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Abstract

We use a generalized birth-death stochastic process to model the
high-frequency dynamics of the limit order book, and illustrate it using
parameters estimated from Level II data for a stock on the London
Stock Exchange. A new feature of this model is that limit orders
are allowed to arrive in multiple sizes, an important empirical feature
of the order book. We can compute various quantities of interest
without resorting to simulation, conditional on the state of the order
book, such as the probability that the next move of the mid-price will
be upward, or the probability, as a function of order size, that a limit
ask order will be executed before a downward move in the mid-price.
This generalizes a successful model of Cont et al. (2010) by means of a
new technical approach to computing the distribution of first passage
times.

1 Introduction

High-frequency trading lately accounts for a significant portion of the trading
volume on equity, futures and options exchanges worldwide. Trading time
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measured in milliseconds is possible due to the advent of electronic “order-
driven” trading systems instituted by the most important exchanges, includ-
ing NYSE, Nasdaq, and the Tokyo and London Stock Exchanges. These
automated systems operate by aggregating all outstanding limit orders in a
limit order book that is visible to traders, and incoming market orders are
executed against the best available prices.

The high-frequency behavior of the limit order book is a natural candidate
for stochastic modeling, both from the perspective of the trader who wishes
to forecast, and from the perspective of the Exchange which would like to
control the stability of the system. Thanks to the availability of Level II data
(quotes and number of shares at different prices), dynamical models can be
formulated, estimated, and tested.

In recent literature, there have been equilibrium models of a limit order
market like those of Parlour (1998), Foucault (1999), and Goettler et al.
(2005). Another category is a dynamic expected utility maximization model
like those of Avellaneda and Stoikov (2008), and Rous (2009). All these mod-
els contain unobservable parameters of utility functions for different investors
that are hard to calibrate. Recently, Cont et al. (2010) have successfully pro-
posed a continuous-time Markov model in which all the parameters can be
estimated from the order book “Level II” data, the model is analytically
tractable, and it reproduces various typical empirical features of observed
order books.

Cont et al. (2010) view the limit order book as a queuing system where
incoming orders and cancellations of existing orders arrive in unit size ac-
cording to independent Poisson processes, and this allows them to compute
various conditional probabilities, such as the probability that the next mid-
price move will be upward. This kind of queuing system can be described by
what is called a birth-death process, where the states represent the number
of shares at a given order price, and transitions take place by birth (the entry
of a new limit order), or death (removal from the limit order book by can-
cellation or matching with a new market order). Birth-death processes have
been well-studied in the queuing literature, which makes them attractive for
use as statistical models.

However, one drawback of this approach is that in traditional queuing
theory births and death occur (with probability one) one at a time. For
example, in a telephone exchange handling a large number of calls, the prob-
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ability that two calls arrive simultaneously can safely be taken to be zero.
Therefore a pure birth-death model of the order book restricts orders to be
of unit size (which can be set to the average order size, for example).

In practice, the limit order book does not behave this way. Empirical
studies on statistical properties of limit orders by Knez and Ready (1996),
and Bouchaud et al. (2002) show that one of the most important condition-
ing variables for price impact is the size of an order relative to the volume at
the best price, so a model that can deal with multiple order sizes is of par-
ticular interest. The difficulty is that the theory of more general birth-death
processes which allow multiple births or deaths is less well developed.

In this paper, we solve a generalized version the model of Cont et al.
(2010) in which the technical requirement that limit orders be of unit size is
no longer needed. We employ a generalized birth-death process that allows
multiple births to model the arrival of limit orders of various sizes. We
use Laplace transforms to compute the distribution of first passage times,
which allows for the calculation of quantities such as the probability that the
mid-price increases/decreases at its next move and the probability that an
order is executed before the mid-price moves. We illustrate this model for
parameters estimated from Level II data for a stock on the London Stock
Exchange. This model, to the best of our knowledge, is the first one to deal
with multiple order sizes quantitatively.

The technical problem of evaluating the Laplace transform of the relevant
first passage time for multiple order sizes is overcome by a new technique
analyzing the limit of truncated state spaces, each of which is tractable via
recursion. The continued fraction method employed by Cont et al. (2010)
apparently does not carry over.

The structure of this paper is as follows. Section 2 describes the dynam-
ics of a limit order book and introduces a general birth-death process with
multiple births to capture the characteristics of this system. In section 3, we
estimate the parameters required for the model using high-frequency data
from the London Stock Exchange. Section 4 derives the probability den-
sity function of the first-passage time in a general birth-death process, which
plays a key role in calculating the quantities of interest in a limit order book.
In section 5, we use the result of section 4 to forecast illustrative quantities
from the order book: the probability that the mid-price increases/decreases
at its next move, and the probability that an ask order is executed before
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the mid-price declines. Section 6 concludes.

2 Order book dynamics and the model

Market participants trading an asset in an order-driven market can take three
different kinds of actions. They may (1) place a limit order to buy or sell a
specified number of shares of the asset at a particular price specified at the
time of the order, (2) place a market order to buy or sell a specified number
of shares of the asset at the best currently available price, which is executed
immediately, or (3) cancel a previously placed limit order that has not yet
been executed.

