
Elementary Topology

Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a
few others along the way.

Definition. A topology on a set X is a collection T of subsets of X that satisfies the following three
properties:

(i) ∅ ∈ T and X ∈ T ,

(ii) T is closed under finite intersections; that is, if U1, . . . , Un ∈ T , then⋂
{Ui: 1 ≤ i ≤ n} ∈ T ,

(iii) T is closed under arbitrary unions; that is, if Uγ ∈ T for all γ ∈ Γ, then⋃
{Uγ : γ ∈ Γ} ∈ T .

The pair (X, T ) is called a topological space, or a space. Elements of T are called open sets in X (more
precisely, open sets in (X, T ) or open sets in the topology T ).

Given a set X, TI = {∅, X} is called the indiscrete topology on X and TD = P(X) (or 2X), the set of all
subsets of X, is called the discrete topology on X.

Problem List

1. Let X be a set and let {Aγ : γ ∈ Γ} be an indexed collection of subsets of X (that is, Aγ ⊂ X for every
γ ∈ Γ). Then

(i) X −
⋂
γ∈ΓAγ =

⋃
γ∈Γ(X −Aγ).

(ii) X −
⋃
γ∈ΓAγ =

⋂
γ∈Γ(X −Aγ)

2. Let {A1, A2, A3, . . .} be a countable collection of subsets of a set X. If each Ai is countable then
⋃∞
i=1Ai

is countable.

3. Let (X, T ) be a topological space and let A ⊂ X. Suppose that for each x ∈ A, there is an open set U
such that x ∈ U ⊂ A. Then A is open in X.

4. Let C be any family of subsets of a set X. Then there is a unique, smallest topology T (C) on X with
C ⊂ T (C).

5. Cofinite topology. Let X be any set and let T = {A ⊂ X:X − A is finite or A = ∅}. Then T is a
topology on X.

6. Cocountable topology. Let X by any set and let T = {A ⊂ X:X − A is countable or
A = ∅}. Then T is a topology on X.

7. Euclidean Topology on the real line. Let IR be the real line and let U ⊂ IR be open provided that for
each x ∈ U , there is an ε > 0 such that Nε(x) = {y ∈ IR: |x − y| < ε} ⊂ U . Show that this describes a
topology on IR.
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8. Euclidean Topology on n-dimensional euclidean space. Let IRn consist of all ordered n-tuples of real
numbers. Given

x = (x1, x2, . . . , xn) ∈ IRn, let ‖x‖ =

[ n∑
i=1

x2
i

]1/2

.

A subset U ⊂ IRn is open provided that for each x ∈ U , there is an ε > 0 such that Nε(x) = {y ∈
IRn: ‖x− y‖ < ε} ⊂ U . Show that this describes a topology on IRn.

9. Let TX and TY be topologies on X and Y , respectively. Is T = {A×B:A ∈ TX , B ∈ TY } a topology on
X × Y ?

10. T is the discrete topology on X iff (if, and only if) every point in X is an open set. [When no confusion
arises, we make no distinction between x and {x}.]

Definition. Let (X, T ) be a topological space. A subcollection B ⊂ T is a basis for T if each open set is
the union of members of B.

11. Let (X, T ) be a topological space. A family B ⊂ T is basis for T iff, for each U ∈ T and x ∈ U , there is
a B ∈ B with x ∈ B ⊂ U .

12. Let B ⊂ T be a basis for T . A set U ⊂ X is open iff, for each x ∈ U , there is a B ∈ B with x ∈ B ⊂ U .

13. Let B be a family of subsets of a set X that forms a cover of X (i.e., X = ∪{B:B ∈ B}) and suppose
that for each pair B, B′ ∈ B and each x ∈ B ∩ B′, there exists a B′′ ∈ B with x ∈ B′′ ⊂ B ∩ B′. Then
B is a basis for a unique topology T (B) on X.

Definition. Two bases B and B′ in X are equivalent if T (B) = T (B′).

14. Two bases B, B′ in X are equivalent iff both of the following hold:

(i) for each B ∈ B and x ∈ B, there is a B′ ∈ B′ with x ∈ B′ ⊂ B,

(ii) for each B′ ∈ B′ and x ∈ B′, there is a B ∈ B with x ∈ B ⊂ B′.

15. Let T be the euclidean topology on IR2. Let

B1 = {Nε(x):x ∈ IR2 and ε > 0}

and
B2 = {Nε(x):x ∈ IR2, ε > 0, and ε is rational}.

Then both B1 and B2 are bases for T .

16. Consider the following collections of subsets of IR:

B1 = {(a, b): a < b} ; B2 = {[a, b): a < b}.

Then B1 and B2 are bases for topologies T (B1) and T (B2), respectively, on IR. Are T (B1) and T (B2)
equal?

We call T (B1) the standard topology on IR. We call T (B2) the lower limit topology on IR, and we write
IR` for IR with the lower limit topology.

17. Is the euclidean topology on IR the same as the standard topology?
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Definition. Let (X, T ) be a topological space. A subcollection C ⊂ T is a subbasis for T provided T = T (C).

18. The collection of open rays in IR is a subbasis for the standard topology on IR.

19. Let (X, T ) and (Y,S) be topological spaces. Let B = {U × V ⊂ X × Y :U ∈ T , V ∈ S}. Then B is a
basis for a (necessarily) unique topology T (B) on X × Y .

Definition. T (B) is called the product topology on X × Y .

Definition. Let π1:X × Y → X and π2:X × Y → Y be defined by π1(x, y) = x and π2(x, y) = y. These
are called the projection mappings.

