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1. Introduction

The notion of a spectral triple, introduced by Connes (cf. [9], [7], [10]), provides a powerful
generalization of Riemannian geometry to noncommutative spaces. It originates from the
observation that, on a smooth compact spin manifold, the infinitesimal line element ds can
be expressed in terms of the inverse of the classical Dirac operator D, so that the Riemannian
geometry is entirely encoded by the data (A,H,D) of the algebra of smooth functions (a dense
subalgebra of the C∗-algebra of continuous functions), the Hilbert space of square integrable
spinor sections, and the Dirac operator. For a noncommutative space, the geometry is then
defined in terms of a similar triple of data (A,H,D), where A is a C ∗-algebra, H is a Hilbert
space on which A acts by bounded operators, and D is an unbounded self adjoint operator
on H with compact resolvent (D− z)−1 for z /∈ R, and such that the commutators [D, a] are
bounded operators for all a in a dense subalgebra of A.

Consani and Marcolli constructed in [11] a noncommutative space describing the geometry
of the special fibers at the archimedean places of an arithmetic surface, in the form of a
spectral triple for the action of a Kleinian Schottky group on its limit set. The motivation
for the construction was a result of Yuri Manin [27], computing the Arakelov Green function
of a compact Riemann surface in terms of a Schottky uniformization, and the proposed
interpretation of the “dual graph” of the fiber at arithmetic infinity of an arithmetic surface
in terms of the tangle of bounded geodesics in a hyperbolic handlebody having the Riemann
surface as its conformal boundary at infinity ([27], cf. also [11]).

There is a well known analogy between archimedean places of an arithmetic surface and non-
archimedean places with maximally degenerate fiber. The fibers over such non-archimedean
places also admit a Schottky uniformization, by a p-adic Schottky group. This analogy
was considered in [12], where the construction of [11] was generalized to the case of p-adic
Schottky groups and Mumford curves. The use of Schottky uniformization in [27] implies
that the results of Manin on ∞-adic Arakelov geometry and hyperbolic geometry appear to
be confined to the 2-dimensional case. Some results in higher dimension were obtained, in the
case of linear cycles in projective spaces, by Annette Werner [43], in terms of the geometry
of the Bruhat-Tits building for PGL(n).

Motivated by this circle of ideas, we pursue two main directions in this paper. One is a
refinement of the construction of spectral triples for Mumford curves. The main result is that
we can improve the theta summable construction of [11] to a finitely summable construction,
upon passing to the stabilization of the graph C ∗-algebra of the dual graph of the special
fiber of a Mumford curve. The main advantage of a finitely summable spectral triple is that
it makes it possible to extract invariants of the geometry through zeta functions and through
the Connes–Moscovici local index formula of [10]. The construction of the finitely summable
triple is based on a modification for the non-unital case of a construction of Antonescu and
Christensen [1] of spectral triples for AF algebras.
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The other main direction we consider in the paper is that of generalizations of the spectral
triples from the case of Mumford curves and trees to some classes of Euclidean and hyperbolic
2-dimensional buildings.

2. Theta summable spectral triples

We begin by recalling briefly the construction of the theta summable spectral triple for the
Kleinian Schottky case of [11] and give a general formulation for group actions on trees, which
also includes the case of Mumford curves of [12].

2.1. Kleinian Schottky groups.

In the construction of [11], one considers a Kleinian Schottky group Γ ⊂ PSL(2, C) acting
by isometries on real hyperbolic 3-space H3. This extends to an action on P1(C) = ∂H3 by
fractional linear transformations. A Kleinian Schottky group is a finitely generated discrete
subgroup of PSL(2, C), which is isomorphic to a free group in g generators and such that all
elements are hyperbolic. The limit set ΛΓ ⊂ P1(C) is the set of accumulation points of orbits
of the Γ-action. The quotient X = ΩΓ/Γ, for ΩΓ = P1(C)rΛΓ, is a compact Riemann surface
of genus g, which is the conformal boundary at infinity of a hyperbolic handlebody of infinite
volume obtained as the quotient H3/Γ. The convex core H(ΛΓ)/Γ, where H(ΛΓ) ⊂ H3 is the
convex hull of the limit set, is a region of finite volume and a deformation retract of H3/Γ.
For genus g ≥ 2, the group Γ is non-elementary, namely the limit set ΛΓ consists of more
than two points (it is in fact a totally disconnected compact Hausdorff space – a fractal in
P1(C)).