The outstanding limit orders are summarized in a limit order book, which
lists the total number of shares of buy and sell limit orders at each price.
This limit order book is constantly changing as new orders arrive, and we
are interested in modeling statistical properties of the limit order book state.

The limit buy orders are called bids, and the limit sell orders are called
asks. The size of the order is the number of shares specified by the order.
The lowest price for which there is an outstanding limit sell order is called
the best ask and the highest price for which there is an outstanding limit
buy order is called the best bid. The gap between the best ask and the best
bid is called the bid-ask spread. The average of the best ask and best bid is
called the mid-price. We consider the mid-price instead of transaction prices
to avoid the tendency of transaction prices to bounce back and forth between
the best ask and the best bid. Prices are restricted to be integer multiples
of a minimum price difference called a tick value or tick.

Market orders. A trade occurs as a market order arrives and it is matched
against limit orders of the opposite side. If the size of the market order is
bigger than the the quantity in the current best price, the remaining will be
matched to the second best price. So a market order bigger than the opposite
best price widens the bid-ask spread by increasing the best ask (and hence
the mid-price) if it is a buy order, or decreasing the best bid (and hence the
mid-price) if it is a sell order.

Limit orders. When the bid-ask spread is more than one tick, a limit
order that falls between the best ask and bid narrows the bid-ask spread by
increasing the best bid (and hence the the mid-price)if it is a buy order, or
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decreasing the best ask (and the hence the mid-price) if it is a sell order.

Cancellations. Market participants are allowed to cancel any limit orders
they previously posted. The cancellation of all the limit orders at the best
price widens the bid-ask spread by increasing the best ask if the cancellation
takes place at the best ask, or decreasing the best bid if it takes place at the
best bid.

To capture the above dynamics of a limit order book, Cont et al. (2010)
proposed a stochastic model where the events above are modeled using inde-
pendent Poisson processes. Their model successfully captures the character-
istics of the speed of the order arrivals by modeling it with the intensity rate
of a Poisson process. However, the model analysis requires them to assume
that all orders are of unit size (where the unit is the average observed size
of limit orders). Empirical studies (Chakraborti et al. (2009); Toke (2010))
show that new limit order sizes are in fact randomly distributed according
to an exponential law. To deal with the size of limit orders and also consider
the tractability of the model, we develop the following model.

Model Framework and Notation

Limit orders are allowed to be placed on a finite price grid Π = {1, 2, . . . , n}
representing prices measured in multiples of a tick, and where the upper
boundary n is chosen large enough to exceed all reasonable order price lev-
els that might occur during the time frame of the analysis. Let Z+ =
{0, 1, 2, 3, . . . } denote the non-negative integers, which represents the pos-
sible sizes of limit orders in multiples of Sm shares, where Sm is the average
size of a market order (see below).

We describe the state of the order book with two Z+-valued continuous-
time Markov processes, the ask process

A(t) = (A1(t), . . . , An(t)),

and the bid process
B(t) = (B1(t), . . . , Bn(t)),

where t ≥ 0, Ak(t) represents the number of asks (in multiples of Sm shares)
outstanding at price k and time t, and similarly for Bk(t). Since there cannot
be asks and bids at the same price (they would be traded against each other),
we must have Ak(t)∧Bk(t) = 0 for all k and t, where ∧ denotes the minimum
operator.
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The best ask price at time t is then defined by

pA(t) = inf{p ∈ Π : Ap(t) > 0} ∧ (n+ 1),

the best bid price at time t is

pB(t) = sup{p ∈ Π : Bp(t) > 0} ∨ 0,

and in our market pB(t) < pA(t) for all t.

The mid-price at time t is denoted

pM(t) = (pA(t) + PB(t))/2,

and the bid-ask spread is

pS = pA(t)− pB(t).

We impose the following model assumptions governing how the processes
A and B evolve.

X Market orders and cancellations of existing orders are of constant size
Sm, where Sm denotes the average size of a market order over the period of
interest;

X Market buy and sell orders arrive at independent, exponentially dis-
tributed times with rate µ;

X Limit orders of size k, k = 1, 2, . . . ,M (in multiples of Sm shares)
arrive at a distance of j ticks from the opposite best quote at independent,
exponentially distributed times with rates denoted λ

(k)
j , j ≥ 1. Here M is

the number of order sizes to be handled by the model, which is chosen at the
discretion of the modeler;

X Cancellations of limit orders at a distance of j ticks from the same-
side best quote arrive at independent, exponentially distributed times at a
rate proportional to the number of outstanding shares: if the number of
outstanding shares at that level is kSm, then the cancellation rate is kθj,
j, k ≥ 0;

X All the above events are mutually independent.

The parameters Sm, µ, θj, and λ
(k)
j must all be estimated from market

data. The rate parameters µ, λ
(k)
j are measured in “orders per second” and
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θj is can be thought of as measured in “orders per second per existing order”
(since kθj is a rate in orders per second) where one order represents Sm
shares.