20. Let (X, T ) and (Y,S) be topological spaces. Let C = {π−1
1 (U):U ∈ T } ∪ {π−1

2 (V ):V ∈ S}. Then T (C)
is the product topology on X × Y ; i.e., C is a subbasis for the product topology on X × Y .

Definition. Let (X, T ) be a topological space and let Y be a subset of X. The subspace (relative, induced)
topology on Y is TY = {Y ∩ U :U ∈ T }. The space (Y, TY ) is called a subspace of (X, T ). Sometimes, we
suppress explicit mention of the topologies and say that Y is a subspace of X.

21. Let (Y, TY ) be a subspace of (X, T ).

(i) If B is a basis for T , then BY = {B ∩ Y :B ∈ B} is a basis for TY .

(ii) If C is a subbasis for T , then CY = {C ∩ Y :C ∈ C} is a subbasis for TY .

22. Let IR be the reals with the standard topology and IR` the reals with the lower limit topology.

(i) Draw pictures in the plane that represent basic open sets in IR× IR, in IR`× IR, and in IR`× IR`.

(ii) Let L be a straight line in the plane. Describe the topology that L inherits as a subspace of IR× IR,
of IR`× IR, and of IR`× IR`. [Be careful; you might get different topologies depending on which line L you
pick.]

Definition. Let (X, T ) be a topological space. A subset A ⊂ X is closed provided X − A is open; that is,
provided X −A ∈ T .

23. Let (X, T ) be a topological space.

(i) ∅ and X are closed sets.

(ii) The union of a finite collection of closed sets is closed.

(iii) The intersection of an arbitrary collection of closed sets is closed.

Definition. Let (X, T ) be a topological space. A neighborhood (nbhd) of a point x ∈ X is any open set
containing x.

Definition. Let (X, T ) be a topological space and let A ⊂ X. A point x ∈ X is a limit point of A provided,
for each nbhd U of x, U ∩ (A− {x}) 6= ∅. The set of all limit points of A in X is called the derived set of A
and is denoted by A′. The closure of A in X, denoted by Cl(A) or ClX(A), is the set A∪A′: Cl(A) = A∪A′.

24. Given A ⊂ X and x ∈ X, x ∈ Cl(A) iff for every nbhd U of x, U ∩A 6= ∅.

25. Let (X, T ) be a topological space and suppose A,B ⊂ X.

(i) If A ⊂ B, then A′ ⊂ B′.
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(ii) (A ∩B)′ ⊂ A′ ∩B′.

(iii) (A ∪B)′ = A′ ∪B′.

26. Let (X, T ) be a topological space and suppose A,B ⊂ X.

(i) A ⊂ Cl(A) and Cl(A) is a closed set.

(ii) A is closed iff A = Cl(A).

(iii) Cl(A) is the smallest closed set containing A.

(iv) If A ⊂ B, then Cl(A) ⊂ Cl(B).

(v) Cl(Cl(A)) = Cl(A).

(vi) Cl(A ∪B) = Cl(A) ∪ Cl(B).

(vii) Cl(A ∩B) ⊂ Cl(A) ∩ Cl(B).

Definition. Let (X, T ) be a topological space and let A ⊂ X. A point x ∈ A is an interior point of A in X
provided there is a nbhd N of x with x ∈ N ⊂ A. The interior of A, denoted by Int(A) or IntX(A), is the
set of all interior points of A in X.

27. Let (X, T ) be a topological space and suppose A,B ⊂ X.

(i) Int(A) ⊂ A and Int(A) is an open set.

(ii) A is open iff A = Int(A).

(iii) Int(A) is the largest open set contained in A.

(iv) If A ⊂ B, then Int(A) ⊂ Int(B).

(v) Int(Int(A)) = Int(A).

(vi) Int(A ∪B) ⊃ Int(A) ∪ Int(B).

(vii) Int(A ∩B) = Int(A) ∩ Int(B).

Definition. Let (X, T ) be a topological space and let A ⊂ X. A point x ∈ X is a boundary point of A
provided each nbhd of x meets both A and X−A (i.e., for every nbhd N if x, N∩A 6= ∅ and N∩(X−A) 6= ∅).
The set of all boundary points of A in X is called the boundary of A in X and is denoted by Bd(A) or
BdX(A).

28. Let (X, T ) be a topological space and let A,B ⊂ X.

(i) Bd(A) = Cl(A)− Int(A).

(ii) Bd(A) is closed.

(iii) Cl(A) = Int(A) ∪ Bd(A).

What can you say about the relationship between Bd(A ∩B) and Bd(A) ∩ Bd(B); between Bd(A ∪B)
and Bd(A) ∪ Bd(B)?

Terminology. Whenever it is possible to do so without creating confusion we shall henceforth refer to a
“topological space X” or a “space X”, meaning a set X with an underlying topology T . A subset A of X is
“open” (“closed”) provided A ∈ T ((X − A) ∈ T ). Likewise, we may refer to a “basis” (or “subbasis”) for
X or a “basic open set” in X, meaning an underlying subset B(or C) of T that forms a basis (or subbasis)
for T or one of its members.
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Definition. Let X be a topological space. A subset D ⊂ X is dense in X provided Cl(D) = X.

29. The following are equivalent:

(i) D is dense in X.

(ii) If F is closed and D ⊂ F , then F = X.

(iii) Each nonempty basic open set meets D.

(iv) Each nonempty open set meets D.

(v) Int(X −D) = ∅.

