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Abstract

It is well-established that equity returns are not Normally distributed, but
what should the portfolio manager do about this, and is it worth the ef-
fort? It is now feasible to employ better multivariate distribution families
that capture heavy tails and skewness in the data; we argue that among the
best are the Student t and skewed t distributions. These can be efficiently
fitted to data, and show a much better fit to real returns than the Normal
distribution. By examining efficient frontiers computed using different dis-
tributional assumptions, we show, using for illustration 5 stocks chosen from
the Dow index, that the choice of distribution has a significant effect on how
much available return can be captured by an optimal portfolio on the efficient
frontier.



Portfolio optimization requires balancing risk and return; for this pur-

pose one needs to employ some precise concept of “risk”. Already in 1952,

Markowitz used the standard deviation (StD) of portfolio return as a risk

measure, and, thinking of returns as Normally distributed, described the ef-

ficient frontier of fully invested portfolios having minimum risk among those

with a specified return. This concept has been extremely valuable in portfo-

lio management because a rational portfolio manager will always choose to

invest on this frontier.

The construction of an efficient frontier depends on two inputs: a choice of

risk measure (such as StD, V aR, or ES, described below), and a probability

distribution used to model returns.

Using StD (or equivalently, variance) as the risk measure has the draw-

back that it is generally insensitive to extreme events, and sometimes these

are of most interest to the investor. Value at Risk (V aR) better reflects ex-

treme events, but it does not aggregate risk in the sense of being subadditive

on portfolios. This is a well-known difficulty addressed by the concept of a

“coherent risk measure” in the sense of Artzner, et. al. [1999]. A popular

example of a coherent risk measure is expected shortfall (ES), though V aR

is still more commonly seen in practice.

Perhaps unexpectedly, the choice of risk measure has no effect on the ac-

tual efficient frontier when the underlying distribution of returns is Normal

– or more generally any “elliptical” distribution. Embrechts, McNeil, and

Straumann [2001] show that when returns are elliptically distributed, the

minimum risk portfolio for a given return is the same whether the risk mea-

sure is standard deviation, V aR, ES, or any other positive, homogeneous,

translation-invariant risk measure.

This fact suggests that the portfolio manager should pay at least as much

attention to the family of probability distributions chosen to model returns

as to the choice of which risk measure to use.

It is now commonly understood that the multivariate Normal distribution

is a poor model of generally acknowledged “stylized facts” of equity returns:

• return distributions are fat-tailed and skewed

• volatility is time-varying and clustered

1



• returns are serially uncorrelated, but squared returns are serially cor-

related.

The aim of this paper is to focus attention on the question of what under-

lying family of distributions should be used for fitting and describing returns

data in portfolio optimization problems. We show why portfolio managers

should use heavy-tailed, rather than Normal, distributions as models for

equity returns – especially the multivariate Student t and skewed t distri-

butions. Recently other authors have also argued, with different data that

these distributions are empirically superior, e.g. Keel, et. al. [2006], and Aas

and Hobaek Haff [2006].

Does it really cost anything to find optimal portfolios by fitting a Normal

distribution to returns data, rather than some heavier-tailed choice? The

answer is yes: not only do other distributions do a better job of modeling ex-

treme events, but using them allows the manager to capture portfolio returns

that are unrecognized when using the Normal model.

We illustrate this below with a portfolio of 5 stocks using daily log-returns

data to optimize the one-day forecast portfolio return at a fixed risk level.

We use a GARCH filter to remove serial correlations of squared log-returns;

we then fit this approximately i.i.d. five dimensional data using a selection

of potential distributions from the Generalized Hyperbolic family, including

Normal, hyperbolic (Hy), Normal inverse Gaussian (NIG), variance gamma

(V G), Student t, and skewed t (defined below). We observe that the Stu-

dent t and skewed t have the largest log likelihood, despite having one fewer

parameter than Hy, NIG, or V G.

After discussion of coherent risk measures, value at risk, and expected

shortfall, we examine the problem of portfolio optimization for these different

risk measures and returns distributions, concentrating on the Student t and

skewed t. We show (proposition 6) that for zero skewness, these distributions

produce the same efficient frontiers no matter which risk measure or degree

of freedom is chosen, so long as the same means and correlations are used.

Nevertheless, our data set illustrates how much potential return is lost by a

manager who estimates Normal distributions with returns that are in reality

closer to Student t or skewed t distributed. The reason is that fitting the tails

better, as the t distributions do, leads to better estimates of the correlations,
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which in turn affects the efficient frontier.

The Multivariate Generalized Hyperbolic Dis-

tributions

The family of multivariate skewed t distributions is a subfamily of the larger

family of “generalized hyperbolic (GH) distributions”, introduced by Barndorff-

Nielsen [1977] and championed for financial applications in McNeil, Frey, and

Embrechts [2005].

These distributions are usefully understood as examples of a nice class of

distributions called Normal mean-variance mixture distributions, defined as

follows.

Definition 1 Normal Mean-Variance Mixture. The d-dimensional ran-

dom variable X is said to have a multivariate Normal mean-variance mixture

distribution if

X
d
= µ+Wγ +

√
WZ, where (1)

1. Z ∼ Nk(0,Σ), the k-dimensional Normal distribution with mean zero

and covariance Σ (a positive semi-definite matrix),

2. W ≥ 0 is a positive, scalar-valued r.v. which is independent of Z, and

3. µ and γ are parameter vectors in Rd.

