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Abstract

Portfolio risk forecasts are often made by estimating an
asset or factor correlation matrix. However, estimation dif-
ficulties or exogenous constraints can lead to correlation
matrix candidates that are not positive semidefinite (psd).
Therefore, practitioners need to reimpose the psd property
with the minimum possible correction. Rebonato and Jäckel
(2000) raised this question and proposed an approach; in
this paper we improve on that approach by introducing a
more geometric perspective on the problem.
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1 Introduction

Forecasts of correlations matrices are important for portfolio risk
management, but they often suffer from estimation problems such
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as spurious outliers in the data, nonsynchronous data, questionable
relevance of past history, and varying levels of confidence bounds.
Also, risk managers may want to alter some entries of an estimated
correlation matrix to account for information not incorporated into
the estimation algorithm itself. The result can be a proposed “tar-
get” correlation matrix that, while visibly symmetric with unit di-
agonal, is not in fact positive semidefinite (psd) because of the
presence of negative eigenvalues.

Non-psd matrices cannot arise as true correlation matrices. More-
over, they cannot be tolerated by the manager because they corre-
spond to the existence of portfolios with negative risk, which, for
example, will spoil portfolio optimization routines. This means the
manager must correct the target matrix.

As a simple example, consider the following 3 × 3 correlation
matrix, which could represent correlations of three assets, indices,
or market factors:

C =

 1 0.9 0.7
0.9 1 0.4
0.7 0.4 1

 .

Suppose, given some additional information, the manager wishes
to adjust the correlation between variables 2 and 3 from 0.4 to 0.3.

We then get a target matrix

C̃ =

 1 0.9 0.7
0.9 1 0.3
0.7 0.3 1

 ,

The eigenvalues of C are (2.35, 0.61, 0.03), and the eigenval-
ues of C̃ are (2.3, 0.71, -0.007). Hence the latter is not a valid
correlation matrix.

Rebonato and Jäckel in [7] proposed a method of correcting the
target by finding the nearest true correlation matrix, where “near-
est” can be interpreted quite broadly (see below). For an n × n
target, the method involves parametrizing the space of true corre-
lation matrices using N = n(n− 1) real angle variables, expressing
the distance to the target matrix as a function of these N variables,
and then applying a standard unconstrained minimization routine
to minimize that distance.



The purpose of this note is to describe how to improve this
method by costlessly reducing the number of variables from N to
N/2. This can represent a substantial savings in computation time
for moderate values of n, since time is exponential in the dimension
of the problem. In the process, we give a geometric description
which is helpful in understanding the characteristics of the problem,
and is useful for analyzing variants of the original question.

Since their paper was published in 2000, a variety of other ap-
proaches to this problem have been published. We comment briefly
on them at the end of this note.

2 Finding the nearest valid correlation

matrix

2.1 Positive Semi-Definiteness

It’s helpful to review the standard terminology and properties. An
n× n matrix A is defined to be positive semi-definite (psd) if it is
symmetric and has non-negative eigenvalues.

The following properties of an n× n matrix A are equivalent:

1. A is psd

2. A is symmetric and xT Ax ≥ 0 for all x ∈ Rn

3. A is the covariance matrix for some n-dimensional random
vector

4. A = BBT for some n× n matrix B.

2.2 Optimization Problem

We need some more notation:

Definition 1. Let Corr(n) denote the set of n×n psd matrices
with 1’s on diagonal, and C(n) denote the n×n symmetric matrices
with 1’s on diagonal, and all elements in [−1, 1].

This means that Corr(n) is the set of all valid n × n correla-
tion matrices, and C(n) is the superset of Corr(n) containing the



n× n matrices that look to the naked eye like correlation matrices
(targets).

With this notation, we can now state the following precise ver-
sion of the manager’s problem:

Optimization Problem: For a given target C̃ ∈ C(n), find
C ∈ Corr(n) closest to C̃ in terms of some suitable norm. That is,
minimize the objective

g(C) = ||C − C̃||2

as C ranges over the space Corr(n) of true correlation matrices.
The norm can be chosen at the discretion of the user to to

emphasize the most important correlations, if needed. A simple
default equally weighted choice is the Frobenius norm ||X||F =
tr(XXT ). However, weighted versions of this norm are equally
permitted.

3 The Quotient Topology of Corr(n)

3.1 Equivariance

It is very helpful to understand more of the structure of Corr(n).
Let B(n) denote the space of n × n matrices with rows of unit
length. As follows from the previous discussion, and as Rebonato
and Jäckel (2000) point out,

Corollary 2. C ∈ Corr(n) if and only if C = BBT for some
B ∈ B(n).

With this in mind, there is a natural mapping

F : B(n)→ Corr(n)

defined by F (B) = BBT .
Rebonato and Jäckel’s proposal for solving the optimization

problem can be described as follows: parametrize B(n) with n(n−1)
real angle variables (each of n rows can range over the (n − 1)-
dimensional unit sphere in Rn), and use F to transfer the parametriza-
tion to Corr(n). The resulting unconstrained objective may then
be optimized with standard nonlinear optimization tools.



However, there is further symmetry in this problem. Let O(n)
denote the orthogonal group, i.e. the set of matrices O such that
OOT = I.

Lemma 3. Suppose B1, B2 are two n × n matrices. Then
B1B

T
1 = B2B

T
2 if and only if there exists O ∈ O(n) with B2 = B1O.