30. Find a countable dense subset of IR (with the standard topology), of IRn.

31. Suppose a subset D of a space X meets every nonempty member of a subbasis. Is D necessarily dense
in X?

32. Let Y be a subspace of a topological space X.

(i) A ⊂ Y is closed in Y iff A = F ∩ Y for some closed subset F of X.

(ii) If A ⊂ Y , then ClY (A) = Y ∩ ClX(A).

(iii) If A ⊂ Y , then Y ∩ IntX(A) ⊂ IntY (A).

(iv) If A ⊂ Y , then BdY (A) ⊂ Y ∩ BdX(A).

33. (i) If D is dense in X, is D ∩ Y dense in Y ?

(ii) Show that equality does not necessarily hold in 32. (iii) and (iv).

Terminology. Let f :X → Y be a function. There are induced functions f :P(X)→ P(Y ) and f−1:P(Y )→
P(X) defined by f(A) = {f(a): a ∈ A} for A ⊂ X, and f−1(B) = {x ∈ X: f(x) ∈ B} for B ⊂ Y .

34. Given a function f :X → Y and a family {Bγ}γ∈Γ of subsets of Y , then

(i) f−1(∩γ∈ΓBγ) = ∩γ∈Γf
−1(Bγ).

(ii) f−1(∪γ∈ΓBγ) = ∪γ∈Γf
−1(Bγ).

(iii) f−1(Y −B) = X − f−1(B) for B ⊂ Y .

35. Given a function f :X → Y and a family {Aγ}γ∈Γ of subsets of X, establish the appropriate analogs of
34. (i)-(iii).

Definition. Suppose that X and Y are topological spaces. A function f :X → Y is continuous at a point
x ∈ X provided for each nbhd V of f(x) there is a nbhd U of x with f(U) ⊂ V . The function f :X → Y is
continuous if it is continuous at each x ∈ X.

36. Given a function f :X → Y , the following are equivalent:

(i) f is continuous.

(ii) f−1(V ) is open for each open set V in Y .

(iii) f−1(C) is closed for each closed set C in Y .

Definition. If f :X → Y and A ⊂ X, the restriction of f to A is the function f |A:A → Y defined by
f |A(a) = f(a) for all a ∈ A.
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37. (i) If f :X → Y and g:Y → Z are continuous, then g ◦ f :X → Z is continuous.

(ii) If f :X → Y is continuous and A ⊂ X is a subspace, then f |A:A→ Y is continuous.

(iii) The projection mappings π1:X × Y → X and π2:X × Y → Y are continuous.

38. Suppose f :X → Y and suppose B (respectively, C) is a basis (respectively, subbasis) for the topology
on Y .

(i) f is continuous iff f−1(B) is open for each B ∈ B.

(ii) f is continuous iff f−1(C) is open for each C ∈ C.

39. f :X → IR is continuous iff for each real number b, f−1((−∞, b)) and f−1((b,∞)) are open.

A.
(i) Let X be a topological space, and define the diagonal map ∆ : X → X ×X by ∆(x) = (x, x). Prove
that ∆ is continuous.

(ii) If X, Y , Z, and S are sets and f : X → Y and g : Z → S are functions, define

f × g : X × Z → Y × S

by (f × g)(x, z) = (f(x), g(z)). Prove that if X, Y , Z, and S are all topological spaces and f and g are
continuous, then f × g is continuous.

B.
(i) Define A : IR× IR→ IR by A(x, y) = x+ y. Prove that A is continuous.

(ii) Define M : IR× IR→ IR by M(x, y) = xy. Prove that M is continuous.

(iii) Define I : IR−{0} → IR by I(x) = 1/x. Prove that I is continuous.

40. Suppose f, g:X → IR are continuous.

(i) |f |a is continuous for each a ≥ 0.

(ii) af + bg is continuous for all real numbers a and b.

(iii) f · g is continuous.

(iv) 1/f is continuous on {x ∈ X: f(x) 6= 0}.

[All operations are pointwise.]

Definition. A function f :X → Y is open if f(U) is open for each open set U ; f is closed if f(F ) is closed
for each closed set F .

41. Give examples that show that continuous, open, and closed functions are “independent” concepts.

42. Suppose f :X → Y is closed. For any subset S ⊂ Y and open set U containing f−1(S), there is an open
set V containing S with f−1(V ) ⊂ U .

43. f :X → Y is open iff f(B) is open for each basic open set B.

44. f :X → Y is open iff f(C) is open for each subbasic open set C.

Definition. A bijection f :X → Y is called a homeomorphism provided both f and f−1:Y → X are
continuous. X and Y are said to be homeomorphic, and we denote this relationship by X ≈ Y .
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45. Given a bijection f :X → Y , the following are equivalent.

(i) f is homeomorphism.

(ii) f is continuous and open.

(iii) f is continuous and closed.

(iv) f induces a bijection from TX to TY .

46. If f :X → Y is a homeomorphism and A ⊂ X, then f |A:A→ f(A) is a homeomorphism.

Definition. f :X → Y is an embedding if f :X → f(X) is a homeomorphism.

47. Define i1: IR → IR2 by i1(x) = (x, 0), d: IR → IR2 by d(x) = (x, x), and e: [0, 1) → IR2 by e(x) =
(cos 2πx, sin 2πx). Which of these are embeddings?

Definition. For y ∈ Y , let iy:X → X ×Y be defined by iy(x) = (x, y) and let Sy = X ×{y} ⊂ X ×Y . The
function iy is the inclusion of X over y and Sy is the slice of X through y.

48. The function iy is an embedding with image Sy.

Definition. A collection A of subsets of a space X is locally finite if each point of X has a nbhd which
meets only finitely many A ∈ A. A collection A is a cover of X provided X = ∪A.

