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Chapter 1

Introduction

Based on the assumption of a constant volatility, the celebrated Black-Scholes model
can be used to evaluate European style options easily and quickly by using an estimated
volatility or forecast volatility as an input[5]. If this model is perfectly realistic, then
the implied volatility for all options under the same underlying with different strike
and maturities would be the same. However, in the market, it is usually observed that
Black-Scholes implied volatility of the same underlying varies with strikes and maturity,
which are respectively known as the smile effect or sometimes skew effect and the term
structure[11].

There have been various attempts to extend the Black-Scholes theory to account for
the volatility effect and the term structure. One class of models introduces a non-traded
source of risk such as jumps[24] and stochastic volatility[27]. Another class considers the
volatility term as a deterministic volatility function that depends on the spot price and
time, which is usually called the local volatility function. For this assumption, Black-
Scholes model remains a one parameter model and thus retains the completeness of the
model:the ability to hedge options with the underlying asset, is maintained.

In this candiate exam dissertation, we will just focus on calibration of the local volatil-
ity functions. There may be disagreement concerning whether the local volatility function
is the best parameterization for specifying the underlying process. We’ll temporarily by-
pass this subject and leave it for future research. Crepey[26] sheds some light on this
subject in his paper showing that the local delta(the delta of an option with local volatil-
ity) provides a better hedge than the implied delta from Black-Scholes model using both
simulated and real time-series of equity-index data.

Calibration of parameters in a general sense is important because how well a model
behaves usually depends on the extent of successful specification of its parameters. The
approach used to estimate parameters varies according to the intended purpose. For
the Black-Scholes pricing model, one way of choosing the volatility parameter is based
on a forecast of future behavior of the underlying, probably also guided by statistical
information from past behavior. Another way to estimate the volatility parameters is
to calibrate the model with respect to the observed market price of actively traded
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derivatives. This market calibration relies on the anticipation of the trading agents
reflected in the price of traded options and thus the volatility parameters estimated are
consistent with the market. This approach is typically used to price and hedge exotic
derivatives.

There have been a series of studies about calibration of local volatility models of
European style options. Rubinstein[17], Dupire[1] and Derman and Kani[4] all have con-
structed a discrete approximation to the risk neutral process for the underlying in the
form of a bi/trinomial trees. These ”implied” trees are devised to accommodate the
implied volatility smile and term structure. They are effective for consistently pricing an
entire class of standard European options. Nevertheless, in all cases, some ad hoc interpo-
lation or extrapolation from the market prices is needed to permit unique determination
of the local volatility function.

It is established in [1] that the local volatility function can be uniquely determined
from the European options of all strikes and maturities. However, the fact is that there
are only a limited number of European options with different strikes and maturities avail-
able. Therefore the problem of determining the local volatility function can be considered
as an approximation problem from a finite data set with a nonlinear observation func-
tional. Due to the limited number of available option prices, this problem is ill-posed,
which means a small perturbation in the data may lead to a large change in model out-
put. So artificially interpolating available option prices is not a good idea because false
information in mispriced options would be transmitted.

Many inverse problems are ill-posed. Bouchouev and Isakov[8],[9] establish the cali-
bration of local volatility as an inverse problem and prove the uniqueness and stability
issue associated with it. Following this line, most of further studies consider the calibra-
tion problem as an inverse problem. To deal with the ill-posedness, a common technique
called Tikhonov regularization is used to stabilize the problem[18]. There are several
other papers in the literature which prove theoretically the uniqueness and stability issue
of this ill-posed problem using Tikhonov regularization [15],[25],[7].

Lagnado and Osher[22],[23] numerically solve the inverse problem in a non-parametric
space by solving a PDE to compute the update for local volatility in each step. However,
this technique is very computationally demanding due to the large dimension of the
problem. Bodurtha and Jermakyan [13] solve the inverse problem in a non-parametric
space based on a small parameter expansion of the option value function.

Coleman and Li [2] use a cubic spline to both fit the local volatility surface and reduce
the dimension of the problem. Achdou and Pironneau [30] solve the inverse problem using
the Dupire equation but also some linear or cubic spline fitting is assumed. Turinici[29]
proposes to calibrate the local volatility using variance of implied volatility. But again
interpolation is also used in the study. All of these studies essentially consider the inverse
problem in a parametric space, which renders it more tractable by artificially reducing
the dimension of the problem.

Avellaneda et al[21] use a dynamic programming approach and minimize the entropy
function. Crespy[25] solves this inverse problem using Tikhonov regularization in the

3



framework of a trinomial tree.

In this candidate exam, we still propose to solve the inverse problem in a non-
parametric space, i.e., we do not implement any interpolation or extrapolation to fit
the volatility surface. Since most of the inverse problems involve solving a constrained
minimization problem by using the gradient information of a cost function. We also pro-
pose a new way to easily compute the gradient of the cost function without deriving the
adjoint model analytically. This feature can enhance this method’s capability to adapt
to other calibration problems, like exotic options when the analytical adjoint model may
not be easily derived. In addition, we’ll attempt to study how to efficiently quantify
Tikhonov regularization parameter for the inverse problem. Last, most of previous stud-
ies use a relatively small number of options to calibrate the local volatility function. This
study will also investigate the feasibility of calibrating with respect to a large number of
options existing in the market if it’s not too ambitious..
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Chapter 2

Formulation of the Problem

2.1 Local Volatility Model

The local volatility model assumes the price S of an underlying following a general diffu-
sion process of the form:

dS

S
= µdt+ σ(S, t)dWt (2.1)

where µ is the drift, Wt is a standard Brownian motion, and the local volatility σ is a
deterministic function that may depend on both the price S of the underlying and time
t.