The mixture variable W can be interpreted as a shock which changes

the volatility and mean of an underlying Normal distribution. From the

definition, we can see that, conditional on W , X is Normal:

X | W ∼ Nd(µ+Wγ,WΣ), (2)

and

E(X) = µ+ E(W )γ (3)

COV (X) = E(W )Σ + var(W )γγ ′ (4)
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the latter defined when the mixture variable W has finite variance var(W ).

If the mixture variable W is generalized inverse Gaussian (GIG) (see Ap-

pendix), then X is said to have a generalized hyperbolic distribution (GH).

As described in the Appendix, the GIG distribution has three real parame-

ters, λ, χ, ψ, and we write W ∼ N−(λ, χ, ψ) when W is GIG.

Therefore the multivariate generalized hyperbolic distribution depends on

three real paramters λ, χ, ψ, two d-dimensional parameter vectors µ (loca-

tion) and γ (skewness) in Rd, and a d×d positive semidefinite matrix Σ. We

then write

X ∼ GHd(λ, χ, ψ,µ,γ,Σ).

Some Special Cases

Hyperbolic distributions (Hy):

When λ = 1, we get the multivariate generalized hyperbolic distribution

whose univariate margins are one-dimensional hyperbolic distributions. (For

λ = (d + 1)/2, we get the d-dimensional hyperbolic distribution. However,

its marginal distributions are no longer hyperbolic.)

The one dimensional hyperbolic distribution is widely used in the mod-

eling of univariate financial data, for example in Eberlein and Keller [1995]

and Farjado and Farias [2003].

Normal Inverse Gaussian distributions (NIG):

When λ = −1/2, the distribution is known as Normal inverse Gaussian

(NIG). NIG is also commonly used in the modeling of univariate financial

returns. Hu [2005] contains a fast estimation algorithm.

Variance Gamma distribution (VG):

When λ > 0 and χ = 0, we get a limiting case known as the variance

gamma distribution. For the variance gamma distribution, we can estimate

all the parameters including λ; see Hu [2005].

Skewed t Distribution:

If λ = −ν/2, χ = ν and ψ = 0, we obtain a limiting case which is

called the skewed t distribution by Demarta and McNeil [2005], because it

generalizes the Student t distribution, obtained from the skewed t by setting

the skewness parameter γ = 0. The skewed t can also be described as a
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Normal mean-variance mixture distribution, where the mixture variable W

is inverse gamma Ig(ν/2, ν/2); see McNeil, Frey, and Embrechts [2005].

The one-dimensional Student t distribution is widely used in modeling

univariate financial data because, in comparison to the Normal, it easily in-

corporates a heavy tail with a single extra parameter (the degree of freedom).

The EM (expectation-maximization) algorithm, discussed below, now makes

practical the use of the multivariate Student t distribution for multivariate

data.

Without skewness, the Student t is elliptical, and therefore predicts, for

example, that joint crashes have the same likelihood as joint booms. This

partly motivates the introduction of skewness with the skewed t.

For convenience, explicit density functions of the skewed t distributions

are given in the Appendix. The mean and covariance of a skewed t distributed

random vector X are

E(X) = µ+ γ
ν

ν − 2
(5)

COV (X) =
ν

ν − 2
Σ + γγ ′

2ν2

(ν − 2)2(ν − 4)
(6)

where the covariance matrix is defined when ν > 4, and the expectation

when ν > 2.

Furthermore, in the limit as γ → 0, we get the joint density function of

the Student t distribution:

f(x) =
Γ(ν+d

2
)

Γ(ν
2
)(πν)

d
2 |Σ| 12

(1 +
ρ(x)

ν
)−

ν+d
2 (7)

with mean and covariance

E(X) = µ, COV (X) =
ν

ν − 2
Σ (8)

The Portfolio Property

A great advantage of the generalized hyperbolic distributions with this para-

metrization is that they are well-behaved under linear transformation. More

precisely (see McNeil, Frey, and Embrechts [2005]), if

X ∼ GHd(λ, χ, ψ,µ,Σ,γ)
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and Y = BX + b for B ∈ Rk×d and b ∈ Rk, then

Y ∼ GHd(λ, χ, ψ,Bµ+ b, BΣB′, Bγ) (9)

In particular, if X ∼ SkewedTd(ν,µ,Σ,γ), we have

Y ∼ SkewedTk(ν,Bµ+ b, BΣB′, Bγ) (10)

Forming a linear portfolio y = ωTX of the components of X amounts to

choosing B = ωT = (ω1, · · · , ωd) and b = 0. In this case,

y ∼ GH1(λ, χ, ψ,ωTµ,ωTΣω,ωTγ)

or, in the skewed t case,

y ∼ SkewedT1(ν,ωTµ,ωTΣω,ωTγ) (11)

That is, all portfolios share the same degree of freedom ν.

This also shows that the marginal distributions are automatically known

once we have estimated the multivariate generalized hyperbolic distributions,

i.e., Xi ∼ SkewedT1(ν, µi,Σii, γi).

Estimation of Student t and Skewed t Distributions Us-
ing the EM Algorithm

The mean-variance representation of the multivariate skewed t distribution

has the great advantage that the EM algorithm is directly applicable to the

estimation problem. See McNeil, Frey, and Embrechts [2005] for a general

discussion of this algorithm for estimating generalized hyperbolic distribu-

tions.