This means that F has the following “equivariance property”:
F (B1) = F (B2) if and only if B1 = B2O for some orthogonal matrix
O. So F−1(C) is the set {BO : O ∈ O(n)} for any B such that
BBT = C. If we think of O(n) as a group acting on B(n) by right
multiplication, then another way to say it is the F -preimage of any
point is an O(n)–orbit, and we can write the topological equivalence

Corr(n) ∼= B(n)/ O(n).

To minimize the objective g, we don’t have to parametrize B(n),
but merely the smaller quotient space B(n)/ O(n), described con-
cretely next.

3.2 Topology of Corr(n)

We know that

B(n) ∼= Sn−1 × · · · × Sn−1 (n times)

To describe the quotient, we find a good representative in each
O(n)-equvalence class (orbit).

By multiplying any B ∈ B(n) on the right by orthogonal ma-
trices, we may arrange the following:

1. Rotate the 1st row to axis 1

2. Rotate the 2nd row to (12)-plane, keeping axis 1 fixed

3. Rotate the 3rd row to (123)-subspace, keeping the (12)-plane
fixed

4. etc.



We get (e.g. 4× 4): 
1 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

 ,

where the ith row is a unit vector with the last n− i entries equal
to zero.

If we denote by Sk the k-dimensional unit sphere, the result is
an element of the triangular product of spheres S(n), defined by

S(n) ≡ S0 × S1 × · · · × Sn−1.

We haven’t quite yet found a unique representative in each
equivalence class, because in each factor of S(n) there are two rep-
resentatives of the same element of Corr(n): upper and lower.

Definition 4. Triangular product of half-spheres
Let Ŝk denote the k-dimensional upper half-sphere (with bound-

ary).
Define

Ŝ(n) ≡ Ŝ0 × Ŝ1 × · · · × Ŝn−1.

This is homeomorphic to a cell of dimension n(n− 1)/2, and

Corr(n) ∼= Ŝ(n)

For optimization, we may now parametrize Ŝ(n) and use the
natural map f .

3.3 Numerical Optimization Framework

The dimension of Corr(n) is n(n − 1)/2, which is equal to the di-
mension of S(n) and Ŝ(n). To avoid constraints, we may use S(n)
instead of Ŝ(n) in optimization. We minimize

min ||C −BBT ||2 = min ||C − f(B)||2,

where B ranges over the triangular product of spheres S(n) (parametrized
by sines and cosines).

Notes:



• The natural map f , restricted to Ŝ(n), is the inverse of the
Cholesky decomposition.

• The Cholesky decomposition is not special – it’s just a con-
venient way to describe the quotient space

Sn−1 × · · · × Sn−1/O(n).

Any other way to choose representatives would also work.

3.4 Back to the 3× 3 Example

Recall

C̃ =

 1 0.9 0.7
0.9 1 0.3
0.7 0.3 1


Nonlinear least squares optimization over 3 dimensional space

of angle parameters gives us:

Ĉ =

 1 0.895 0.697
0.895 1 0.303
0.697 0.303 1


with eigenvalues (2.29, .707, 0).

4 Constrained Optimization Problem

The same ideas work when there are diagonal block constraints.
For example,

Problem 2: Given C ∈ C(n), with diagonal block Θ ∈ Corr(k),
k < n, find closest Ĉ ∈ Corr(n) preserving the block Θ.

C =


Θ ∗

∗ ∗


We want to find a smooth space of representatives B such that

BBT is a correlation matrix with block Θ. Let S(n, k) be the set



of lower triangular k × n matrices with unit rows (k ≤ n). Fix
A ∈ S(n, k) such that AAT = Θ. Let

B =


Ak×n

E(n−k)×n


as E ranges over the space Sk × · · · × Sn−1. (That is, the ith
row of E is an n-dimensional unit vector ei such that eij = 0 for
j = k + i, . . . , n.)

The dimension of this space is n(n−1)
2
− k(k−1)

2
. We optimize as

before.
As a check on the dimension count, note C is of the form

C =

(
Θ M(k, n− k)

M(n− k, k) Corr(n− k)

)
.

Positive definite matrices are open in the space of symmetric ma-
trices, so dimension is

k(n− k) +
(n− k)(n− k − 1)

2
=

n(n− 1)

2
− k(k − 1)

2

5 Concluding remarks

The closest correlation matrix to a given candidate may be obtained
by nonlinear least squares optimization over the space Corr(n) of
n×n correlation matrices, which is nicely homeomorphic to a trian-
gular product of half-spheres. Corr(n) may be easily parametrized
by angle variables, and constraining a fixed diagonal block is easily
accommodated. At the mild cost of doubling the search space (di-
mension unchanged), we may formulate the problem as an uncon-
strained optimization of a nonlinear real-valued function of n(n −
1)/2 real angle variables.

Note, however, that we have an unconstrained but nonconvex
problem, as formulated here. The space of covariance matrices
forms a convex cone; positive semidefinite least squares methods
are available for fast optimization for large n, e.g. [4], [5], [8].



For applications to portfolio risk, there are often natural con-
straints that do not permit a convex approach, so these nonconvex
problems arise naturally. See [1] and [3].

For related geometric approaches to parametrizing Corr(n), see
[2] and [6].
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