2.2 The inverse problem

Suppose we are given the market prices of European options(calls, puts, or both) spanning
a set of expiration dates T1,. . ., TN . Assume that for each expiration date Ti, there are
a set of options with strikes spanning from Ki1, . . ., KiMi

, where the number of strikes
Mi and their prices may be different for each expiration date. Let V a

ij and V b
ij denote the

bid and ask prices, respectively, at the present time t = 0 for an option with maturity Ti
and strike Kij.

Assume that the underlying follows the general stochastic process specified in equation
(2.1). Let V (S, t,K, T, σ) denote the theoretical price of an option with strike K and
maturity T at time t and the underlying’s price is S. If we also assume that the price
S of the underlying follows the stochastic process specified in equation(2.1), the price
function V satisfies the following generalized Black-Scholes PDE:

∂V

∂t
+

1

2
S2σ2(S, t)

∂2V

∂2S
+ (r − q)S∂V

∂S
− rV = 0 (2.2)
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where r is the risk-free continuously compounded interest rate and q is the continuous
dividend yield of the underlying. We just assume r and q are deterministic and constant
in this article.

If the functional form of σ is specified, then the price of V (S0, 0, K, T, σ) corresponding
to a spot price S0 at the present time t = 0 can be uniquely determined by solving
equation (2.2)together with appropriate initial and boundary conditions.

The inverse problem of option pricing or calibration to the market involves finding a
local volatility function σ such that the solution of (2.2) falls between the corresponding
bid and ask market quotes for any option(Kij, Ti), i.e.,

V b
ij ≤ V (S0, 0, Kij, Tj, σ) ≤ V a

ij

for i = 1, . . . , N , and j = 1, . . . ,Mi.

This problem is usually solved by minimizing a functional of the form

G(σ) =
N

Σ
i=1

Mi

Σ
j=1

[V (S0, 0, Kij, Ti, σ)− V ij]
2 (2.3)

where V ij = (V b
ij + V a

ij)/2 is the mean of the bid and ask prices. This G(σ) reasonably
quantifies the misfit between model predicted option prices and market prices of options.
By minimizing this functional G, the model prediction would best fit the market.

By now, calibration to the market is changed into a problem of minimizing G over
some general space of admissible functions. This type of problem is ill-posed because
the set of price observations is discrete and finite. The function σ cannot be uniquely
determined with guaranteed continuous dependence on the market price observations,
which means small perturbation in the price data can result in large changes in the
minimizing function. To render the problem well-posed, regularization should be imposed
on the functional G. One common regularization technique in literature assumes the form
of

F (σ) = G(σ) + λ ‖ 5σ ‖2 (2.4)

where λ is the Tikhonov regularization parameter. This method is actually a first-order
Tikhonov regularization. Another way of regularizing the problem has the form of :

F (σ) = G(σ) + λ ‖ σ − σ0 ‖2 (2.5)

where the regularization is a zeroth-order Tikhonov regularization.

2.3 Tikhonov Regularization

Tikhonov Regularization is important in solution of inverse problems in that it is the
most commonly used method of regularization of ill-posed inverse problems manifested
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by the fact that a small perturbation of the observation data may be leading to a big
change in estimated parameters or input. In fact, every observation is prone to have
observation errors, for example, errors from measuring instruments. In this candidate
presentation, the observation errors mean the errors from mispriced options. There is
also truncation error in our numerical scheme. These errors will all affect the amount of
true information we can get from the system. As we will see in the following example,
Tikhonov regularization serves as a good compromise between what we can get from the
system and the degree of errors in the system. Here we will use a simple example to
illustrate the idea of Tikhonov Regularization. Let us consider a linear inverse problem:

GM = D (2.6)

where G is a model operator, M is the input or parameters characterizing a model and
D consists of observation data. The forward problem is to find D given G. The inverse
problem is to find M given D. For simplicity, we also just view G as a matrix of m rows
and n columns; M and D are vectors of size of n, m respectively.

If there are less observations points than model parameters (m<n), then the number
of constraints is less than the number of unknowns. (2.6) is likely to be a rank-deficient
problem, which means (2.6) may have infinite solutions. If there are more observations
points than model parameters (m>n), then the number of constraints is greater than the
number of unknowns. Because of the random errors in observation data, (2.6) may be
an inconsistent system, which means there might not be an exact solution.

Another reasonable approach to finding the best approximate solution of (2.6) is to
find M that minimizes the misfit, or residual, between the observation data and theoretical
prediction of the forward problem. A traditional strategy is to minimize the L2-norm of
the residual:

‖ GM −D ‖2

This is a general linear least square problem. A method of analyzing and solving
least squares problem that is of particular interest in ill-conditioned and/or rank deficient
systems is the sigular value decomposition, or SVD. In SVD, G is factored into the form
of

G = USV T

Where U is an m by m unitary matrix and V is an n by n unitary matrix, and S is an m
by n diagonal matrix with diagonal elements called singular values. The singular values
along the diagonal of S are customarily arranged in decreasing size, s1 ≥ s2 ≥ · · · ≥
smin(m,n) ≥ 0. Note some of the singular values may be zero.