Consider the crossed product algebra A = C(ΛΓ) o Γ of the action of the Schottky group on
its limit set. This can be identified with a Cuntz–Krieger algebra OA (cf. [18]), where A is
the 2g × 2g matrix with entries in {0, 1} associated to the subshift of finite type S given by
all admissible doubly infinite sequences in the generators of the group Γ and their inverses.

The invertible shift T on S defines a noncommutative space C(S) oT Z. The corresponding
homotopy quotient in the sense of Baum–Connes is given by the quotient ST = (S × R)/Z.
The cohomology H1(ST , C) is computed by an exact sequence

(2.1) 0 → C → V
δ
→ V → H1(ST , C) → 0,

where V is the infinite dimensional vector space V = C(ΛΓ, Z)⊗C of locally constant functions
on the limit set ΛΓ. The coboundary δ is given by δf = f − f ◦ T .

The space V has a natural filtration by finite dimensional vector spaces, where Vn ⊂ V is the
space of locally constant functions that only depend on the first (n+1) coordinates. That is,
for γ ∈ Γ we let ΛΓ(γ) ⊂ ΛΓ denote the set of admissible infinite sequences a0, a1, . . . , an . . . in
the generators and their inverses beginning with the word γ. Then Vn consists of continuous
functions on ΛΓ that are constant on each ΛΓ(γ) with γ of length |γ| = n+1 as an admissible
word in the generators and their inverses. The filtration of V by the Vn induces a filtration
on the cohomology

H1(ST , C) = lim
−→
n

Vn/δVn−1.

In [11] this cohomology was interpreted as a model for the cohomology of the “dual graph”
of the special fiber at infinity of an arithmetic surface.

The filtered vector space V is a dense subspace of L2(ΛΓ, dµ), where dµ is the Patterson–
Sullivan measure on the limit set ΛΓ (cf. [39]), which satisfies the scaling property

(2.2) (γ∗dµ)(x) = |γ ′(x)|δH dµ(x), ∀γ ∈ Γ,
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with δH the Hausdorff dimension of ΛΓ.

The grading operator D =
∑

n n Π̂n, where Πn is the orthogonal projection onto Vn and

Π̂n = Πn − Πn−1, is a densely defined self adjoint operator on L2(ΛΓ, dµ) with compact
resolvent.

The Cuntz–Krieger algebra OA is the universal C∗-algebra generated by 2g partial isometries
Si subject to the relations

(2.3)
∑

j

SjS
∗
j = I and S∗

i Si =
∑

j

Aij SjS
∗
j ,

where A = (Aij) has entries Aij = 1 for |i− j| 6= g, and Aij = 0 otherwise. There is a faithful
representation of the algebra OA on the algebra of bounded operators B(L) on the Hilbert
space L = L2(ΛΓ, dµ), by setting

(2.4) (Tγ−1f)(x) := |γ ′(x)|δH/2 f(γx), and (Pγf)(x) := χγ(x)f(x),

with χγ the characteristic function of the set ΛΓ(γ), so that the Si =
∑

j AijT
∗
γi

Pγj
are partial

isometries satisfying (2.3).

We give here a slightly modified version of the construction of [11]. Given an automorphism
U of the algebra A, and a representation π : A → B(L) in the algebra of bounded operators
of a Hilbert space L, we consider the representation of A on H = L⊕L

(2.5) πU (a) (ξ, ζ) := (π(a) ξ, π(U(a)) ζ) .