A and B are then continuous time Markov chains with state space (Z+)n

and transition rates given by

Ai(t)→ Ai(t) + k at rate λ
(k)
i−pB(t) for i > pB(t), k ≥ 0

Ai(t)→ Ai(t)− 1 at rate Ai(t)θi−pA(t) for i ≥ pA(t)
Ai(t)→ Ai(t)− 1 at rate µ for i = pA(t) > 0

Bi(t)→ Bi(t) + k at rate λ
(k)
pA(t)−i for i < pA(t), k ≥ 0

Bi(t)→ Bi(t)− 1 at rate Bi(t)θpB(t)−i for i ≤ pB(t)
Bi(t)→ Bi(t)− 1 at rate µ for i = pB(t) < n+ 1

Notice we choose the same-side best quote instead of the opposite side
for cancellations since there is nothing to cancel between the best bid and
the best ask when the bid-ask spread is greater than 1. The model above
may be viewed as a direct generalization of the model of Cont et al. (2010)
to account for the arrival of limit orders of multiple sizes.

The use of an infinite state space Z+ at each price level is no more than
a convenience idealization, since in reality the number of shares in the order
book will be bounded above by a finite bound κ, which could be taken to
be any suitably large value that will never be exceeded in practice, such as
ten times the total number of outstanding shares of the stock in question. It
turns out it is technically convenient for us also to consider the finite model
in which the state space is truncated at κ >> 1; we will show that the
probabilities of interest are not sensitive to the particular choice of κ because
they converge to a limit as κ tends to infinity.

To define the κ-truncated model, let Zκ = {0, 1, . . . , κ} be a finite state
space representing the number of bids or asks at a given price in the order
book. We merely need to modify the continuous time Markov chains defined
above to have state space (Zκ)

n with the same transition rates, except that
(1) if a transition would cause the state of Ai < κ or Bi < κ to exceed κ,
the state is reset to κ, and (2) at state κ, if j is the number of ticks from κ

to the opposite best quote, the rate of incoming limit orders λ
(k)
j is reset to

zero for all k (so the only transitions at state κ are downward).
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If κ is set large enough, the behavior of the truncated model will be
identical to the behavior of the infinite model for values relevant to the data,
so there is no theoretical disadvantage in considering the truncated model
when needed.

3 Parameter estimation

Our raw data is Level II order book data for Vodaphone (VOD.L), traded on
the London Stock Exchange from September 7th, 2009 to September 11th,
2009 (five trading days, and all day long for each trading day). This data
consists of snapshots of time-stamped sequences of transactions (i.e., actual
trades) and quotes (prices and quantities of shares) for the ten best price
levels on each side of the order book. These snapshots are time-stamped in
seconds (starting zero at midnight), with a resolution of one millisecond, and
taken whenever there is a change at any of the price levels. Since we study
the European market and want to avoid the impact of the US market, we
use only four hours of data, from 9:30 am to 1:30 pm.

From the raw data, Table 1 shows an example of quotes from time
39301.481 to 39308.359 and Table 2 shows the transactions that took place
during this period. Since we need the price, quantity and time of each order
(market, limit, and cancellation) to calibrate the parameters in our model,
the following criteria are employed to derive such numbers from the raw data:

X if the quantity at a given price has increased, then we count a limit
order at that price, with a volume equal to the difference of the quantities
observed;

X if the quantity at a given price has decreased and there is no transaction
at that time, then we count a cancellation order at that price, with a volume
equal to the difference of the quantity;

X if the quantity at a given price has decreased and there is a transaction
at that time, then we count a market order at that price, with a volume equal
to the difference of the quantity, and we record the time in the quote instead
of the transaction field since there might be some delay of recording market
orders in the transaction field in the raw data we have.

So from Table 1 and Table 2 we can conclude that an order of size 10000
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was canceled at the 4th level bid at time 39302.891, an order of size 320 was
executed at the best bid at time 39305.192, and an order of size 7500 was
canceled at the 4th level bid at time 39308.359.

To calibrate the parameters, we need to compute the average size Sm (in
shares) of market orders. Let T be the length of time investigated, Nm the
number of shares in market orders placed during that time, and Nc(i) the
number of shares cancelled at the ith level quote during that time. Here “ith
level quote” means the price of a bid (respectively, ask) at a distance i − 1
ticks from the best bid (respectively, best ask) price.

The arrival rate of market orders (at both best bid and best ask) is then
estimated (in orders per second) by

µ̂ =
Nm

SmT

and the cancellation rate for the ith level quote (both bid and ask) can be
estimated by

θ̂(i− 1) =
Nc(i)

SmT

(
L(i)

Sm

)−1
where L(i) is the average number of shares in the order book at the ith level

quote over time period T , and L(i)
Sm

then represents the average number of
unit orders outstanding.

For limit orders at a distance j ticks from the opposite best quote, we
divide the data by size into M groups, where M is a number of sizes to be
handled by the model and is at the discretion of the modeler. An order is
in the kth group, k = 1, . . . ,M , if its size in shares is closer to kSm than to
k′Sm for any other k′, and N

(k)
l denotes the total number of shares in the

limit orders of the kth group. We then estimate the arrival rate of our model
limit orders of size k (in orders) by

λ̂
(k)
j =

N
(k)
l (j)

SmT

Using our data from 9:30 am to 1:30 pm on September 7th, 2009, and
settingM = 2, we estimate the parameters for the first level quote as reported
in Table 3.
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4 First-passage times of general birth-death

processes with multiple births

We are interested in forecasting a number of quantities in the order book, such
as the probability that the mid-price increases/decreases at its next move, or
the probability that an order is executed before the mid-price moves. These
calculations boil down to calculating the probability density function of the
first passage time of a general birth-death process to reach state 0. As indi-
cated in Section 2, the number of orders at the best quote (ask/bid) follows

a general birth-death process with multiple birth rates λ
(1)
S , λ

(2)
S , . . . , λ

(M)
S of

sizes 1, 2, . . .M , respectively (in multiples of Sm shares), and death rates
µ + iθ(0) of size 1 at state i ≥ 1. We formulate and solve the problem of
deriving the probability density function of the first passage time of such a
process to reach state 0 in this section.