Using pseudo inverse of G, the solution to (2.6) can be expressed as:

M† = VpS
−1
p UT

p D =
p

Σ
i=1

UT
.,iD

si
V.,i (2.7)
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We can see that the inverse solution can become extremely unstable when one or more
of the singular values, si, is small.

For a generalized linear least square problem, if we consider that observation data
contain noise and that there is no point fitting noise exactly, it becomes evident that
there can be many solutions that adequately fit the data in the sense that ‖ GM −D ‖2
is small enough. The question is how to choose a good solution.

One way of Tikhonov Regularization selects a good solution by

min ‖M ‖2 (2.8)

with M is one of solutions of ‖ GM −D ‖2< δ

Another way of Tikhonov Regularization chooses a good solution by :

min ‖ GM −D ‖2 (2.9)

when ‖M ‖2< ε

A third way of Tikhonov Regularization has the form of :

min ‖ GM −D ‖22 +α2 ‖M ‖22 (2.10)

where α is a regularization parameter. It can be shown that by properly choosing the δ,
ε,α, the three problems(2.8),(2.9),(2.10) yield the same solution. We will just concentrate
on interpreting and solving the damped least square problem (2.10).

The solution to (2.10) can be obtained by augmenting the least squares problem for
GM=D in the following way:

min

∥∥∥∥[ G
αI

]
m−

[
d
0

]∥∥∥∥2
2

Using the pseudo inverse of

[
G
αI

]
, the solution to (2.10) is:

Mα =
k

Σ
i=1

s2i
s2i + α2

i

UT
.,iD

si
V.,i (2.11)

We neglect the derivation process here, see [3] for more details.

The objects

fi =
s2i

s2i + α2
i

are called filter factors. For si � α, fi ≈ 1, and for si � α, fi ≈ 0. For singular
values between these two extremes, as the si decreases, the fi produces a monotonically
decreasing contribution of corresponding model space vectors, V.,i
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For each α, there is an optimal value for both ‖M ‖2 and ‖ GM −D ‖2. We can plot
the curve of the logarithm of the optimal values of ‖ M ‖2 versus ‖ GM −D ‖2. This
curve frequently takes on the characteristic L shape, as illustrated in the following figure,
which is borrowed from [3]. This curve is called L-curve. It happens because ‖ M ‖2
is a strictly decreasing function of α and ‖ GM −D ‖2 is a strictly increasing function
of α. The sharpness of the corner varies from problem to problem. But it is usually
well-defined. One popular criterion for picking the value of α is to choose α that gives
the solution closest to the corner of L-curve, which is called L-curve criterion.

2.4 Solving the inverse Problem

For in-depth analysis of the stability, uniqueness and convergence of the inverse problem,
we refer to studies such as [9],[25],[7].

The minimization of (2.4) or (2.5) is usually obtained with unconstrained large-scale
optimization methods. Using the gradient of cost functional information to perform the
minimization is a popular method. However, finding the gradient of cost function F (σ) is
not an easy task. Many studies use an adjoint method to derive the gradient. However,
this method might not be applicable when the model is complicated, e.g. exotic options.
This article proposes to use automatic differentiation to find the gradient of F , a method
which can be adapted to more complicated models and will be discussed in detail in next
section. Here, some computational issues related to minimizing cost function F (σ) will
be discussed first.

First of all, this inverse problem could easily be considered a large scale optimization
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problem. For large scale optimization problems, there may be many local minima of the
cost function that makes finding the global minimum a challenging problem.

The local volatility function σ(S, t) that we want to calibrate is actually a volatility
surface. To completely specify the volatility surface, we’ll have to determine infinite
number of points on the surface, which is impossible. But since we need to discretize the
problem to solve equation (2.2), the number of σ on the surface σ(S, t) that we want to
calibrate depends on how fine the discretization is.

Say the computational domain is discretized (0, Smax)× (0, Tmax) into Nx segments in
the S dimension and Nt segments in the t dimension, where Smax is the largest S allowed
in the S direction, and Tmax is the furthest maturity, then we’ll have (Nx − 1) × Nt

components of σ(Si, tj) to estimate (i = 1, 2, . . . , Nx; j = 1, 2, . . . , Nt).

Let Nx = 100, Nt = 10, there will be 990 parameters to estimate, which is a big
number. But the discretization in this case is really not very fine. For example, the
current SPX is around 1000. To compute its option price, we discretize the S domain
into Nx = 100 segments uniformly. With this discretization, the Crank-Nicholson scheme
stilll have big truncation error where we conservatively assume Smax to be 1000. If Smax
is assumed to be greater, then the truncation error would be greater too. But increasing
Nx and Nt to improve the accuracy of the solution to equation (2.2) will result in an
increase in the dimension of the optimization problem.

Second, it is not computationally feasible to compute the gradient of F (σ) with
respect to σ using finite difference in that ∂

∂σ
V ij needs to be computed for each option

V ij , where σ is a vector of dimension (Nx ×Nt). If there is a total of M options, then
the Black-Scholes model needs to be run for M × (Nx − 1)×Nt times.