49. Suppose A is a locally finite collection of closed subsets of a space X. Then ∪A is a closed subset of X.

50. Suppose A is a locally finite cover of X by closed sets and that, for each A ∈ A, fA:A→ Y is continuous
and fA = fB in A ∩B for each A,B ∈ A. Then there is a (unique) continuous function f :X → Y with
f = fA on A for each A ∈ A.

Definition. Two subsets H and K of a space X are said to be separated, written H|K, provided H 6= ∅,
K 6= ∅, Cl(H) ∩K = ∅, and H ∩ Cl(K) = ∅.

Definition. A space X is connected if it is not the union of two separated subsets. A subset A ⊂ X is
connected if it is connected as a subspace of X.

51. Suppose that H|K and A ⊂ H ∪K. If A is connected, then either A ⊂ H or A ⊂ K.

52. A subset A of IR is connected iff A has the following property: if a, b ∈ A, c ∈ IR, and a < c < b, then
c ∈ A. Describe the connected subsets of IR.

53. The following are equivalent.

(i) X is connected.

(ii) The only subsets of X that are both open and closed are X and ∅.

(iii) X is not the union of two non-empty, disjoint open sets.

(iv) If f :X → {0, 1} is continuous, where {0, 1} has the discrete topology, then f is not onto.

54. If X is connected and if f :X → Y is continuous, then f(X) is a connected subset of Y .

55. Suppose A is a collection of connected subspaces of a space X such that ∩A 6= ∅. Then ∪A is connected.
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56. Suppose A is a collection of connected subspaces of a space X such that for all A,B ∈ A, A and B are
not separated. Then ∪A is connected.

57. Suppose that A is a connected subset of a space X. If A ⊂ B ⊂ Cl(A), then B is connected. In
particular, the closure of a connected set is connected.

58. Show that the following subsets of IR2 are connected.

(i) The union of the x-axis and the y-axis.

(ii) The graph of f : IR→ IR, where f is an arbitrary continuous function.

(iii) {(x, y) : 0 < x ≤ 1 and y = sin(1/x)} ∪ ({0} × [−1, 1]). This diabolical set is often called the
“topologist’s sine curve.”

59. If X and Y are connected, then so is X × Y .

60. Intermediate Value Theorem. Suppose X is a connected space, f :X → IR is continuous, and
f(a) < r < f(b) for some points a, b ∈ X. Then there exists x ∈ X such that f(x) = r.

61. X is connected iff every open covering U of X has the following property: for each pair of non-empty
sets U, V ∈ U there are finitely many sets U1, U2, . . . , Un ∈ U such that U ∩ U1 6= ∅, Ui ∩ Ui+1 6= ∅
(i = 1, 2, . . . , n− 1), and Un ∩ V 6= ∅.

Definition. Given points x and y in a space X, a path from x to y in X is a continuous function f : [a, b]→ X
of some closed interval in IR into X such that f(a) = x and f(b) = y. A space X is path connected if every
pair of points in X can be joined by a path in X.

62. If n ≥ 2, then IRn−{0} is path connected.

63. If n ≥ 2, then IR is not homomorphic to IRn.

64. Each path connected space is connected, but a connected space need not be path connected.

65. If X and Y are path connected, then so is X × Y .

66. A connected open subset of IRn is path connected.

Separation Axioms

Suppose X is a topological space.

T0: X is a T0-space if for x 6= y there is an open set U containing one of x or y, but not the other.

T1: X is a T1-space if for x 6= y there is an open set U containing x, but not y.

T2: X is a T2-space (or a Hausdorff space) if for every X 6= Y there are disjoint open sets U and V such
that x ∈ U and y ∈ V .

Definition. A space X is regular if for every x ∈ X and every closed set F ⊂ X not containing x, there are
disjoint open sets U and V such that x ∈ U and F ⊂ V .

Definition. A space X is normal if for every pair F,G of disjoint closed sets in X there are disjoint open
sets U and V such that F ⊂ U and G ⊂ V .
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T3: X is a T3-space if X is T1 and regular.

T4: X is a T4-space if X is T1 and normal.

67. If X is a T1-space, then points in X are closed subsets of X.

68. T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0, but none of these implications can be reversed.

69. (i) X is regular iff given x ∈ X and a nbhd U of x, there exists a nbhd V of x such that x ∈ V ⊂
Cl(V ) ⊂ U .

(ii) X is normal iff given a closed set F in X and an open set U ⊃ F there exists an open set V such
that F ⊂ V ⊂ Cl(V ) ⊂ U .

70. A subspace of a Hausdorff space is Hausdorff; X × Y is Hausdorff iff each of X and Y is Hausdorff.

71. A subspace of a regular space is regular; X × Y is regular iff each of X and Y is regular.

72. A closed subspace of a normal space is normal; if X × Y is normal, then each of X and Y is normal.

Definition. A space X is completely normal if each of its subspaces is normal.

73. A space X is completely normal iff for every pair of separated subsets H and K of X there are disjoint
open sets U and V such that H ⊂ U and K ⊂ V .

Definition. A space X is second countable (satisfies the second axiom of countability) if it has a countable
basis. We abbreviate this by “X is 2◦”.

74. Every subspace of a 2◦ space is a 2◦ space; X × Y is 2◦ iff each of X and Y is 2◦.

75. If X is 2◦, then every open covering of X has a countable subcovering; i.e., if U is a collection of open
sets that covers X, then there is a subcollection V ⊂ U such that V is countable and covers X.

Definition. A space X is Lindelœf if every open covering contains a countable subcovering.