The EM (expectation-maximization) algorithm is a two-step iterative pro-

cess in which (the E-step) an expected log likelihood function is calculated

using current parameter values, and then (the M-step) this function is max-

imized to produce updated parameter values. After each E and M step,

the log likelihood is increased, and the method converges to a maximum log

likelihood estimate of the distribution parameters.

What helps this along is that the skewed t distribution can be represented

as a conditional Normal distribution, so most of the parameters (Σ,µ,γ) can

be estimated, conditional on W , like a Gaussian distribution. See Hu [2005]

for details of our implementation and comparisons with other versions.
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Returns, Risk Measures and Portfolio Opti-

mization

It will help to be more precise about what is meant by “return” in order

to clarify later approximations. If Pt is the price of an asset or portfolio at

time t, then the time t return over a unit time interval could mean either

arithmetic return: (Pt − Pt−1)/Pt−1 or log-return1: log(Pt/Pt−1).

The log-return is most natural when studying time series, since the log-

return over a longer time interval is the sum of the log-returns over sub-

intervals. However, when studying portfolios, it is the arithmetic return

that is more natural, because the arithmetic return of a portfolio is the

weighted average of the arithmetic returns of the individual portfolio securi-

ties, weighted by capital value.

When returns are small, as in our study of daily stock returns, the differ-

ence between the log-return and the arithmetic return is negligible. However,

for clarity we will distinguish these from now on.

Now we turn to a discussion of portfolio risk. Suppose ωT = (ω1, · · · , ωd)
is the capital amount invested in each risky security in a portfolio, and XT =

(X1, · · · , Xd) is the arithmetic return of each risky security. The portfolio

property of arithmetic returns is that the total return of the portfolio is ωTX.

Let

L(ω,X) = −
d∑
i=1

ωiXi = −ωTX

denote the loss of this portfolio over a fixed time interval ∆ and FL its

distribution function. (The time interval ∆ is usually one, ten, or 30 days

for equity portfolio management.)

From the portfolio property of GH distributions, if X has distribution

Nd(µ,Σ) (Normal), td(ν,µ,Σ) (Student t), or SkewedTd(ν,µ,Σ,γ) (skewed

t), then the loss L(ω,X) has distribution

L ∼ N1(-ωTµ,ωTΣω) (12)

L ∼ t1(ν,−ωTµ,ωTΣω) (13)

1As usual, “log” denotes the natural logarithm.
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or

L ∼ SkewedT1(ν,−ωTµ,ωTΣω,−ωTγ) (14)

respectively.

Whatever the model distribution of the loss random variable L, we inde-

pendently need to choose a risk measure that associates L with some numer-

ical measure of risk.

Definition 2 Value at Risk Given a confidence level α between 0 and 1

(such as 99% or 95%), the V aR at confidence level α is the smallest value l

such that the probability that the loss L exceeds l is no larger than (1 − α).

In other words,

V aRα = inf{l ∈ R : P (L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}

For the Normal and Student t distributions, the following explicit V aR

formulas are easy to verify. When the loss L is Normally distributed with

mean µ and variance σ2, then

V aRα = µ+ σΦ−1(α) (15)

where Φ denotes the standard Normal distribution function. When the loss

L is Student t distributed, L ∼ t1(ν, µ, σ2), then

V aRα = µ+ σt−1
ν (α) (16)

where tν denotes the distribution function of the Student t with degree of

freedom ν.

It’s helpful to consider more generally some desirable properties for a risk

measure.

Definition 3 Coherent Risk Measure (Artzner et. al. [1999]). A real

valued function ρ of a random variable is a coherent risk measure if it satisfies

the following properties,

1. Subadditivity. For any two random variables X and Y , ρ(X + Y ) ≤
ρ(X) + ρ(Y ).
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2. Monotonicity. For any two random variables X ≥ Y , ρ(X) ≥ ρ(Y ).

3. Positive homogeneity. For λ ≥ 0, ρ(λX) = λρ(X).

4. Translation invariance. For any a ∈ R, ρ(a+X) = a+ ρ(X).

In the language above, StD is not a coherent risk measure; V aR is a

coherent measure if the underlying distribution is elliptical, but not gener-

ally. Expected shortfall (ES), also called Conditional Value at Risk (see

Rockafellar and Uryasev [2002] ), is always coherent.

Definition 4 Expected Shortfall (ES). For a continuous loss distribu-

tion with
∫

R |l|dFL(l) <∞, the ESα at confidence level α ∈ (0, 1) for loss L

of a security or a portfolio is defined to be

ESα = E(L|L ≥ V aRα) =

∫∞
V aRα

ldFL(l)

1− α
(17)

=

∫
I{−(ωTx)≥V aRα}[−(ωTx)]f(x)dx

1− α
(18)

ES can also be computed explicitly for some loss distributions: if L is

Normally distributed N(µ, σ2), then

ESα = µ+ σ
ψ(Φ−1(α))

1− α
(19)

where ψ is the density of standard Normal distribution. If L is Student t

distributed t(ν, µ, σ2), then

ESα = µ+ σ
fν(t

−1
ν (α))

1− α

(
ν + (t−1

ν (α))2

ν − 1

)
(20)

where fν is the density function of the Student t with degree of freedom ν.

For skewed t, there is no closed formula for V aR or ES – but see below.