For simplicity, let’s assume M = 2, since larger values can be handled
similarly. Now consider a general Z+-valued birth-death process X(t), where
we call the value of X(t) the “state” at time t. We assume X(t) has birth
rates λ(1), λ(2) of sizes 1, 2, respectively, and death rates µi of size 1 at state
i ≥ 1, and let τb denote the first-passage time of this process to state 0 given
it begins in state b. We now consider the probability density function of τb.

Notice that, if the current state is i ≥ 2, in order to reach state i− 2 this
process must first reach state i−1. So by the Markovian property (Asmussen
(2003)), we can write τb as the sum of independent random variables

τb = τb,b−1 + τb−1,b−2 + · · ·+ τ1,0 (1)

where τi,i−1 denotes the first-passage time of the above process from state i
to state i− 1, for i = 1, 2, . . . b.

Let vi = λ(1) + λ(2) + µi and let gi(t) denote the probability density
function of τi,i−1. Then the dwell time at state i has density vie

−vit and with

probability λ(1)

vi
the subsequent transition is to state i + 1, with probability

λ(2)

vi
the subsequent transition is to state i + 2, and with probability µi

vi
the

transition is to state i− 1. Hence we have the recursive formula

gi(t) =
µi
vi
vie
−vit+

λ(1)

vi
vie
−vit∗gi+1(t)∗gi(t)+

λ(2)

vi
vie
−vit∗gi+2(t)∗gi+1(t)∗gi(t)

(2)
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where ∗ means convolution. The idea to derive the probability density func-
tion of τb is to derive the Laplace transform of τi,i−1 first, and then the
Laplace transform of τb by multiplying these together, and finally numeri-
cally invert the Laplace transform of τb (Abate and Whitt (1995); Abate and
Whitt (1999)).

Definition 4.1 The Laplace transform of a function f(x) is

f̂(s) =

∫ ∞
0

e−sxf(x)dx (3)

when the above improper integral converges, where s is a complex variable.

Obviously, if f(x) is bounded and s is a complex variable with positive real
part, then the above integral converges.

By the Laplace transform of τi,i−1 we mean the Laplace transform of its
pdf gi(t), which is

ĝi(s) = E[e−sτi,i−1 ] =

∫ ∞
0

e−stgi(t)dt (4)

where s is a complex variable with positive real part.

If we take the Laplace transform on both sides of equation (2) and use∫ ∞
0

e−ste−vitdt =
1

vi + s
,

we have

ĝi(s) =
µi

vi + s
+

λ(1)

vi + s
ĝi+1(s)ĝi(s) +

λ(2)

vi + s
ĝi+2(t)ĝi+1(s)ĝi(s) (5)

i.e.
ĝi(s) =

µi
vi + s− λ(1)ĝi+1(s)− λ(2)ĝi+2(s)ĝi+1(s)

(6)

These formulas provide a recursive way to compute the functions ĝi if we
make use of the truncated model described previously. That is, consider a
truncated birth-death process X(κ)(t) defined on Zκ with birth rates λ(1) of
size 1 and λ(2) of size 2 at states i ≤ κ− 2, birth rate λ(1) + λ(2) of size 1 at
state κ− 1, and death rates µi of size 1 at states i ≥ 1.
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The processes X and X(κ) are identical for trajectories that remain below
state κ − 2, so will be interchangeable in application if κ is chosen large
enough. Let T

(κ)
i denote the first passage time down from state i to state

i − 1 in the truncated process X(κ), and let τ
(κ)
b be the corresponding first

passage time from state b to zero. We show below that T
(κ)
i tends to a limit

in probability as κ tends to infinity, and hence so does τ
(κ)
b . (In fact the

limit is τb, but we don’t need that here.) We will see in examples that the
limit is closely approached already for fairly low values of κ, which makes
the recursive problem numerically easy.

Let ĝ
(κ)
i (s) be the Laplace transform of the first-passage time T

(κ)
i from

state i to state i− 1. Since the first passage time from κ to κ− 1 is an expo-
nential random variable with rate µκ, we have the following similar recursive
formulas determining each ĝ

(κ)
i (s):

ĝ(κ)κ (s) =
µκ

s+ µκ
(7)

ĝ
(κ)
κ−1(s) =

µκ−1

s+ λ(1) + λ(2) + µκ−1 − (λ(1) + λ(2))ĝ
(κ)
κ (s)

(8)

ĝ
(κ)
i (s) =

µi

λ(1) + λ(2) + µi + s− λ(1)ĝ(κ)i+1(s)− λ(2)ĝ
(κ)
i+2(s)ĝ

(κ)
i+1(s)

(9)

for i = κ− 2, κ− 3, . . . , 1.