Definition. A space X is separable if it contains a countable dense set.

76. If X is 2◦, then X is separable.

77. IRn is a 2◦ space. IR` is separable, but not 2◦.

78. A subspace of a separable space need not be separable. An open subspace of a separable space, however,
is separable.

79. If X is 2◦, then every subspace of X is separable.

80. IR` is Lindelœf but IR`× IR` is not Lindelœf.

Definition. A metric or distance function on a set X is a function d:X × X → IR having the following
properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X,
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(ii) d(x, y) = 0 iff x = y,

(iii) d(x, y) = d(y, x) for all x, y ∈ X,

(iv) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. (Triangle inequality)

Given ε > 0, {y ∈ X: d(x, y) < ε} is called the ε-ball about x or the ε-neighborhood about x and is denoted
by any of the following:

Bd(x, ε), B(x, ε), Bε(x), N(x, ε), Nε(x).

81. Suppose X is a set with a metric d. Let B = {Bd(x, ε):x ∈ X, ε > 0}. Then B is a basis for a topology
Td on X. We call Td = T (B) the metric topology on X induced by d, and we call (X, d) a metric space
with metric d.

Definition. A topological space (X, T ) is called a metrizable space if its topology is induced by a metric on
X; i.e., if there is a metric d on X such that T = T (B), where B = {Bd(x, ε):x ∈ X, ε > 0}.

Definition. Two metrics d and d′ on a set X are equivalent, denoted d ∼ d′, provided Td = Td′ .

82. Define a metric d′ on IR2 by d′((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|. Then d′ ∼ d, where d is the
euclidean metric on IR2 defined by d(x, y) = ‖x− y‖ (see # 8).

83. Suppose d and d′ are metrics on X. d ∼ d′ iff for each x ∈ X and ε > 0, the following two conditions
hold:

(i) there exists δ > 0 such that d(x, y) < δ ⇒ d′(x, y) < ε,

(ii) there exists δ′ > 0 such that d′(x, y) < δ′ ⇒ d(x, y) < ε.

84. Let d be a metric on X. Define d∗:X ×X → IR by d∗(x, y) = min{d(x, y), 1}. Then d∗ is a metric on X
that is equivalent to d.

Definition. Let (X, d) be a metric space.

(i) Given x ∈ X and A ⊂ X, A 6= ∅, d(x,A) = inf{d(x, a): a ∈ A}.

(ii) Given nonempty subsets A,B of X, d(A,B) = inf{d(a, b): a ∈ A and b ∈ B} = inf{d(a,B): a ∈ A}.

(iii) Given A ⊂ X, A 6= ∅, the diameter of A, denoted diamdA, or diamA, is diamdA = sup{d(x, y):x, y ∈ A}.

(iv) Given A ⊂ X, A 6= 0, the restriction of d to A, denoted dA, is the metric dA = d|A×A on A.

85. Let d be a metric on X.

(i) d(x,A) = 0 iff x ∈ Cl(A). Thus, Cl(A) = {x ∈ X: d(x,A) = 0}.

(ii) If A is a nonempty subset of X, then the function f :X → IR defined by f(x) = d(x,A) is continuous.

86. Every subspace of a metric space is metrizable. In fact, if (X, d) is a metric space and A ⊂ X, then the
restriction of d to A metrizes the subspace topology on A.

Definition. A neighborhood bases at a point x in a space X is a collection Bx of nbhds of x having the
property that if U is any nbhd of x there exists B ∈ Bx such that B ⊂ U . A space X is first countable
(satisfies the first axiom of countability), denoted 1◦, if there is a countable neighborhood basis at each point
of X.

87. Every metric space is 1◦.
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88. Let d be a metric on X. Then the following are equivalent.

(i) X is 2◦.

(ii) X is separable.

(iii) X is Lindelœf.

89. Every metric space is (completely) normal.

90. Suppose f :X → Y . Then f is continuous at x ∈ X iff for every ε > 0 there exists δ > 0 such that if
d(x, y) < δ then d(f(x), f(y)) < ε.

Definition. Let IN denote the set of natural numbers. A sequence in a space X is a function f : IN→ X. If
f(n) = xn, we usually denote the sequence by {xn}∞n=1, or simply {xn}. A sequence {xn} in a space X is
said to converge to a point x in X, denoted xn → x or limxn = x, provided that for every nbhd U of x in
X, there exists N ∈ IN such that if n ≥ N, then xn ∈ U .

91. Let (X, d) be a metric space. A sequence {xn} in X converges to x ∈ X iff for every ε > 0, there exists
N ∈ IN such that n ≥ N implies d(xn, x) < ε.

92. Let X be 1◦ and suppose A ⊂ X. Then x ∈ Cl(A) iff there is a sequence {an} in A that converges to x.

93. Let X be 1◦ and suppose f :X → Y , where Y is any space. Then f is continuous at x ∈ X iff
f(xn)→ f(x) for every sequence xn → x.

94. Is IR` metrizable? Is IR`× IR` metrizable?

Definition. A space X is compact if every open covering of X has a finite subcovering; that is, X is compact
iff for every cover U of X by open sets, there exists U1, U2, . . . , Un ∈ U such that {U1, U2, . . . , Un} covers X.

95. The following are equivalent.

(i) X is compact.

(ii) X satisfies the finite intersection property for closed sets: If F is a family of closed sets in X such
that ∩F = ∅, then there is a finite subset {F1, F2, . . . , Fn} of F such that F1 ∩ F2 ∩ . . . ∩ Fn = ∅.