Next we need the concept of an elliptical distribution. Briefly, an elliptical

distribution is an affine transform of a spherical distribution; a spherical

distribution is one which is invariant under rotations and reflections (that is,

spherically symmetric). Explicit definitions are available from many sources,

e.g. Bradley and Taqqu [2002]. The Normal and Student t distributions are

elliptical; the skewed t is not when γ 6= 0.
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Proposition 5 Efficient Frontier for Elliptical Distributions. (Em-

brechts, McNeil, and Straumann [2001]). Suppose X is elliptically distributed

and all univariate marginals have finite variance. For any r ∈ R, let

Q = {Z =
d∑
i=1

ωiXi|ωi ∈ R,
d∑
i=1

ωi = 1, E(Z) = r}

be the set of all fully invested portfolio returns with expectation r. Then for

any positively homogeneous, translation invariant risk measure ρ,

argminZ∈Qρ(Z) = argminZ∈Qσ
2
Z .

This proposition means that if we assume that the underlying distribution

is elliptical, then the Markowitz minimum variance portfolio, for a given

return, will be the same as the optimized portfolio obtained by minimizing

any other translation invariant and positively homogeneous risk measure,

such as V aR or ES. That is, the portfolio allocation does not depend on

the choice of risk measure (or confidence level), but only on the choice of

distribution.

The skewed t distribution is not elliptical if γ 6= 0. In this case we see

in practice that the efficient portfolios do depend on the choice of confidence

level, and on the whether we use V aR, ES, or StD. The practitioner might

view this as a disadvantage of using distributions with skewness – she will

have to decide whether the data show enough skewness to justify the need

to confront these extra choices.

A practical disadvantage of skewed distributions is that we do not have

a closed form formula for V aR or ES. Instead, we turn to Monte Carlo

simulation to minimize ES at confidence level α by sampling the multivariate

distribution of returns. (The Monte Carlo method also can be applied to the

elliptical distributions mentioned above, yielding results that are identical to

the naked eye.)

More specifically, from (18), we can rewrite the definition of expected

shortfall as follows,

ESα = V aRα +

∫
[−(ωTx)− V aRα]+f(x)dx

1− α
,
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where [x]+ := max(x, 0).

We get a new objective function by replacing V aR by p,

Fα(ω, p) = p+

∫
[−(ωTx)− p]+f(x)dx

1− α
. (21)

Rockafellar and Uryasev [2002] showed that ES can be minimized by min-

imizing this convex function with respect to ω and p. If the minimum is

attained at (ω∗, p∗), then ω∗ is the optimized portfolio composition (and p∗,
if unique for that ω∗, is the corresponding portfolio’s V aR at confidence level

α). In general the minimizing portfolio need not be unique, though this does

not matter to our efficient frontier analysis below. (Empirically, we always

observed a unique minimizer.)

Below, we sample the multivariate density by Monte Carlo simulation to

estimate Fα(ω, p) by

F̂α(ω, p) = p+

∑n
k=1[−(ωTxk)− p]+

n(1− α)
, (22)

where xk is the k-th sample from some distribution and n is the number of

samples.

Data Sets and estimation

For illustration, we consider in this study portfolios composed of the following

5 stocks: WALT DISNEY, EXXON MOBIL, PFIZER, ALTRIA GROUP

and INTEL, and use adjusted daily closing prices for the period 7/1/2002 to

08/04/2005. The prices are converted to daily log-returns, and from Exhibit

1 we can see that squared log-returns series show some evidence of serial

correlation.

For each stock, we use a GARCH(1, 1) model with Gaussian innovations

for each stock to remove the observed serial return dependence. That is, we

fit parameters α0, α1 and β1 in the following GARCH(1, 1) model of the

log-return series Xt:

Xt = σtZt where Zt ∼ N(0, 1) i.i.d., (23)
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σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1. (24)

We then think of Zt as a “filtered return” which we hope is i.i.d.

From Exhibit 2, we can see that the squared filtered log-returns series

show no evidence of serial correlation; Exhibit 3 shows that heteroscedasticity

clearly exists in the returns of the five stocks.

After obtaining the approximately i.i.d. filtered data, we can estimate

the multivariate density. Note that in the GARCH fitting we assume fil-

tered marginal returns are Gaussian in order to arrive at best fit pseudo-

maximum-likelihood GARCH parameters (see Bradley and Taqqu [2002]),

but the multivariate distribution that best fits the filtered data need not be

a posteriori Gaussian.

By examining QQ-plots versus Normal for those five stocks, or otherwise,

it is easily verified that a Normal distribution is not a good fit in the tails

(see Hu [2005] for some illustrative plots). Therefore we consider several

distributions in the generalized hyperbolic family to model the multivariate

density.

Exhibit 4 shows the maximized log likelihood for fitting the filtered log-

returns to various distributions. It shows again that all the generalized hy-

perbolic distributions we examine have higher log likelihood than the Normal

distribution, and the skewed t has the highest log likelihood, with the Student

t close behind. (QQ plots suggest this is due to better fit in the tails.)

Since models with more parameters can have higher log likelihood simply

due to overfitting of data, we also consider the Akaike information criterion

(AIC), which adds to the log likelihood function a penalty proportional to the

number of model parameters in order to create a measure of the goodness of

fit of a model. Exhibit 4 shows that the models with the optimal AIC are still

the Student t and the skewed t, with the Student t now coming out slightly

ahead. (The related measure known as the Bayesian information criterion

(BIC) leads to similar outcomes.)