Next, we prove ĝ
(κ)
i (s) converges as κ tends to +∞. Let F

(κ)
i (t) be the

cdf of T
(κ)
i .

Lemma 4.2 We have the following stochastic order relation as a function
of κ:

T
(κ)
i ≤ T

(κ+1)
i for κ ≥ i

Sketch of Proof. This is equivalent to the statement

F
(κ)
i (t) ≥ F

(κ+1)
i (t) for κ ≥ i and all t ≥ 0.

To see this, note that X(κ) and X(κ+1) have the same probability of an upward
move on {1, . . . , κ − 1} and the same probability of a downward move on
{1, . . . , κ}. Hence the probability of either process exceeding state κ− 1 by
time s < t is the same. Conditional on exceeding state κ− 1 by time s, the
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process X(κ) now has a greater probability of arriving at state i− 1 by time
t, because X(κ+1) may first detour to state κ+ 1, causing a delay. QED

The above inequality means that F
(κ)
i (t) decreases to a limit F

(∞)
i (t) as

k →∞. By a similar argument as above,

F
(κ)
i (t) ≥ Fi(t) for k ≥ i and all t ≥ 0,

where Fi(t) denotes the cdf of τi,i−1, the first passage time from i to i− 1 for
the unbounded process X. Therefore, in the limit,

F
(∞)
i (t) ≥ Fi(t)

and hence F (∞)(t) → 1 as t → ∞, so it is the cdf of a random variable on
[0,∞).

Since

ĝ
(κ)
i (s) =

∫ ∞
0

e−stdF
(κ)
i (t)

and letting

ĝi(s) =

∫ ∞
0

e−stdF
(∞)
i (t)

then ĝ
(κ)
i (s) → ĝi(s) at any complex number s with positive real part, as

k →∞, by virtue of the following standard lemma.

Lemma 4.3 If probability distribution functions Fn(x) → F (x) for all x ∈
R as n → ∞, then En(u) → E(u) for every bounded piecewise-continuous
function u

u(x) : R→ C

where En and E are expectations with respect to Fn and F , respectively.

Table 4 illustrates the convergence of the Laplace transforms of the pdf
of the first passage times for X(κ) from state 10 to 9, from 9 to 8 and from
8 to 7 evaluated at s = 10 + 5i, as κ ranges from 10 to 20. Convergence to
a limit is seen to be very fast for these parameter values, and is similar for
other values of s.

From now on we will consider first passage times τ = τ (∞) as the limit
of the corresponding times τ (κ) as κ → ∞ for the bounded processes X(κ).
These first passage times will be indistinguishable in practice from those of
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the original process X (they are in fact equal), and we approximate them by
recursion using a finite but sufficiently large value of κ.

Let the probability density function of τb, the first passage time from b to
0, be fb,0(t), and the cummulative distribution function be Fb,0(t). Denote

the Laplace transform of fb,0(t) by f̂b,0(s) and the Laplace transform of Fb,0(t)

be F̂b,0(s). Then by Abate and Whitt (1999)

f̂b,0(s) =
b∏
i=1

ĝi(s) (10)

since E[e−s(X+Y )] = E[e−sXe−sY ] = E[e−sX ]E[e−sY ], when X and Y are inde-
pendent variables. Also,

F̂b,0(s) =

∫ ∞
0

e−stFb,0(t)dt (11)

= −1

s
Fb,0(t)e

−st|∞t=0 − (−1

s
)

∫ ∞
0

e−stf0,b(t)dt (12)

=
1

s

∫ ∞
0

e−stf0,b(t)dt (13)

=
1

s
f̂b,0(s) (14)

since s has a positive real part, where ĝi(s) is defined in (4).

With the Laplace transform f̂(s) in hand, f(t) can be computed by nu-
merically inverting f̂(s), provided f(t) = 0 for t < 0, as follows.

f(t) =
1

2πi

∫ a+i∞

a−i∞
etsf̂(s)ds (for a fixed a > 0)

=
1

2π

∫ ∞
−∞

e(a+iu)tf̂(a+ iu)du

=
eat

2π

{∫ +∞

−∞
<[f̂(a+ iu)] cosutdu−

∫ +∞

−∞
=[f̂(a+ iu)] sinutdu

}
since f(t) is real. If t ≥ 0, then f(−t) = 0, i.e.

e−at

2π

{∫ +∞

−∞
<[f̂(a+ iu)] cos(−ut)du−

∫ +∞

−∞
=[f̂(a+ iu)] sin(−ut)du

}
= 0,
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and hence∫ +∞

−∞
<[f̂(a+ iu)] cosutdu = −

∫ +∞

−∞
=[f̂(a+ iu)] sinutdu.

So for t ≥ 0, we have

f(t) =
eat

π

∫ +∞

−∞
<[f̂(a+ iu)] cosutdu

=
2eat

π

∫ +∞

0

<[f̂(a+ iu)] cosutdu (since <[f̂(a+ iu)] = <[f̂(a− iu)]).

Using the trapezoidal rule with a step size h, the above approximately equals

fh(t) =
heat

π
<[f̂(a)] +

2heat

π

∞∑
k=1

<[f̂(a+ ikh)] cos(kht).