Third, with the adjoint method introduced in section 3, we can reduce the problem
to running the Black-Scholes model just M times in order to compute the gradient of
F (σ). But when M is not small, this process still takes time, which is why we introduce
calibration in the framework of the dual of Black-Scholes Equation, the celebrated Dupire
Equation in the next section.

Fourth, how to reasonably choose the regularization parameter in (2.4) and (2.5) has
not been studied. Hopefully we’ll be able to come up with a scheme to choose a suitable
regularization parameter.

2.5 Calibration of local volatility surface using Dupire

Equation

The reason this article starts setting up the inverse function using Black-Scholes equation
is that Black-Scholes model is very familiar to everybody in mathematics of finance.
Nevertheless, it is not the best model in this case to solve the calibration problem.

When the price of underlying is fixed at current time t, Dupire Equation establishes
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the price of options as a function of strike (K) and maturity (T ). Calling S0 the current
spot price, the price of an European call option C(K, τ) = C(S0, 0, K, τ) is a solution to
the following Dupire Equation:

∂C

∂τ
− 1

2
k2σ2(K, τ)

∂2C

∂2k
+ (r − q)K∂C

∂k
+ qC = 0

with boundary and initial conditions as:

C(K, 0) = (S0 −K)+, K ∈ (0, K̄),
C(0, τ) = S0e

−qτ , τ ∈ (0, τ̄ ],
C(K̄, τ) = 0, τ ∈ (0, τ̄ ].

We refer to [1] for the derivation of Dupire Equation. Using the Dupire Equation, the
theoretical price of all the options with different strikes and maturities can be computed
by solving Dupire Equation only once. Consequently, using the adjoint method intro-
duced in the following section to compute the gradient of cost function G only requires
running the Dupire Equation only once too. Observing the similarity between the Dupire
Equation and Black-Scholes Equation,the numerical code used to solve the Black-Scholes
equation can also be used to solve Dupire Equation with slight modification.
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Chapter 3

Finding the gradient of cost function
using the adjoint model

The adjoint method has recently gained popularity in quantitative finance field . For
example, Giles and Glasserman [16] use it to speed up the calculation of the sensitivity
of Greeks by Monte Carlo simulation. Capriotti and Giles[14] introduce the idea of
adjoint algorithm differentiation to compute the correlation Greeks. Adjoint models are
powerful tools for inverse modeling and they’ve been already widely used in other fields
for sensitivity studies, data assimilation and parameter estimation, such as [19]. Adjoint
models are essentially built using automatic differentiation (AD) tools. The adjoint
algorithm for obtaining the gradient of the cost functional has its advantage when the
number of inputs of a model is larger than the number of outputs and the model is
expensive to run. It can compute the sensitivity of output with respect to input in a
much less costly fashion. In this section, we’ll cover both adjoint algorithm derivation
and also establish its relationship with the gradient of a cost function when the cost
function is in the form of a sum of squares. We’ll introduce first how to use adjoint
model to compute the gradient of cost function with respect to the control variables and
then discuss adjoint algorithm derivation.

3.1 Definition of adjoint operator

Suppose H is a Hilbert space with inner product. Consider a continuous linear operator
A : H → H.

Using the Riesz representation theorem, one can show that there exists a unique
continuous linear operator A∗ : H → H with the following property:

< AX, Y >=< X,A∗Y > for all X and Y

This operator A∗ is the adjoint of A. If X and Y are real vectors, and A and A∗ are
real matrices. Then A∗ is just the transpose of A. A model that uses adjoint operator

12



to compute the gradient of a cost function is called an adjoint model.

3.2 Adjoint Models

Consider a general dynamical system and a model describing this system. Let D ∈ Rm

be a set of observations of the system and suppose that the model can compute the values
Y ∈ Rm corresponding to these observations.

To quantify the misfit we introduce a cost function:

J =
1

2
(Y −D, Y −D)

by the choice of an appropriate inner product (., .) . This implies that least-squares-fitting
is intended: the smaller J is, the better the model fits the data.

Assuming the model is in the form of

F : Rn → Rm

X → Y

where X ∈ Rn is the input or control parameters of the model. Thus, J can be expressed
in terms of X by

J(X) =
1

2
(Y −D, Y −D) =

1

2
(F (X)−D,F (X)−D) (3.1)

This cost function is a legitimate assessment of the misfit between the model predic-
tion and observations. By finding the minimum of this cost function, we’re looking for
control parameters X that fit the model best with the observation. Namely we adjust the
misfit between model output and observations subject to the model serving as a strong
constraint. To find the minimum of J , the gradient of cost function J with respect to X
is desirable.

If we use Taylor expansion on the cost function

J(X) = J(Xi) + (5XJ(Xi), X −Xi) + o(| X −Xi |)

If we neglect the higher order terms, we have

δJ = (5XJ(Xi), X −Xi) = (5XJ(Xi), δXi) (3.2)

Now let’s suppose F is sufficiently smooth, then for each perturbation of Xi, we can
approximate

δY = (A(Xi), δXi) (3.3)
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where A is the Jacobian of F (X) at Xi, which is usually called the tangent linear model
of F . It will approximately compute δY for arbitrage perturbation δXi at Xi. Here we
are essentially linearizing the model F .