Efficient Frontier Analysis

We now study the possible efficient frontiers, for this 5-stock universe, as we

vary the risk measure (StD, 99% V aR, 99% ES) and the modeling distribu-
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tion (Normal, Student t, skewed t).

Suppose we are standing at August 4, 2005, the last date in our data

set, and the holding period is one day. 750 sample data are used in the

estimation. The one day ahead forecasted GARCH volatilities for all the

stocks are denoted σ = (σ1, · · · , σ5)T at that date. The weight constraint

condition is written as

5∑
i=1

ωi = 1, (25)

where we assume the initial capital is 1 and ωi is the capital invested in risky

stock i. We suppose short sales are allowed.

Suppose that the estimated filtered expected log-return of stock i is µ̂i.

The de-filtered forecasted log-return is then µi = σiµ̂i; let

µ = (µ1, · · · , µ5)T . (26)

We have used log-returns in estimating the multivariate distribution with

time-series data, but now this raises the question of how we compute portfolio

return. To compute the expected portfolio log-return corresponding to a

portfolio ω, we should first convert the individual log returns to arithmetic

returns, weight them with ω to obtain the portfolio arithmetic return, and

finally convert back to log return. However, for our daily data with a 1-

day horizon, the difference between log returns and arithmetic returns is

negligible2, so we use ωTµ as a close approximation to the expected portfolio

log-return. (This approximation means that our use of Proposition 5 below

for elliptical distributions is only approximately true, though in practice the

approximation error is not insignificant.)

We now set the expected portfolio log return equal to a constant c,

ωTµ = c, (27)

and find the efficient frontier by minimizing StD, V aR, or ES subject to the

constraints (25) and (27).

2The typical error in portfolio log-returns due to neglecting the conversion between log-
return and arithmetic return is one part in 105 or less for our 1 day horizon, and therefore
is commonly ignored. For much longer horizons, the extra conversion step may be needed.
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Normal Frontier

Under the modeling assumption that returns are Normal, we estimate the

mean and covariance of a multivariate Normal with our filtered data, and

then compute the Normal efficient frontier.

Exhibit 5 shows the filtered expected log returns and the GARCH volatil-

ity forecast on Aug 4, 2005, as well as the best-fit correlation matrix for the

filtered returns of the five stocks.3

We numerically minimize the portfolio variance, 99% V aR, and 99% ES

to compute the Normal frontiers. Exhibit 6 shows the portfolio compositions

and the corresponding StD, 99% V aR and 99% ES. Because the Normal

distribution is elliptical, we expect and see that these three risk measures all

yield the same portfolio composition for a given return. Exhibit 7 shows two

efficient frontiers plotted against 99% ES – where the objective function is

either variance (StD) or 99% ES. The two frontiers are the same because

the optimal portfolios are the same. Note also that changing the confidence

level of the objective function will leave the picture unchanged as long as we

plot the same variable on the horizontal axis.

Student t Frontier

Exhibit 8 shows the expected log return and GARCH volatility forecast for

the filtered data when fitting a Student t distribution; also shown is the

correlation matrix for the five stocks.4 The estimated degree of freedom is

ν = 5.87.

Since the Student t distribution is elliptical, we again expect the same

portfolio compositions on the Student t frontier, whether we minimize StD,

99% V aR, or 99% ES. This is confirmed in Exhibit 9.

From this table, we can also see that the portfolio compositions are dif-

ferent than those of the Normal frontier. Exhibit 10 displays the StD and

3The expected return µ̂ and covariance matrix Σ̂ are first estimated with filtered re-
turns. We then restore the de-filtered expected return µ and covariance matrix Σ by
µi = µ̂iσi and Σ = AΣ̂A, where A=Diag(σ).

4The expected return µ̂ and dispersion matrix Σ̂ are first estimated using filtered
returns. We then restore the de-filtered expected return µ and dispersion matrix Σ by
µi = µ̂iσi and Σ = AΣ̂A, where A=Diag(σ).
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ES (coincident) frontiers on 99% ES - return axes, with the Normal frontier

included for reference.

Normal vs. Student t frontiers

From the portfolio property and our explicit formulas (15), (16), (19), (20)

for V aR and ES, we have

V aRα = ωTµ+ c1ω
TΣω (28)

where c1 is a constant depending only on α for the Normal distribution, and

a different constant depending only on α and ν for the Student t distribution.

Similarly,

ESα = ωTµ+ c2ω
TΣω (29)

for c2 depending only on α and ν.

Since ωTµ is held fixed when minimizing risk for the efficient frontier, all

three risk measures StD, V aR, ES will therefore produce the same efficient

portfolios for both the Normal and the Student t distributions, provided that

we use the same µ and Σ. Since µ is the mean of the Student t distribution

and, from equation (4), Σ is a scalar multiple of the covariance matrix, we

can summarize this as

Proposition 6 Invariance of efficient portfolios. If the vector of asset

returns is multivariate Normal or Student t distributed, with correlation ma-

trix C and mean µ, then the portfolios on the efficient frontier depend on C

and µ, but do not depend on the degree of freedom ν or on whether the risk

measure is chosen to be StD, V aR, or ES.