Let h = π
2t

and a = A
2t

, then

fh(t) =
eA/2

2t
<[f̂(

A

2t
)] +

eA/2

t

∞∑
k=1

(−1)k<[f̂(
A+ 2kπi

2t
)] (15)

Abate and Whitt (1995) showed that if f(t) is bounded, say |f(t)| ≤ C, then
the discretization error is bounded by

|f(t)− fh(t)| ≤ C
e−A

1− e−A

In our code, we set A = 15 log 10 in (15) in order to get 15 digits of accuracy.

Abate and Whitt (1995) proved that <[f(A+2kπi
2t

)] has a constant sign
when k sufficiently large, if the second derivative of f(t) is continuous. (This
is true for the cdf of the first-passage time of the κ-truncated process, since
it has the form 1 −

∑l
i=1 γie

−βit, where γi and βi are constants. A conve-
nient reference for this algebraic approach is Keilson (1979)). So (15) is an
eventually alternating series, and a standard method to accelerate the com-
putation of (15) is the Euler summation to m terms after an initial n terms
(Johnsonbaugh (1979)):

E(m,n, t) =
m∑
k=0

Ck
m2−msn+k(t) (16)
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where

sn(t) =
eA/2

2t
<(f̂(

A

2t
)) +

eA/2

t

n∑
k=1

(−1)k<(f̂(
A+ 2kπi

2t
)) (17)

which is the weighted average of the last m+ 1 partial sums by a binodmial
probability distribution with parameters m and p = 1/2. (Here Ck

m is the
binomial coefficient “m choose k”.) It is easy to see when fixing m that
E(m,n, t) converges to fh(t) as n goes to infinity. In this paper, after choosing
m = 25 and n = 25 in (16), we obtained an error associated with the
difference of successive terms of

|E(m,n+ 1, t)− E(m,n, t)|
E(m,n, t)

< 0.01.

Tables 5-7 show the results of this calculation for the approximating process
X(κ), as the truncation state κ increases. The values of F

(κ)
b,0 (t) evaluated at

t = 1, 5, 10 when b = 10 are shown to illustrate the dependence on κ. Figures
1-2 show the graphs of f

(κ)
b,0 (t) and F

(κ)
b,0 (t) when b = 10 and the truncation

state is κ = 60. Larger values of κ make no visible difference.

5 Two Examples

5.1 Direction of the next price move

Now we compute the probability that the mid-price increases at its next
move using our model and the parameters estimated in Section 3. We choose
M = 2 in our calibration. Assume that at time 0, there are a orders at the
best ask price pA(0), and b orders at the best bid price pB(0), and the bid-ask
spread is S ticks. Let τa be the first time all the orders at the price pA(0)
disappear, and τb be the first time all the orders at the price pB(0) disappear.
Let τ iA be the first time a limit sell order arrives i ticks away from the best
bid and τ iB be the first time a limit buy order arrives i ticks away from the
best ask, i = 1, . . . , S − 1. Let

∆S =
S−1∑
i=1

M∑
j=1

λ
(j)
i

where the λ
(j)
i are the limit order arrival rates defined in section 2.
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The Laplace transforms of τa and τb, denoted by f̂Sa (s) and f̂Sb (s), can be
computed recursively as in (7)-(9) and (10). Next let

τaB = τa ∧ τ 1B ∧ . . . ∧ τS−1B

and
τbA = τb ∧ τ 1A ∧ . . . ∧ τS−1A

Let fτaB(t) and fτbA(t) be the probability density functions of τaB and τbA,
respectively. Then τaB and τbA are independent since τa, τ

1
B, . . ., τS−1B , τb,

τ 1A, . . ., τS−1A are all independent.

Lemma 5.1 (Cont et al. (2010)) Let Z be an exponentially distributed
random variable with parameter Λ, σ be a random variable with Laplace trans-
form f̂(s), and Z and σ be independent. Then the Laplace transform of the
random variable σ ∧ Z is given by

f̂(Λ + s) +
Λ

Λ + s
(1− f̂(Λ + s)).

Therefore the Laplace transforms of τaB and τbA are

f̂τaB(s) = f̂Sa (∆S + s) +
∆S

∆S + s
(1− f̂Sa (∆S + s))

and

f̂τbA(s) = f̂Sb (∆S + s) +
∆S

∆S + s
(1− f̂Sb (∆S + s)).

Obviously, τaB and τbA are both nonnegative, so we can apply the numer-
ical inversion (16)-(17) to f̂τaB(s) and f̂τbA(s) to derive fτaB(t) and fτbA(t).
Then the pdf of τaB − τbA is

fτaB−τbA(z) =

{∫∞
0
fτaB(u)fτbA(u− z)du (z ≤ 0)∫∞

z
fτaB(u)fτbA(u− z)du (z > 0)

so

P[τaB − τbA < 0] =

∫ 0

−∞

∫ ∞
0

fτaB(u)fτbA(u− z)dudz

which is the probability that the mid-price increases at its next move when
currently, there are a orders at best ask, and b orders at best bid, and the
bid-ask spread is S ticks.
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Although the double integral is computationally costly, one can use par-
allel computing to speed the computation. Table 8 shows the result when
the bid-ask spread is 1 tick using the parameters calibrated in Table 3, where
the truncation bound is 50 plus the larger of the numbers of initial orders
at best bid and best ask. The probabilities shown depend, of course, on the
model parameters, and are reported here for illustration.