From (3.1), the variation of cost function J around Xi is:

δJ =
1

2
(δY, F (Xi)−D) +

1

2
(F (Xi)−D, δY ) = (δY, F (Xi)−D)

because inner product is commutative.

Using (3.3) and definition of adjoint operator, we have

δJ = (A(Xi)δXi, F (Xi)−D) = (A∗(Xi)(F (Xi)−D), δXi) (3.4)

where the operator A∗ is the adjoint of linear operator A. A∗(X) is called the adjoint
model of F .

Compare (3.4) with (3.2), we have:

5XJ(Xi) = A∗(Xi)(F (Xi)−D). (3.5)

Equation (3.5) establishes that we can compute the gradient of cost function J(x)
using adjoint model of F . But why do we want to use the adjoin model to compute the
gradient? The reason is that when the dimension of the input X is really large, we’ll
have to run n + 1 times the model F if using finite difference scheme to compute the
gradient of cost function J(X). This becomes computationally very expensive when the
model F is large and complicated. By using (3.5) we can just run the adjoint model
once to compute the gradient of cost function J(X). A detailed analysis of the required
numerical operations yields that this computation takes only 2−5 times the computation
of the cost function[6]. (3.5) is usually used to derive gradient when the dimension of the
input n is greater than the dimension of the output m.

Both linear operators A and A∗ depend on point Xi, at which the linearization takes
place. According to (3.5), the misfit (F (Xi) − D) represents the forcing of the adjoint
model.

3.3 Adjoint code construction

Now the question is how to find tangent linear model A and its adjoint A∗? Suppose
we want to simulate a dynamical system numerically. The development of a numerical
simulation program is usually done in three steps. First, analytical differential equations
are formulated. Then a discretization scheme is chosen and the discrete equations are
constructed. The last step is to implement an algorithm that solves the discrete equations
in a programming language. The construction of the tangent linear and adjoint code may
start after any of these three steps. So there are three ways to construct the adjoint code.
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If using the first methods, the analytical adjoint operator needs to be derived first.Then
the analytical adjoint model needs to be discretized and solved using a numerical algo-
rithm. However, since the commutativity rule doesn’t apply to discrete operators, one
has to be careful in constructing the discrete adjoint operators. If constructing the ad-
joint model from discrete model equations,no adjoint operator needs to be constructed
explicitly. However, the coding required is both extensive and cumbersome.

This article is concerned with the third method, where the adjoint code is developed
directly from the numerical code of the model. For one thing, analytical adjoint operator
need not be derived analytically, which makes it possible for application to complicated
models. For another thing, the methodology of automatic algorithm differentiation can
be used here to speed up the coding process. Adjoint model is actually just the reverse
mode of automatic differentiation(AD) for a model, while tangent linear model is just
the forward mode of AD for a model. To understand it, we need to first know what the
forward mode of AD for a model is. A numerical model is an algorithm that can be
viewed as a composition of differentiable functions F , each representing a statement in
the numerical code:

Y = F (X) = (Fk ◦ Fk−1 ◦ . . . ◦ F1 ◦ F0)(X)

where the l-th step has an explicit representation:

Fl : Rnl−1 → Rnl (l = 1, . . . , k)
Z l−1 → Z l

The vector Z l holds nl intermediate results that are valid after the lth step of the
algorithm. Using chain rule, the Jacobian matrix of F (X) or tangent linear model can
be expressed as:

A = F ′(X) = F ′k |Zk−1 ·F ′k−1 |Zk−2 · . . . · F ′1 |Z1 ·F ′0 |X (3.6)

Since matrix product is associative, this product can be evaluated in any order. When
evaluated in forward mode, the intermediate derivatives are computed in the same order
as the model computes the composition.

A∗ is the transpose of A. (3.6) says that A∗ is a product of the transpose of inter-
mediate Jacobian matrices in (3.6). Now that we have an idea of the explicit expression
of adjoint model A∗, to fully understand the logic behind constructing the adjoint codes
automatically, knowledge of adjoint variable, variables that serve as input or intermediate
results for the adjoint model A∗, is necessary.

Consider a simple case when the mapping F is: F : Rn → R1, and let the decompo-
sition of F be:

F =
K
�
l=1

Fl
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For an intermediate result Z l,

Z l =
l
�
i=1

Fl(X) = Fl(Z
l−1) (1 ≤ l ≤ K)

The intermediate variation depends on the previous intermediate variation by

δZ l =
∂Fl(Z

l−1)

∂Z l−1 |Zl−1 δZ l−1 (3.7)

The adjoint of an intermediate result δZ l is defined as the gradient of F with respect
to the intermediate result:

δ∗Z l = 5Zl

K
�

i=l+1
Fi |Zl (3.8)

In a moment, it will be clear why it is defined this way. This definition also explains
the meaning of adjoint variables.