96. If f :X → Y is continuous and X is compact, then f(X) is compact.

97. A compact subset of a Hausdorff space X is closed in X.

98. A closed subspace of a compact space is compact.

99. A compact Hausdorff space is regular.

100. A compact Hausdorff space is normal.

101. X × Y is compact iff each of X and Y are compact.

102. Suppose X is a compact space, Y is Hausdorff, and f :X → Y is continuous. Then

(i) f is a closed map.

(ii) If f is a bijection, then f is a homeomorphism.

11



103. If X is compact and if p:X × Y → Y is the projection, then p is a closed mapping.

104. Suppose A ⊂ X and Y is compact. Let U be a nbhd of A× Y in X × Y . Then there is a nbhd V ⊃ A
in X such that V × Y ⊂ U .

Definition. A subset A of a metric space (X, d) is bounded if there is a point x ∈ X and a number M > 0
such that A ⊂ B(x,M).

105. If A is a compact subset of metric space (X, d), then A is closed and bounded.

106. Every closed interval in IR is compact.

107. Heine-Borel Theorem. A subset A of IRn is compact iff A is closed and bounded.

108. Max-min Theorem. Suppose X is compact and f :X → IR is continuous. Then there are points
a, b ∈ X such that f(a) ≤ f(x) ≤ f(b) for every x ∈ X.

109. Let (X, d) be a metric space. If A ⊂ X is closed, C ⊂ X is compact, and A ∩ C = ∅, then d(A,C) > 0.
Can the compactness hypothesis on C be dropped?

110. Let (X, d) be a compact metric space, and let U be an open cover of X. Then there exists a positive
number λ, called a Lebesgue number for the cover U , with the following property: each ball B(x, λ) is
contained in at least one element U of U .

111. Let (X, d) be a compact metric space, let (Y, d′) be a metric space, and suppose f :X → Y is continuous.
Then for each ε > 0, there is a λ > 0 (depending only on ε) such that f(B(x, λ)) ⊂ B(f(x), ε)) for every
x ∈ X (f is uniformly continuous).

112. Bolzano-Weierstrass Property. If X is compact, then every infinite subset of X has a limit point in
X.

113. The unit interval [0, 1] is not compact as a subspace of IR`.

114. Suppose X is a compact space and F1 ⊃ F2 ⊃ . . . is a descending sequence of nonempty, closed subsets
of X. Then ∩∞i=1Fi 6= ∅.

115. A metric space (X, d) is compact iff every continuous real valued function on X is bounded.

116. Let X be a Hausdorff space and suppose F1 ⊃ F2 ⊃ . . . is a descending sequence of compact, connected,
nonempty subsets of X. Then ∩∞i=1Fi is a compact, connected, nonempty subset of X. (A compact,
connected Hausdorff space is called a continuum.)

117. Let (X, d) be a compact metric space and let f :X → X be a continuous function.

(i) f is a contraction if there is a non-negative number α < 1 such that d(f(x), f(y)) ≤ αd(x, y) for all
points x, y ∈ X. Show that if f is a contraction then there is a unique point a ∈ X such that f(a) = a.

(ii) f is an isometry if d(f(x), f(y)) = d(x, y) for all x, y ∈ X. Show that if f is an isometry then f is
surjective.

(iii) Give examples to show that (i) and (ii) are false if X is not compact.
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118. Suppose Y is compact and f :Y → Y is continuous. Show that there is a nonempty subset A of Y such
that f(A) = A.

119. Let (X, TX) be a topological space, Y a set, and π : X → Y a surjection. Define a collection of subsets
of Y by

TY = {U ⊂ Y : π−1(U) ∈ TX}.

(i) Prove that TY is a topology on Y . It is called the quotient topology.

(ii) Prove that π is continuous when Y is given the quotient topology.

(iii) Prove that TY is the largest topology we can put on Y that will make π continuous.

120. Let X and Z be a topological spaces, π : X → Y a surjection, and give Y the resulting quotient topology.
If f : Y → Z is a function, then f is continuous if and only if f ◦ π : X → Z is continuous.

Definition. Let X be a space, and suppose ∼ is an equivalence relation on X. For each x ∈ X, let [x]
denote the equivalence class of x; i.e. [x] = {y ∈ X : x ∼ y}. Let X/∼ denote the set of equivalence classes
of X under ∼. Define the projection map π : X → X/∼ by π(x) = [x]. Since π : X → X/∼ is a surjection,
we may define the quotient topology on X/∼ as above. In fact, whenever we refer to X/∼ as a topological
space, it is assumed we mean the quotient topology, unless otherwise indicated.

121. Let X be a space with an equivalence relation ∼ and projection mapping π : X → X/∼. Let f : X → Z
be a continuous function that is constant on each equivalence class under ∼. Then there is a unique
map g : (X/∼)→ Z such that f = g ◦ π, and g is continuous.

122. Suppose X is compact and Y is Hausdorff. Let f : X → Y be continuous and surjective. Define a relation
∼ on X by x0 ∼ x1 iff f(x0) = f(x1). Then ∼ is an equivalence relation, and X/∼ is homeomorphic to
Y .

123. Let X be a topological space, ∼ an equivalence relation on X, and X/∼ the corresponding quotient
space. Prove:

(i) If X is compact, then X/∼ is compact.

(ii) If X is connected, then X/∼ is connected.

124. Define an equivalence relation on X = [0, 1] × [0, 1] by (s0, t0) ∼ (s1, t1) iff t0 = t1 and t1 > 0. Prove
that X/∼ is not Hausdorff.