5.2 Best ask order execution

A trader may intend to place a limit order at the current best ask price, and
would like to know the probability that the order will be executed, conditional
on it not being cancelled, before the mid-price experiences a downward move.
A virtue of our model is that we can compute this probability as a function
of the size of the limit order, which is not handled by previous models.

Assume again at time 0 there are a orders (that is, aSm shares) at best
ask, and b orders (that is, bSm shares) at best bid, and the bid-ask spread
is S ticks. Let εra be the time when an order of size rSm shares, placed at
the best ask at time 0, is completely executed by incoming market orders (of
unit size Sm). The probability we are interested in is

P[εra − τbA < 0]. (18)

Because the order book is executed on a first-in first-out basis, the time
to execution of our order is not influenced by limit orders that may later
arrive at the same price. Also, only the a pre-existing orders are subject
to cancellation, since we are conditioning on no cancellation of the order
we place. Therefore, according to the assumptions made in Section 2, εra is
equivalent to the first-passage time of a pure death process to state 0 given
it begins at state a+ r, where the death rate is µ+ (i− r)θ0 at state i when
i = r+1, r+2, . . . , r+a, and is µ when i = 1, 2, . . . , r. Denote the probability
density function of εra by fεra(t), then the Laplace transform of fεra(t), denoted

by f̂εra(s), is given by

f̂εra(s) =

(
µ

µ+ s

)r r+a∏
i=r+1

µ+ (i− r)θ0
µ+ (i− r)θ0 + s

(19)

since the Laplace transform of the first passage time from state i to state
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i− 1 in this pure death process is

µ

µ+ s
when i = 1, 2, . . . , r

and
µ+ (i− r)θ0

µ+ (i− r)θ0 + s
when i = r + 1, r + 2, . . . , r + a.

We can take the inverse Laplace transform of f̂εra(s) to get fεra(t), since εra is
positive. Then the probability density function of εra − τbA is given by

fεra−τbA(z) =

{∫∞
0
fεra(u)fτbA(u− z)du (z ≤ 0)∫∞

z
fεra(u)fτbA(u− z)du (z > 0)

so the target probability (18) is

P[εra − τbA < 0] =

∫ 0

−∞

∫ ∞
0

fεra(u)fτbA(u− z)dudz.

Table (9) and (10) show the result when the order size r is 1Sm and 2Sm, re-
spectively, and the bid-ask spread S is 1 tick, using the parameters calibrated
in Table 3, where the truncation bound is chosen to be 50 plus the larger of
the numbers of initial orders at best bid and best ask. In both tables, the
first row is the number of initial shares b (multiples of Sm) at the best bid
and the first column is the number of initial shares a (multiples of Sm) at
the best ask.

6 Conclusion

In order to deal with different sizes of limit orders in an order book, we
have enhanced a recent model of birth-death processes by adding multiple
births. We show the convergence of the Laplace transforms of the first pas-
sage times for a sequence of truncated processes as the truncation state tends
to infinity, which permits us to apply a recursive method to finding a close
approximation of the Laplace transform of the first passage time to zero in
our model. Numerical results are obtained to illustrate the use of the model
by answering two typical questions: conditional on the current state, what
is the probability that the next move of the mid-price is upward, and what
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is the probability, as a function of size, that a limit order placed at best ask
is executed before the mid-price moves downward?

The recursive approach used here does not handle the more general case
of when limit orders, market orders, and cancellations all may have multiple
sizes; this corresponds to analyzing a generalized birth-death process where
both births and deaths are allowed to have multiple sizes. We do not know
how to handle this situation.

A further open question is how to analyze the model when the arrival
rates of limit orders, market orders, and cancellations are not all mutually
independent. This case would seem to be important in improving the quality
of the model’s fit to the real world.
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Table 1: A sample of quotes taken from the raw data. The time-stamp is
measured in seconds from midnight, the type B refers to bids, and the level
is the number of ticks from best bid (counting from 1 = best bid). Rows
appear when an event occurs.

time-stamp type level price quantity
39301.481 B 4 134.9 203651
39301.722 B 1 135.05 10000
39302.891 B 4 134.9 193651
39302.891 B 2 135 192869
39305.192 B 1 135.05 9680
39308.359 B 4 134.9 186151
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Table 2: A sample transaction taken from raw data. A transaction represents
an actual trade taking place where a market order arrives to fill an opposite
limit order.

time-stamp price quantity
39305.192 135.05 320

Table 3: Estimated parameter values, using M = 2 sizes of limit orders. Here
µ̂ is the arrival rate of market orders in units of Sm shares, θ̂(0) is the limit

order cancellation rate per orders present, λ̂
(1)
0 and λ̂

(2)
0 are the arrival rates

of limit orders of size 1 and 2 (in multiples of Sm) at best bid and ask, and
L(1) is the average number of shares at the best quote (both bid and ask).

µ̂ θ̂(0) λ̂
(1)
0 λ̂

(2)
0 Sm L(1)

3.16 0.71 7.46 0.80 8127 59986

Table 4: Laplace Transform, evaluated at s = 10 + 5i, of the pdf of the first
passage time τi,i−1 for i = 8, 9, 10 in a truncated birth-death process with
birth rates λ(1), λ(2) of size 1, 2, respectively, and death rates µi = µ + iθ of
size 1 at state i ≥ 1: λ(1) = 7.46, λ(2) = 0.80, θ = 0.71, µ = 3.16. The first
column displays different choices for the truncated state κ = 10, . . . , 20.