From the definition of gradient of (3.2), we obtain

δF = (δ∗Z l, δZ l) (3.9)

(3.9) holds for every level of l, so

(δ∗Z l−1, δZ l−1) = (δ∗Z l, δZ l)

= (δ∗Z l, ∂Fl(Z
l−1)

∂Zl−1 |Zl−1 δZ l−1) using(3.7)

= ((∂Fl(Z
l−1)

∂Zl−1 )∗ |Zl−1 δ∗Z l, δZ l−1)

This holds for all δZ l−1, so that

δ∗Z l−1 = (
∂Fl(Z

l−1)

∂Z l−1 )∗ |Zl−1 δ∗Z l (3.10)

where (∂Fl(Z
l−1)

∂Zl−1 )∗ |Zl−1 is the transpose of ∂Fl(Z
l−1)

∂Zl−1 |Zl−1 . Equation (3.10) just il-

lustrates that adjoint model A∗ is a product of the transpose matrix of ∂Fl(Z
l−1)

∂Zl−1 |Zl−1

evaluated in reverse order, which is consistent with what’s said right after (3.6). This
also explains why the adjoint variable is defined as (3.8).

Knowing what adjoint model is and what adjoint variable stands for, we’re ready to
code the adjoint model. The general idea is that the adjoint code is written backward
from the tangent linear model line by line, subroutine by subroutine. This could be a
cumbersome process. Fortunately, for each kind of statement in a code, simple rules exist
for constructing its corresponding adjoint statements, which makes AD in reverse mode
possible[20]. In constructing the adjoint code, a piece of adjoint code fragment will be
created for each code statement in the model code. The adjoint code fragments are then
composed in reverse order compared to the model code. A simple example is given in
the following section.

16



3.4 Example of constructing the adjoint code for a

simple model

The simple example provided here is just used in order to demonstrate the concept of
the adjoint model of a model, the meaning of adjoint variables and how to code adjoint
model easily. It is not intended to cover exhaustively the general principles behind the
reverse mode of automatic differentiation.

F = X ∗ sin(Y 2), F is a function of variable X and Y , and assume X,Y , and F all
depend on time t.

To get the adjoint of this model F (X, Y ), we first generate the Tangent linear model

δF n = sin((Y n−1)2)δXn−1 +Xn−1 ∗ cos((Y n−1)2)2Y n−1δY n−1

Using the Jacobian, this can be expressed as: δF
δY
δX

n

=

 0 cos((Y n−1)2)2Y n−1 sin((Y n−1)2)
0 1 0
0 0 1

 δF
δY
δX

n−1

where n denotes time step. Given initial perturbation of δX and δY , this model computes
how the perturbation would be transmitted after linearizing the model F .

Thus the adjoint model would be ADF
ADY
ADX

n−1

=

 0 0 0
cos((Y n−1)2)2Y n−1 1 0

sin((Y n−1)2) 0 1

 ADF
ADY
ADX

n

(3.11)

ADF, ADY and ADX represents the adjoint variable of F , Y and X respectively.

(3.11) can be written as:

ADY = ADY + ADF ∗X ∗ cos(Y ∗ Y ) ∗ 2 ∗ Y
ADX = ADX + ADF ∗ sin(Y ∗ Y )
ADF = 0.0

The assignment of ADF = 0.0 must be the last one since its previous value is used
by all other corresponding adjoint assignments. That ADF needs to be set to zero in
the end is because the previous value of F is overwritten by executing the assignment.
Consequently, the previous value has no influence on the function output considering
ADF measures the gradient of output with respect to F .

In practice, it is not necessary to write each piece of code in this way to find out
its adjoint counterpart. Since generating adjoint model is essentially finding derivative
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in reverse order, some standard procedures can be followed to speed up the process.
Some AD tools also exist to do this job though some afterward debugging is very nec-
essary, such as the Tangent linear and Adjoint Model Compiler(TAMC), available at
http://www.autodiff.com/tamc.

This adjoint model computes the derivative of ∂F
∂X

, ∂F
∂Y

(or sensitivity) reversely. When
integrated backward in time, this adjoint model would enable us the find out source area
that leads to the final perturbation of ADF .

3.5 Test of accuracy of the adjoint code

The generation of correct adjoint code for the simple example above is trivial. But for
a complicated system, it is not an easy task and thus it becomes especially necessary
to test the correctness of adjoint code. The adjoint code is tested using the following
identity, see Navon et al[12]

< AδX,AδX >=< δX,A∗(AδX) > for any δX (3.12)

where δX is an arbitrary perturbation vector. It is also the input of code A. A represents
the tangent linear code or a segment of it, say a subroutine, a do loop or even a single
statement. A∗ is the adjoint of A. If (3.12) holds within machine accuracy, it can be said
that the adjoint is correct versus the tangent linear code.

1. Test of accuracy of the Tangent Linear Model(TLM)
To use (3.12) test the correctness of adjoint model, the tangent linear model A is
used. Thus first we need to test the correctness of tangent linear model A. The
accuracy of tangent linear model determines the accuracy of the adjoint model and
the accuracy of the gradient of cost function with respect to the control variables.

To verify A, we use the fact of (3.3) that A is linearization of the model F :

F (X + alpha ∗ δX)− F (X) = A(alpha ∗ δX) +O(alpha2)

where δX is an arbitrary perturbation around X.

We compare the result of TLM with the difference of the twice model call, with
and without perturbation respectively. If the TLM is right, then the ratio between
these two,

r =
F (X + alpha ∗ δX)− F (X)

A∗(alpha ∗ δX)
= 1 +O(alpha) (3.13)

will approach zero as α gets close to zero.
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2. Verification of Adjoint Model
After verifying the TLM, We can then use it to test the adjoint model using the
adjoin identity:

< AδX,AδX >=< δX,A∗(AδX) > for any X (3.14)

where δX is a perturbation around X. If (3.14) holds within machine precision,
then it can be said that the adjoint code is correct with respect to tangent linear
model.

