factors β1 = 0.95 and β2 = 0.7. A
discount factor of β implies that an agent could only be induced to save rather than consume if the
return on savings were at least 1−β

β
. Thus, a β = 0.95 implies a very patient agent who would accept

a return of 5.26% on savings to forgo consumption whereas an agent with β = 0.7 would be very
impatient and could not be induced to save unless returns were about 43%. Of course, we are not
interested in calibrating our simple model to actual investors and we select these discount factors
merely as illustrations for a numerical example. Theorem 1 proves that our example holds for any
β1 > β2 no matter how close the values are although the effect is easier to illustrate for fairly small
β2.
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Iteration of the upper function for agent 1, the most patient agent with the higher discount factor,
is illustrated with the arrows showing that asset holdings will converge to s = 2. Similarly, the asset
holdings of the less patient agent 2 will decrease monotonically to zero along the lower function. This
behavior is common to any choice of discount factors as long as β1 > β2. When β1 = β2 both graphs
are along the diagonal and the asset holdings of both agents remain fixed and there is no trading.

4 Conclusions

Theorem 1 and the surrounding discussion provide the details of the answers summarized in the
Introduction. Since, in our log-utility case, the decisions of the agents turn out to be uninfluenced
by the chosen pricing functions a ∈ A, the full dynamical system f : X → X conveniently reduces to
a mapping g : Y → Y on the reduced state space. This allows us to completely specify the market
dynamics both at and away from equilibrium.

Our model is fully consistent with a rational expectations general equilibrium framework and does
not rely upon agents who ignore market fundamentals or behave irrationally such as in [20, 19]. At
each period in our model markets clear according to (10) which sets the aggregate demand for assets
equal to the aggregate supply. The market price is then determined endogenously according to (11)
which depends upon the individual asset demand equations of each agent.

We are able to completely specify the asset market dynamics of this system as the economy moves
toward equilibrium. We show that the most patient agents will asymptotically accumulate all wealth
with a convergence rate that depends upon the ratio of the discount factor of the less patient agent to
the most patient agent. In an environment without idiosyncratic wealth shocks, this convergence will
be monotonic. Although our conclusions are consistent with the existing literature we have provided
a rigorous proof of these results.

It’s natural to ask about what happens when agents are allowed to have other risk aversion
parameters γi > 0. In general, optimal demands will then depend on the individual pricing functions
a as well as the wealth and asset holdings distributions [2]. Therefore, the mapping f : X → X will
not be fully specified until the pricing function updating (learning) mechanism is specified.

Simulation studies are reported in [21] for this general case where the learning mechanism is a
simple least squares updating of the pricing function based on the observed history of market prices.
In all cases studied, market prices are observed to converge to a no trading equilibrium which, in
our language, is a fixed point (s, P ∗, a) of f : X → X, where a = (P ∗, . . . , P ∗). These simulation
studies are numerically challenging because each agent’s optimal demand must be solved numerically
in every time step.

The log utility case makes for an interesting comparison between our two equilibrium concepts,
CEE and REE. Assuming that agents know all the pricing functions, holdings, and preferences of
the other agents will not change their behavior in each time step. Equations (11) and (12) describe
the market price Pm(D, s) and demands as a function of D and s, so the market is at an REE all all
times, even as holdings evolve. When agents do not observe holdings s, the pricing function Pm(D)
evolves over time and reaches the equilibrium P ∗(D) only in the limit.
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Figure 1. For a market with two agents having different discount factors β1 = 0.95 and β2 = 0.7, we plot the demand
function of agent 1 (solid), and the diagonal (dashed). The demand function of agent 2 is symmetrically below the
diagonal because of the market-clearing requirement s1 + s2 = 2. Iteration of agent 1’s demand function, describing
the passage of time, is illustrated with the arrows. Holdings for agent 1 converge to 2. Symmetrically, holdings for
agent 2 converge simultaneously to zero.
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