Definition. Define the n-dimensional unit ball Bn ⊂ IRn by Bn = {x ∈ IRn : ‖x‖ ≤ 1}. Define the
n-dimensional unit sphere Sn ⊂ IRn+1 by Sn = {x ∈ IRn+1 : ‖x‖ = 1}.

125. Define an equivalence relation on Bn by x ∼ y iff ‖x‖ = ‖y‖ = 1. Prove that Bn/∼ is homeomorphic to
Sn.

Definition. Define an equivalence relation on IRn+1−{0} by x ∼ y iff there exists a λ ∈ IR−{0} such that
x = λy. Define real projective n-space by

IRPn = (IRn+1−{0})/∼.

126. Define an equivalence relation ∼ on Sn by x ∼ y iff x = ±y. Prove that Sn/∼ is homeomorphic to IRPn.
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127. Define an equivalence relation ∼ on Bn by x ∼ y iff ‖x‖ = ‖y‖ = 1 and x = ±y. Prove that Bn/∼ is
homeomorphic to IRPn.

128. Prove that IRPn is compact, connected, and Hausdorff.

129. Prove that each point in IRPn has a neighborhood that is homeomorphic to an open set in IRn.

Definition. Let C denote the set of complex numbers. Define an equivalence relation on Cn+1 − {0} by
x ∼ y iff there exists λ ∈ C− {0} such that x = λy. Define complex projective n-space by

CPn = (Cn+1 − {0})/∼.

130. Considering S2n+1 as a subset of Cn+1, define an equivalence relation ∼ on S2n+1 such that S2n+1/∼
is homeomorphic to CPn.

131. Prove that CPn is compact, connected and Hausdorff, and that every point in CPn has a neighborhood
that is homeomorphic to Cn.

132. Prove that CP1 is homeomorphic to S2.

133. Using 2 of the last 3 problems, define a surjective map H : S3 → S2. This beautiful map is called the
Hopf map.

134. S1 = {(x, y) ∈ IR2 |x2 + y2 = 1} is called the unit circle or the 1-sphere. Show that there is no 1:1
continuous function of S1 into IR and that there is no surjection of S1 onto IR.

Definition. A subset A of a space X is relatively compact if its closure Cl(A) in X is compact. A space X
is locally compact if it is Hausdorff and each point has a relatively compact neighborhood.

135. The following are equivalent:

(i) X is locally compact.

(ii) For each x ∈ X and neighborhood U of x, there is a relatively compact open set V with x ∈ V ⊂
Cl(V ) ⊂ U .

(iii) For each compact set C and open set U ⊃ C, there is a relatively compact open set V with
C ⊂ V ⊂ Cl(V ) ⊂ U .

(iv) X has a basis consisting of relatively compact open sets.

Definition. A compactification of a space X is a pair (X̃, h) consisting of a compact space X̃ and a
homeomorphism h of X onto a dense subset of X̃.

136. One-point compactification.

(i) Any locally compact space X can be embedded in a compact space X̃ so that X̃−X is a single point.

(ii) (Uniqueness). Any two spaces X̃ and Ỹ having property (i) are homeomorphic.

137. The one-point compactification of IR1 is S1. More generally, let

Sn = {x ∈ IRn+1: ‖x‖ =

( n+1∑
i=1

x2
i

)1/2

= 1},
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the n-sphere. Then Sn is the one-point compactification of IRn.

138. Let X be locally compact. Then the one-point compactification X̃ of X is metrizable if and only if X
is 2◦.

139. Baire Property. Let Y be locally compact and for each i ∈ IN, let Di be a dense open subset of Y . Then
∩
i∈INDi is dense in Y .

Definition. A space Y is a Baire space if the intersection of each countable family of open dense sets in Y
is dense. Thus, every locally compact space is a Baire space.

140. Let Y be a Baire space. If {An|n ∈ IN} is a countable closed covering of Y , then at least one An must
contain an open set. That is, IntY (An) 6= ∅ for some n ∈ IN.

141. IR1 is a Baire space. IR` is a Baire space.

142. The set of rational numbers in IR1 is not a Baire space. The set of irrationals is a Baire space.

Definition. Let (X, d) be a metric space. A sequence {xn} in X is called d-Cauchy if for every ε > 0 there
exists N ∈ IN such that d(xn, xm) < ε, whenever n,m ≥ N .

143. Let (X, d) be a metric space.

(i) Every convergent sequence in X is d-Cauchy.

(ii) Every subsequence of a d-Cauchy sequence is d-Cauchy.

(iii) If a d-Cauchy sequence in X has a limit point, then it converges to that point.

(iv) If a d-Cauchy sequence does not converge, then it has no convergent subsequence.

Definition. Let X be a metrizable space. A metric d for X is called complete if every d-Cauchy sequence
in X converges. In this case (X, d) is called a complete metric space.

Definition. A metrizable space X is called topologically complete if a complete metric for X exists. To
indicate that d is a complete metric for X, we say that X is d-complete.

144. Let (X, d) be a metric space, and assume that d has the property: there exists ε > 0 such that for all
x ∈ X, Bd(x, ε) is relatively compact. Then d is a complete metric for X.

145. Give an example of a metric space (X, d) that is topologically complete, but not complete.

146. Every locally compact metric space is topologically complete. Furthermore, if X is compact metric, then
every metric for X is a complete metric.

147. If X and Y are homeomorphic spaces and X is topologically complete, then so is Y .

148. If X is topologically complete, then every closed subspace A is topologically complete. Furthermore, if
X is d-complete, then A is dA-complete, where dA is the restriction of d to A.