3. Verification of Gradient
Even though the TLM and adjoint models are correct, the gradient generated by
the adjoint code needs to be verified because the accuracy of the adjoint gradient
not only depends on the accuracy of the tangent linear and adjoint model, but also
on the approximation involved in linearizing the cost function (3.3).

Suppose the initial X has a perturbation αh, where α is a small scalar and h is a
vector of unit length. According to Taylor expansion, we get the cost function:

J(X + αh) = J(X) + αhT 5 J(x) +O(α2)

We can define a function of α as:

Φ(alpha) =
J(X + αh)− J(X)

αhT 5 J(X)
= 1 +O(α) (3.15)

So as α tends to zero but not close to machine precision, this ratio Φ should be
close to 1. Here the gradient of 5J(X) is calculated by the adjoint model.

This test is usually called α-test.
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Chapter 4

Numerical Results

In this example, we use the closed option price for SPX on Apr 2ND as our raw
data to estimate the volatility surface. We will calibrate the local volatility function
using Dupire Equation, i.e., we consider local volatility as a function of strike and
maturity. To simplify the problem, we only look at options with maturity on June
18th, and also assume volatility is just a function of strike.

There are a total of 121 options available. But we just use 45 of those options
that are near the money (0.9S < K < 1.1S) for two reasons. First, calibration to
the market is usually performed with respect to liquid instruments in the market.
Trading volumes for options that are deep in or out of the money are really low.
Second, in our numerical test, we find out that the price of options that are deep
in or out of the money do not depend on volatility very much: the dependence is
small and they cannot pass neither the tangent linear test nor gradient test.

The SPX on Apr 2ND was 1178.10. The options that we selected for calibration
had strikes ranging from 1070 to 1300. The interest rate r was 0.0015 which was
attained from 13-week treasury bill and the dividend rate q was assumed to be zero.
The computational domain(0, Kmax)× (0, T ) is discretized uniformly into 2000 grid
points in the K direction and 10 levels in the T direction withKmax = 2000 and T
= maturity = 0.21096.

From here we also see the large scale nature of the problem. Dividing the K
direction of computational domain into 2000 segments means there is a total of
1999 parameters that should be estimated because sigma is a function of K. For
each K, there is a sigma corresponding to it. If sigma is assumed to be a function
of both K and T, the number of parameters to be estimated is even larger.

After constructing the code to solve the Dupire Equation, we use TAMC automatic
differentiation to generate the code for its tangent linear and adjoint model. After
debugging the code, we use the following test to test the validity of the tangent
linear code and adjoint code.
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4.1 Verification of the Tangent Linear Model

Using (3.5.3), X is volatility in our case. X is constructed by multiplying a random
number from (0,1) to each component of X. The ratio r with respect to alpha is
listed in table1 and plotted differently in Figure 1 and Figure 2. We can see that as
α decreases from 10−2 to 10−11, the ratio r approaches 1 with high accuracy. When
α is between 10−6 to 10−8, the ratio r is closest to 1.

α r
0.1000000000E + 00 0.1032539117E + 01
0.1000000000E − 01 0.1003277163E + 01
0.1000000000E − 02 0.1000327956E + 01
0.1000000000E − 03 0.1000032798E + 01
0.1000000000E − 04 0.1000003282E + 01
0.1000000000E − 05 0.1000000326E + 01
0.1000000000E − 06 0.1000000720E + 01
0.1000000000E − 07 0.1000000248E + 01
0.1000000000E − 08 0.9999700354E + 00
0.1000000000E − 09 0.1000381809E + 01
0.1000000000E − 10 0.9990800710E + 00
0.1000000000E − 11 0.1064862770E + 01
0.1000000000E − 12 0.1665776365E + 01
0.1000000000E − 13 0.3622784142E + 02
0.1000000000E − 14 0.4005300720E + 04

Table1
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Figure1

Figure 2
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4.2 Transpose Test

< AδX,AδX >= 1630954.41614603

< δX,A∗(AδX) >= 1630954.41614618

We checked the adjoint model segment by segment, do loop by do loop, and sub-
routine by subroutine. With double precision, the identity (3.12) is accurate within
13 digits. This verified the correctness of adjoint model against TLM.

4.3 Gradient Verification

Instead of minimizing (2.3), the cost function is constructed as a weighted sum of
squares of the difference:

J(σ) =
N

Σ
i=1

Mi

Σ
j=1

[(V (S0, 0, Kij, Ti, σ)− V ij)w(ij)]2 (4.1)

where V (S0, 0, Kij, Ti, σ) is the computed option price, V ij = (V b
ij + V a

ij)/2 is the
mean of the bid and ask price, w(ij) is a weight that represents our confidence in
the difference between computed price and observed price. This weight is necessary
if we want to give equal weight to price difference between V (S0, 0, Kij, Ti, σ) and
V ij for different options. A natural choice of the weight function that describes our
confidence in an option price is the bid and ask spread of the option. So in our
numerical experiment, we use 1/(bid-ask) as our weight function.