κ i = 8 i = 9 i = 10
10 0.346738-0.0832812i 0.383182-0.0960662i 0.477343-0.117804i
11 0.345423-0.0812206i 0.366959-0.0865165i 0.402881-0.0986009i
12 0.345356-0.0808634i 0.36551-0.0844016i 0.386282-0.0893613i
13 0.345367-0.08081i 0.365423-0.0840193i 0.384709-0.0872165i
14 0.345372-0.080803i 0.365432-0.0839597i 0.384601-0.0868137i
15 0.345373-0.0808022i 0.365437-0.0839515i 0.384608-0.0867486i
16 0.345373-0.0808022i 0.365438-0.0839506i 0.384613-0.0867392i
17 0.345373-0.0808022i 0.365439-0.0839505i 0.384614-0.0867381i
18 0.345373-0.0808022i 0.365439-0.0839505i 0.384614-0.086738i
19 0.345373-0.0808022i 0.365439-0.0839505i 0.384614-0.086738i
20 0.345373-0.0808022i 0.365439-0.0839505i 0.384614-0.086738i
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Table 5: The cdf F
(κ)
b,0 (t) of the first passage time from b to zero, for b = 10

and t = 1. Listed are the values for various choices of the truncation state
κ = 10, . . . , 40. Parameters are λ(1) = 7.46, λ(2) = 0.80, θ = 0.71, µ = 3.16.

κ F
(κ)
b,0 (1)

10 0.00489228
11 0.00384194
12 0.00350267
13 0.00341969
14 0.00340075
15 0.00339684
16 0.00339609
17 0.00339596
18 0.00339594
19 0.00339594
20 0.00339594
21 0.00339594
22 0.00339594
23 0.00339594
24 0.00339594
25 0.00339594
26 0.00339594
27 0.00339594
28 0.00339594
29 0.00339594
30 0.00339594
31 0.00339594
32 0.00339594
33 0.00339594
34 0.00339594
35 0.00339594
36 0.00339594
37 0.00339594
38 0.00339594
39 0.00339594
40 0.00339594
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Table 6: As above, but evaulated at t = 5.

κ F
(κ)
b,0 (5)

10 0.140684
11 0.123179
12 0.112249
13 0.105679
14 0.101809
15 0.0995937
16 0.0983638
17 0.0977031
18 0.09736
19 0.0971878
20 0.0971042
21 0.0970649
22 0.0970471
23 0.0970392
24 0.0970358
25 0.0970344
26 0.0970339
27 0.0970337
28 0.0970336
29 0.0970336
30 0.0970335
31 0.0970335
32 0.0970335
33 0.0970335
34 0.0970335
35 0.0970335
36 0.0970335
37 0.0970335
38 0.0970335
39 0.0970335
40 0.0970335
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Table 7: As above, but evaluated at t = 10

κ F
(κ)
b,0 (10)

10 0.29788
11 0.267879
12 0.248017
13 0.235182
14 0.227029
15 0.221965
16 0.218899
17 0.217095
18 0.216065
19 0.215495
20 0.215189
21 0.21503
22 0.214949
23 0.21491
24 0.214891
25 0.214883
26 0.214879
27 0.214877
28 0.214877
29 0.214876
30 0.214876
31 0.214876
32 0.214876
33 0.214876
34 0.214876
35 0.214876
36 0.214876
37 0.214876
38 0.214876
39 0.214876
40 0.214876
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Table 8: Probability that the mid-price increases at its next move, with
parameters as estimated above. The column labels indicate the number of
initial shares (in multiples of Sm) at best bid, and the row labels indicate the
number of initial shares at best ask.

1 2 3 4
1 0.50 0.639607 0.693461 0.71779
2 0.349262 0.50 0.551479 0.590195
3 0.305924 0.435753 0.50 0.533218
4 0.281541 0.403993 0.465104 0.50

Table 9: Probability of executing an ask order before the mid-price moves
downward when the order size is 1Sm. The column labels indicate the number
of initial shares (in multiples of Sm) at best bid, and the row labels indicate
the number of initial shares at best ask.

1 2 3 4
1 0.591788 0.825442 0.91758 0.958566
2 0.55933 0.789673 0.892219 0.941529
3 0.5383 0.766822 0.873602 0.92768
4 0.524982 0.751181 0.8597 0.9165

Table 10: Probability of executing an ask order before the price moves down-
ward when the order size is 2Sm. Rows and columns are as in Table 9.

1 2 3 4
1 0.550144 0.779358 0.883466 0.934737
2 0.529704 0.756403 0.863987 0.919624
3 0.51695 0.740946 0.849723 0.907672
4 0.508713 0.730555 0.839777 0.899094
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Figure 1: Probability density function of the first passage time from state
10 to state 0, with parameters λ(1) = 7.46, λ(2) = 0.80, θ = 0.71, µ = 3.16,
truncation state κ = 60. (Larger values of κ are indistinguishable.)
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Figure 2: Cumulative distribution function of the first passage time from
state 10 to state 0 corresponding to the pdf of Table 1.
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