149. If (X, d) is a metric space (not necessarily complete) and A ⊂ X is dA-complete, then A is closed in X.

150. A countable product
∞∏
i=1

Yi is topologically complete if and only if each factor Yi is topologically complete.
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151. Baire’s Theorem for Complete Spaces. Any topologically complete space is a Baire space.

152. Let X be d-complete and let f :X → X be d-contractive (i.e., there exists α, 0 ≤ α < 1, such that
d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X). Then f is continuous and has exactly one fixed point.

153. Let X be a metrizable space and d a given metric on X. Then X can be isometrically embedded as a
dense subset of a complete space (X∗, d∗).

154. X∗ and d∗ in 139 are unique up to isometry: if X is embedded isometrically in a complete space (X◦, d◦),
then (X∗, d∗) and (X◦, d◦) are isometric.

Definition. A subset F of a space X is called an Fσ-subset of X if F = ∪
i∈INFi, for some countable collection

{Fi} of closed subsets of X. A subset G of X is a Gδ-subset of X if G = ∩
i∈INGi for some countable collection

{Gi} of open subsets of X. Thus, countable unions of closed sets are Fσ’s, and countable intersections of
open sets are Gδ’s.

155. The irrationals in IR is a Gδ-subset of IR.

156. Let X be an arbitrary metric space, and suppose A ⊂ X. Let Y be complete and let f :A → Y be a
continuous map. Then there is a Gδ-subset G ⊃ A of X and a continuous function F :G→ Y such that
F |A = f .

157. Lavrentieff’s Theorem. If X and Y are complete metric spaces and h is a homeomorphism of A ⊂ X
onto B ⊂ Y , then h can be extended to a homeomorphism h∗ of A∗ onto B∗, where A∗ and B∗ are
Gδ-subsets of X and Y , respectively, and A ⊂ A∗ ⊂ ClXA and B ⊂ B∗ ⊂ ClYB.

158. Let Y be complete and let A ⊂ Y be a topologically complete subset. Then A is a Gδ-subset of Y .

159. Mazurkiewicz’s Theorem. Let Y be a complete space. Then A ⊂ Y is topologically complete if and
only if A is a Gδ-subset of Y .

160. The set of irrational numbers in IR is topologically complete.

161. The set of rational numbers in IR is not topologically complete.

162. Show that if A is any Gδ-subset of IR, then there is a function f : IR→ IR that is continuous at all points
of A and discontinuous at all other points of IR.

163. Let X be a metric space such that X = A ∪ B, where A and B are topologically complete. Then X is
topologically complete. [Hint: Prove that the union of two Gδ-subsets is a Gδ-subset and use 139.]

The Axiom of Choice and the Tychonoff Theorem

Definition. Let {Aγ : γ ∈ Γ} be a collection of sets. A choice function for {Aγ : γ ∈ Γ} is a function
f : Γ → ∪Aγ such that f(γ) ∈ Aγ for all γ ∈ Γ. The cartesian product of {Aγ : γ ∈ Γ}, denoted by

∏
γ∈Γ

Aγ ,

(or, just
∏
Aγ , if no confusion arises) is the set of all choice functions for {Aγ : γ ∈ Γ}.

Axiom of Choice. If {Aγ : γ ∈ Γ} is a nonempty collection of nonempty sets, then
∏
Aγ 6= ∅.

Recall that a relation R on a set X is a subset of X×X. We will usually write xRy instead of (x, y) ∈ R
when x is related to y. A partial order on a set X is a reflexive, antisymmetric, and transitive relation. Thus
if ≤ is a partial order on X, then
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(i) x ≤ x for all x ∈ X (reflexive),

(ii) x ≤ y and y ≤ x⇒ x = y (antisymmetric),

(iii) x ≤ y and y ≤ z ⇒ x ≤ z (transitive).

If, for every x, y ∈ X, either x ≤ y or y ≤ x, then we say that ≤ is a total order on X. A totally ordered
set is called a chain. Let X be a set with partial order ≤. A maximal element of X is an element a ∈ X
such that for all x ∈ X, if a ≤ x, then a = x; i.e., a ∈ X is a maximal element if X contains no element
strictly greater than a. An element a ∈ X is the greatest element of X if x ≤ a for all x ∈ X. Necessarily, a
greatest element of X, if it exists, is unique. There may be many maximal elements of X.

Let X be a partially ordered set with order ≤ and let E ⊂ X. An element a ∈ X is an upper bound of
E in case x ≤ a for all x ∈ E.

Zorn’s Lemma. If X is a partially ordered set such that every chain in X has an upper bound, then X
contains a maximal element.

[A chain in X is a subset E ⊂ X that is totally ordered by ≤. Note that we do not require the upper bound
to be in E.]

Theorem A. The Axiom of Choice is equivalent to Zorn’s Lemma.

We shall prove that the Axiom of Choice implies Zorn’s Lemma.
If {Xγ : γ ∈ Γ} is a collection of topological spaces, then the collection of sets of the form

∏
Uγ ⊂

∏
Xγ ,

where Uγ is open Xγ for all γ ∈ Γ and Uγ = Xγ for all but finitely many γ ∈ Γ, forms a basis for a topology
on
∏
Xγ , called the product topology.

Tychonoff Theorem. If {Xγ : γ ∈ Γ} is a collection of compact spaces, then
∏
Xγ is compact (in the

product topology).

Theorem B. The Tychonoff Theorem is equivalent to the Axiom of Choice.

We will prove that the Axiom of Choice implies the Tychonoff Theorem. More specifically, we shall show
that Zorn’s Lemma implies the Tychonoff Theorem.
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