We stress that fitting a Student t distribution generally yields a different

correlation matrix than one obtained by fitting a Normal distribution. This

proposition means that the difference between the Student t and Normal

frontiers in Exhibit 14 is due solely to the different means and correlations

that arise in estimating the best-fit Normal or Student t distributions.
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The cost of using a Normal model in a Student t world

For a fixed level of expected return, the corresponding fully invested risk-

minimizing portfolio depends on which distribution is used to model returns,

because of differing estimated means and correlations.

As a first example, suppose Adam is a traditional Markowitz mean-

variance manager, using StD as his risk measure. He estimates a multi-

variable Normal distribution to his filtered returns, in effect assuming the

Normal distribution is a good model for realized returns. Adam now believes

his efficient frontier is as shown by the dashed line in Exhibit 11.

However, as we have shown above, the Student t distribution is in fact

a better fit to the data. If we suppose that the “true” distribution is the

estimated Student t distribution, the actual efficient frontier is shown by the

solid line in Exhibit 11. The circles indicate the efficient portfolios that Adam

computes under his incorrect Normal assumption, where we are plotting the

“true” expected log return and standard deviation based on the Student t

distribution. (Note that these portfolios do not lie on the Normal frontier

because Adam’s computation of risk using his Normal distribution gives him

the wrong answer.)

As expected, all of Adam’s portfolios lie below the true frontier. The dis-

tance between the circles and the solid curve in Exhibit 11 illustrates amount

of available return Adam fails to capture because his chosen portfolios do not

lie on the real efficient frontier. For moderate levels of risk he could have

increased his portfolio expected return by 20 or 30 percent if he had chosen

porfolios on the true efficient frontier.

Suppose now that Betty is another manager who uses 99% ES as her

risk measure because of its coherence properties, but for convenience she still

assumes filtered returns are Normal. Her Normal efficient frontier is plotted

as the dashed curve in Exhibit 12. If filtered returns are in fact Student

t distributed, then the true efficient frontier is the solid curve in the same

figure. Here, the Normal frontier is actually inaccessible. As can be seen from

the tables and from the plotted circles, for a fixed return, the risk-minimizing

portfolio Betty chooses is actually not the true ES minimizing portfolio but

is inside the accessible region. Betty is investing sub-optimally due to her

choice of the Normal as modeling distribution.
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Exhibit 12 also illustrates that the minimum variance portfolios are iden-

tical to the minimum ES portfolios – as expected since the Student t is an

elliptical distribution.

A similar discussion, illustrated by plotting frontiers against 99% V aR in

Exhibit 13, shows the results for a third hypothetical manager, Carol, a 99%

V aR minimizer who assumes returns are Normal.

Skewed t Frontier

Exhibit 4 showed that a fitted skewed t distribution has a slightly higher log

likelihood than the Student t because of a small amount of skewness, shown

in Exhibit 14, along with the fitted correlation matrix for filtered returns.

The estimated degree of freedom is 5.93.

We use Monte Carlo simulation5 to find the skewed t frontier by minimiz-

ing expected shortfall. Exhibit 15 shows the 99% level portfolio compositions

and the corresponding 99% ES, and Exhibit 16 shows the 95% level portfolio

compositions and the corresponding 95% ES. Since the skewed t distribu-

tion is not elliptical, the 99% level and 95% level produce slightly different

portfolios.

In Exhibit 17 we show a comparison of the two efficient frontiers, one for

each of the two distributions, against 99% ES. We also include 95% ES to

illustrate that the confidence level now matters. The skewed t and Student

t frontiers are very close for small returns. When returns are large, the two

curves diverge. Note that the estimated µ and Σ are similar for the Student t

and skewed t distributions, so the divergence is attributable to the skewness

parameter in the skewed t distribution, which affects correlations according to

equation (6). Here again, if we suppose that the true distribution of returns

5We use the filtered returns series to estimate a skewed t distribution and then use the
mean-variance mixture definition to sample from the multivariate skewed t distribution to
get the 1,000,000 samples X̂1000000×5. Specifically, in Matlab, we generate 1,000,000 multi-
variate Normal distributed random variables with mean 0 and covariance Σ̂, which is esti-
mated using filtered returns series, then we generate 1,000,000 InverseGamma(ν/2, ν/2)
distributed random variables, finally, we get 1,000,000 multivariate skewed t distributed
random variables by using the mean-variance mixture definition. The restored samples
are X = X̂A, where A = Diag(σ). The restored means are µi = (µ̂i + ν

ν−2 γ̂i)σi where µ̂
and γ̂ are location and skewness parameters respectively estimated using filtered data.

17



is skewed t, the manager who assumes skewness is zero arrives at the wrong

efficient portfolios for large returns. Comparison of Exhibits 20 and 13 show

that skewness has a noticeable effect on both the magnitude of the minimum

ES for large returns, and on the portfolio composition itself.

Conclusion

Distributions matter. When fitting a Normal distribution to non-Normal

data, it is not surprising that we might see inaccurate estimates of means

and correlations. This is confirmed with our daily equity price data.

The result is that the composition of optimized portfolios can be quite

sensitive to the kind of modeling distribution chosen. This is the case even

though our data set shows very few extreme events, so the tails of the distri-

bution are not being directly observed in any detail.

The Student t distribution forms a better fit (in the sense of log likelihood)

to our equity data than does the Normal or several other common families

of Generalized Hyperbolic distributions. The skewed t is slightly better.