α-test with respect to the above cost function is performed and the result is listed
in table 2. Figures 3 and 4 show the variation of Φ(α) and log| 1 − Φ(α) |. One
can see that as α decreases form 10−5 to 10−15, Φ(α) approaches unity with high
accuracy until α is close to 10−15. This agrees with our expectation that as α gets
close to machine precision, we don’t expect the α-test still holds. This also means
that for perturbations within the range of 10−5 to 10−15, the gradient calculated
from the adjoint model is reliable.
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α Φ(α)
0.100000000000000 9.531840348585277E − 004

1.000000000000000E − 002 2.191575720234569E − 002
1.000000000000000E − 003 0.594217183916692
1.000000000000000E − 004 1.14053859511066
1.000000000000000E − 005 1.01354376144459
1.000000000000000E − 006 1.00134884779927
1.000000000000000E − 007 1.00013482926537
1.000000000000000E − 008 1.00001348318852
1.000000000000000E − 009 1.00000136139467
1.000000000000000E − 010 1.00000018208732
9.999999999999999E − 012 1.00000002313088
1.000000000000000E − 012 1.00000458015879
1.000000000000000E − 013 1.00002898391480
1.000000000000000E − 014 0.999068189779104
1.000000000000000E − 015 0.995200111444452
1.000000000000000E − 016 1.10314937913147
1.000000000000000E − 017 1.90083677818741
1.000000000000000E − 018 1.20358660627587
1.000000000000000E − 019 16.6011945693224

Table2

Figure3
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Figure4

4.4 Minimization and Discussion

Up to this point, we haven’t performed any regularization yet. We just minimized
the cost function (4.1). Setting the initial α = 0.5, we performed the minimization
using LBFGSB. The gradient of the cost function is derived from adjoint model.
The cost function is reduced from an order of 105 to an order of 102 within 2
minutes. The option prices computed using the optimal volatility are plotted in
figure 5. We can see that for options whose strikes are not immediately around the
stock price (0.9S < K < 0.95S, 1.05S < K < 1.1S), the computed option prices
approach the market price well. But for options whose strikes are in immediate
vicinity of the stock price(0.95S < K < 1.05S), the computed option prices are
about two or three times the bid-ask spread away from the market prices. The
optimal volatility σ(K) is plotted with respect to K/S0 in figure 6. We can see
that the curve of σ(K) has the property of a smile: the volatility near the money
is smaller than the volatility that’s deep in or out of money. When K is either far
away from the money or deep in the money, the optimal volatility doesn’t change
too much from the initial value.

We also tested the impact of minimization using different initial σ. However, the
result is not as good. The cost function could still be minimized significantly
by a magnitude of 103. But the cost function is much greater than the optimal
cost function obtained above. The optimal σ(K) obtained is also not as good
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by exhibiting some negative values at some region. This means that the success
of this large scale minimization problem depends on the initial input, which is
in another way of saying that the large scale minimization may get trapped at
some local minima instead of a global minimum. We also tested the minimization
using other optimization algorithms such as Sequential Quadratic Programming
and Conjugate Gradient method. No better results were obtained either. This may
be due to the fact that the cost function is not as yet regularized, or something
more fundamental, the identifiability of the local volatility, which we just realize
recently. These questions lead to our future research.

4.5 Future Research

At the moment this research has not as yet addressed the Tikhonov regularization.
The next step will consist in implementing a regularization on the cost function to
find out if we can further reduce the cost function and possibly achieve convergence
to the global minimum.

We observe from Figure 6 that σ(K) for K that is deep in or out of the money
doesn’t change too much from the initial value. One way to reduce the dimension-
ality of the problem may be by introducing nonuniform discretization the compu-
tational domain: to have coarse grids when K is deep in or out of the money and
to have fine grids when K is near the money. Another alternative for reducing the
dimension may be to use adaptive grid generation techniques.

One issue that is probably more fundamental and important comes into our sight
recently: the identifiablity of the local volatility parameters in this inverse problem.
The problem of identifiablity in parameter identification is related to the uniqueness
problem in parameter identification. Whether a parameter is identifiable or not has
important implications in an inverse problem of parameter identification. When a
parameter is identifiable, one can try to develop an algorithm that gives the unique
exact solution of the inverse problem. When parameters are not identifiable, one
must expect that a procedure of solution of the inverse problem will give a non-
unique solution, generally dependent on some parameters or initializers for iterative
algorithms. It is possible sometimes to find methods that lead to a unique solution
of the inverse problem, which in general could be different from the correct solution.
Here we just want to briefly introduce the definition of identifiability from [10].

The parameter λ is said to be identifiable if from

λ, λ′ ∈ ∧ad h = Hf (λ) h′ = Hf (λ
′) h′ = h

it follows that
λ = λ′

where ∧ad is the admissible parameter subset, and Hf is a mapping from ∧ad to
the observation space. It requires that for every different observation, there is a
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different set of paramters. This condition, however, cannot be achieved in any
practical problem due to modeling and observation errors.

Relaxation or extension of the definition of identifiablity comes in many forms
depending on the purpose of parameter identification, properties of observation
data, and the nature of the underlying model. Good examples can be found in [28].
Identifiablity of this inverse problem will also be another important topic for our
future research.

Figure5

Figure6
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