Typically, for a Cuntz–Krieger algebra A = OA, automorphisms of the algebra can be ob-
tained from automorphisms of the corresponding space S+

A of admissible right infinite se-
quences associated to the subshift of finite type with matrix A. In fact, by [29], there is a
homomorphism Aut(S+

A ) → Aut(OA) that to an automorphism u of S+
A assigns an automor-

phism U of OA which restricts to u∗(f) = f ◦ u−1 on the maximal commutative subalge-
bra C(S+

A ). By an automorphism of S+
A one denotes a homeomorphism u of S+

A such that

T ◦u ◦T−1 = u, where T is the one-sided shift on S+
A . In the case we are considering, we can

identify S+
A with the limit set ΛΓ.

A spectral triple (A,H,D) for Kleinian Schottky groups is then obtained as follows (cf. [11]).

Proposition 2.1. Let A = OA, let π be the representation (2.4) on L = L2(ΛΓ, dµ). Let u
be an automorphism of ΛΓ and let πU be the representation (2.5) of A on H = L⊕L, for the
induced automorphism U of A. Let F be the linear involution that exchanges the two copies
of L and D = FD, with D =

∑
n nΠ̂n. Then, for δH < 1, the data (A,H,D) define a spectral

triple.

Proof. The result follows by showing that the commutators [D, a], for a in a dense subalgebra
of OA, are bounded operators on H. For that it is sufficient to estimate the norm of the
commutators [D,Si] and [D,S∗

i ] on L. An estimate is given in [11] in terms of the Poincare’
series of the Schottky group (hence the δH < 1 condition). This takes care also of the

commutators with S̃i = USi and their adjoints. In fact, arguing as in [29] we see that

S̃i =
∑

j SjPχij
, where Pχij

denotes the orthogonal projection associated to the characteristic

function χij of the set Eij of points ω ∈ ΛΓ such that the infinite word uγiu
−1ω is admissible

(i.e. it defines a point in ΛΓ) and has γj as first letter. In particular, this implies that
the automorphism U preserves the dense subalgebra of A = OA generated algebraically
by the partial isometries Si and their adjoints S∗

i , so that we still have [D, S̃i] and [D, S̃∗
i ]

bounded. �
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The spectral triple of Proposition 2.1 is θ-summable since the dimension of the eigenspaces
of D grows like 2g(2g − 2)n−1(2g − 2) so that we have

(2.6) Tr(e−tD2

) < ∞ ∀t > 0.

The fact that this spectral triple is not finitely summable falls under a general result of
Connes [7], which shows that non-amenable discrete groups (like Schottky groups) do not
admit finitely summable spectral triples.

A reason for introducing the choice of an automorphism U of the algebra is in order to allow
for a non-trivial K-homology class of the spectral triple. In specific cases of geometric interest
one often has a particular choice of an automorphism available as part of the data.

2.2. Theta summable spectral triples for actions on trees.

We now present a similar construction of spectral triples in the case of actions on trees, which
refines the construction given in [12] for the case of Mumford curves. We show here that the
construction indeed follows very closely the case of Kleinian Schottky groups.

The results of Lubotzky [26] show that the geometry of actions on trees by finitely generated,
torsion free, discrete subgroups of automorphisms is in many ways analogous to that of
Kleinian Schottky groups. In the same philosophy, we shall see that the construction of the
spectral triple recalled in Section 2.1 also extends to this case. (This in particular includes the
case of Mumford curves.) The main results that we need for this constructions are provided
in [14], [19], and [26].