When passing from Normal to Student t, the estimated filtered means and

dispersion matrices (Σ) change substantially, leading to a noticeable effect on

the efficient frontiers. Introducing skewness with the skewed t distribution

does not change the estimated correlations or means much, but the skewness

still affects the efficient portfolios for larger values of expected return. There

is some evidence of skewness in our data, but the increased log likelihood

obtained by introducing a skewness parameter is small.

Estimation of the Student t and skewed t distributions can be accom-

plished with the EM algorithm. In the case of the skewed t, we lack explicit

formulas for V aR or ES, so that we must use Monte Carlo simulation to

compute risk in that case.

Since non-elliptical distributions are in many ways less convenient, man-

agers may choose for simplicity to opt for the Student t over the skewed

t distribution, especially when the estimated skewness may be small. The

Student t distribution is easy enough, compared to the Normal, that we rec-

ommend managers graduate at least to that family. They can find a much

better fit to the data at the cost of only one extra parameter (ν), and, be-
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cause we believe real returns are fat-tailed, capture much more of the true

available portfolio return at a given true level of risk.
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Appendix

Distribution Formulas

Definition 7 Generalized Inverse Gaussian distribution(GIG). The

random variable X is said to have a generalized inverse Gaussian(GIG) dis-

tribution if its probability density function is

h(x;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

xλ−1exp

(
−1

2
(χx−1 + ψx)

)
, x > 0, (30)

where Kλ is a modified Bessel function of the third kind with index λ,

Kλ(x) =
1

2

∫ ∞
0

yλ−1e−
x
2

(y+y−1)dy, x > 0 (31)

and the parameters satisfy
χ > 0, ψ ≥ 0 ifλ < 0
χ > 0, ψ > 0 ifλ = 0
χ ≥ 0, ψ > 0 ifλ > 0

In short, we write X ∼ N−(λ, χ, ψ) if X is GIG distributed.

Generalized Hyperbolic Distributions. If the mixing variable W ∼
N−(λ, χ, ψ), then the density of the resulting generalized hyperbolic distri-

bution is

f(x) = c
Kλ− d

2

(√
(χ+ (x− µ)′Σ−1(x− µ)) (ψ + γ′Σ−1γ)

)
e(x− µ)′

Σ−1γ(√
(χ+ (x− µ)′Σ−1(x− µ)) (ψ + γ′Σ−1γ)

) d
2
−λ

,
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(32)

where the normalizing constant is

c =
(
√
χψ)−λψλ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ| 12Kλ(

√
χψ)

,

and | · | denotes the determinant.

Skewed t Distribution. Let X be skewed t distributed, and define

ρ(x) = (x− µ)′Σ−1(x− µ). (33)

Then the joint density function of X is given by

f(x) = c
K ν+d

2

(√
(ν + ρ(x)) (γ′Σ−1γ)

)
e(x− µ)′

Σ−1γ(√
(ν + ρ(x)) (γ′Σ−1γ)

)− ν+d
2

(1 + ρ(x)
ν

)
ν+d
2

, (34)

where the normalizing constant is

c =
21− ν+d

2

Γ(ν
2
)(πν)

d
2 |Σ| 12

.
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Exhibit 1: Correlograms of squared log return series for 5 stocks
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Exhibit 2: Correlograms of squared filtered log return series for 5 stocks
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Exhibit 3: GARCH volatility of log return series for five stocks over time

(in days)
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Model Normal Student t Skewed t VG Hyperbolic NIG
LL -5095.0 -4877.8 -4873.9 -4901.7 -4891.5 -4884.2

AIC 10230 9798 9800 9858 9838 9822

Exhibit 4: Log likelihood (LL) and Akaike information criterion (AIC) of
estimated multivariate densities for six distribution families (larger values

of LL are better, smaller values of AIC are better)
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Stock Disney Exxon Pfizer Altria Intel
Expected filtered return 0.040 0.073 -0.015 0.039 0.027

GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Correlations: Disney 1
Exxon 0.367 1
Pfizer 0.337 0.359 1
Altria 0.189 0.197 0.215 1

Intel 0.420 0.303 0.297 0.168 1

Exhibit 5: Expected filtered log returns, one day ahead forecasted GARCH
volatility, and correlation matrix obtained by fitting a Normal distribution,

on 08/04/2005
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Return StD 99%V aR 99% ES Disney Exxon Pfizer Altria Intel
0 0.0096 0.0223 0.0256 0.319 -0.206 0.528 0.320 0.040

0.0002 0.0084 0.0194 0.0222 0.318 -0.038 0.344 0.333 0.043
0.0004 0.0079 0.0180 0.0207 0.318 0.131 0.161 0.345 0.045
0.0006 0.0082 0.0186 0.0214 0.317 0.300 -0.023 0.358 0.048
0.0008 0.0093 0.0209 0.0241 0.317 0.468 -0.206 0.371 0.050
0.001 0.0109 0.0244 0.0281 0.316 0.637 -0.390 0.384 0.052

0.0012 0.0129 0.0287 0.0331 0.316 0.806 -0.573 0.397 0.055
0.0014 0.0150 0.0335 0.0386 0.316 0.974 -0.757 0.409 0.057
0.0016 0.0173 0.0386 0.0444 0.315 1.143 -0.940 0.422 0.060
0.0018 0.0196 0.0438 0.0505 0.315 1.312 -1.124 0.435 0.062
0.002 0.0220 0.0492 0.0567 0.314 1.480 -1.307 0.448 0.065

Exhibit 6: Portfolio composition and corresponding standard deviation,
99%V aR and 99%ES for the Normal frontier
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Exhibit 7: The Markowitz efficient frontier and the 99% ES frontier for the
Normal distribution. Note that both risk measures give the same results.
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Stock Disney Exxon Pfizer Altria Intel
Expected filtered return 0.015 0.077 -0.018 0.069 0.030

GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Correlations: Disney 1
Exxon 0.363 1
Pfizer 0.378 0.373 1
Altria 0.265 0.271 0.259 1

Intel 0.460 0.324 0.349 0.225 1

Exhibit 8: Expected filtered log returns and correlation matrix for filtered
returns obtained by fitting a multivariate Student t distribution
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Return StD 99%V aR 99% ES Disney Exxon Pfizer Altria Intel
0 0.0095 0.0245 0.0316 0.494 -0.153 0.447 0.247 -0.035

0.0002 0.0086 0.0218 0.0281 0.410 -0.048 0.315 0.336 -0.014
0.0004 0.0080 0.0203 0.0262 0.326 0.057 0.184 0.425 0.008
0.0006 0.0081 0.0201 0.0261 0.242 0.162 0.052 0.515 0.030
0.0008 0.0086 0.0214 0.0278 0.158 0.267 -0.080 0.604 0.051
0.001 0.0097 0.0238 0.0310 0.074 0.371 -0.211 0.693 0.073

0.0012 0.0110 0.0271 0.0352 -0.010 0.476 -0.343 0.782 0.094
0.0014 0.0126 0.0309 0.0402 -0.094 0.581 -0.474 0.871 0.116
0.0016 0.0143 0.0352 0.0457 -0.178 0.686 -0.606 0.961 0.138
0.0018 0.0161 0.0396 0.0515 -0.262 0.791 -0.737 1.050 0.159
0.002 0.0180 0.0443 0.0576 -0.347 0.895 -0.869 1.139 0.181

Exhibit 9: Portfolio composition and corresponding standard deviation,
99%V aR and 99%ES for the Student t frontier
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Exhibit 10: Student t frontier and Normal frontier versus 99% ES. The
Student t frontier is unchanged if we minimize variance instead of ES
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Exhibit 11: The efficient Student t and Normal frontiers vs StD, along with
Adam’s portfolio optimized under the assumption of Normality
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Exhibit 12: The efficient Student t and Normal frontiers vs 99% ES, along
with Betty’s portfolio optimized under the assumption of Normality
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Exhibit 13: The efficient Student t and Normal frontiers vs 99% VaR, along
with Carol’s portfolio optimized under the assumption of Normality
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Stock Disney Exxon Pfizer Altria Intel
location parameters -0.071 0.089 -0.030 0.161 0.042

skewness parameters 0.073 -0.010 0.010 -0.079 -0.010
GARCH volatility 0.0107 0.0128 0.0130 0.0113 0.0156

Correlations: Disney 1
Exxon 0.269 1
Pfizer 0.267 0.275 1
Altria 0.164 0.171 0.157 1

Intel 0.333 0.244 0.251 0.139 1

Exhibit 14: Expected log returns, skewness parameters, GARCH
volatilities, and correlations for filtered returns obtained by fitting a skewed

t distribution
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Return 99% ES Disney Exxon Pfizer Altria Intel
0 0.0320 0.393 -0.219 0.515 0.337 -0.026

0.0002 0.0280 0.383 -0.058 0.328 0.363 -0.015
0.0004 0.0263 0.374 0.101 0.139 0.389 -0.003
0.0006 0.0274 0.381 0.259 -0.051 0.406 0.006
0.0008 0.0312 0.399 0.415 -0.244 0.416 0.013
0.001 0.0367 0.428 0.573 -0.436 0.415 0.021

0.0012 0.0433 0.456 0.733 -0.626 0.413 0.024
0.0014 0.0506 0.485 0.892 -0.817 0.409 0.031
0.0016 0.0583 0.514 1.052 -1.007 0.406 0.036
0.0018 0.0662 0.549 1.209 -1.200 0.404 0.038
0.002 0.0744 0.587 1.365 -1.394 0.399 0.042

Exhibit 15: Portfolio composition and corresponding 99%ES for the skewed
t frontier
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Return 95% ES Disney Exxon Pfizer Altria Intel
0 0.0215 0.354 -0.222 0.515 0.367 -0.013

0.0002 0.0187 0.348 -0.065 0.325 0.393 -0.002
0.0004 0.0175 0.349 0.094 0.136 0.415 0.006
0.0006 0.0182 0.356 0.253 -0.054 0.430 0.014
0.0008 0.0206 0.369 0.412 -0.245 0.442 0.023
0.001 0.0242 0.386 0.570 -0.435 0.449 0.029

0.0012 0.0285 0.407 0.730 -0.625 0.453 0.036
0.0014 0.0333 0.426 0.889 -0.816 0.459 0.042
0.0016 0.0383 0.447 1.047 -1.007 0.466 0.047
0.0018 0.0436 0.470 1.206 -1.197 0.468 0.053
0.002 0.0489 0.492 1.366 -1.387 0.472 0.057

Exhibit 16: Portfolio composition and corresponding 95%ES for the skewed
t frontier
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Exhibit 17: Skewed t efficient frontier at 99% ES or 95% ES versus
Student t frontier
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