Let T be a locally finite tree, with T 0 the set of vertices and T 1 the set of edges, and let Γ ⊂
Aut(T ) be a finitely generated discrete subgroup. A path in T is a sequence v0, v1, . . . , vn . . .
with vi ∈ T 0, where vi and vi+1 are adjacent and there are no cancellations (namely vi 6= vi+2).
The set of ends ∂T is the set of equivalence classes of paths in T , where equivalent means
having infinitely many vi’s in common. A geodesic in T is a doubly infinite path, namely
a sequence . . . v−m, . . . , v−1, v0, v1, . . . , vn . . . with vi and vi+1 adjacent and vi 6= vi+2. A
distance function on the tree is obtained by assigning distance one to any pair of adjacent
vertices.

The action of Γ ⊂ Aut(T ) extends to an action on T = T ∪ ∂T . The limit set ΛΓ ⊂ ∂T is
the set of accumulation points of Γ-orbits on T . Let H(ΛΓ) be the geodesic hull of the limit
set, namely the set of geodesics in T with both ends on ΛΓ. It is a closed Γ-invariant subset
of T , and H(ΛΓ)/Γ is the convex core of T /Γ.

Lubotzky showed in [26] that, if a finitely generated discrete subgroup Γ ⊂ Aut(T ) is torsion
free, then it is a Schottky group, in the sense that Γ is isomorphic to a free group and every
element is hyperbolic. In this case, the convex core H(ΛΓ)/Γ is a finite graph.

We first show how to extend naturally the construction of the spectral triple (A,H,D) of
Proposition 2.1 to actions on trees.

We will use essentially the fact that, by the result of Coornaert [14], there is an analog for
Γ ⊂ Aut(T ) of the Patterson–Sullivan measure on the limit set of a Kleinian Schottky group.
We follow the notation of [19] and assign to a hyperbolic element γ ∈ Aut(T ), the expression

(2.7) (v, γ−1v, x) = d(v, u) − d(γ−1v, u),

where v ∈ T 0 is a base point, x is a point on the boundary ∂T , and u is any vertex in the
intersection of the two paths from v to x and from γ−1v to x. The distance d(v, w) is the
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length of the geodesic arc in T connecting v, w ∈ T 0. The horospheric distance (2.7) does
not depend on u and one defines

(2.8) γ′
v(x) = e(v,γ−1v,x), for x ∈ ∂T .

Then by [14], for δH the critical exponent of the Poincaré series, there exists a normalized
measure on ∂T with support on ΛΓ, satisfying

(2.9) (γ∗dµv)(x) = (γ′
v(x))δH dµv(x), ∀γ ∈ Γ.

The Hausdorff dimension of ΛΓ is equal to the critical exponent δH .

As in the case of the Kleinian Schottky group, we can then consider the Hilbert space L =
L2(ΛΓ, dµ), with respect to the Γ-conformal measure (2.9). The dense subspace of locally
constant functions V = C(ΛΓ, Z) ⊗ C has a filtration by Vn defined as in the case of the
Kleinian Schottky group, by taking functions that depend only on the first (n+1)-coordinates.
Here we use an identification of ΛΓ with admissible infinite sequences a0a1 . . . an . . . in the
generators of Γ and their inverses. Such identification is determined by the choice of the base
point v ∈ T 0 and the identification ΛΓ = Γv ∩ ∂T .

Proposition 2.2. Let T be a locally finite tree and Γ ⊂ Aut(T ) be a torsion free finitely
generated discrete subgroup with ΛΓ ⊂ ∂T its limit set. Let u an automorphism of ΛΓ and U
the induced automorphism of the C∗-algebra A = C(ΛΓ) o Γ. Then the data (A,H,D) as in
Proposition 2.1 define a θ-summable spectral triple.

Proof. For Γ ⊂ Aut(T ) a torsion free finitely generated discrete subgroup (hence a Schottky
group by [26]), let {γi}

g
i=1 be a set of generators and let γi+g = γ−1

i .

The representation of the algebra A = C(ΛΓ) o Γ on the Hilbert space L = L2(ΛΓ, dµ) is
then given as in (2.5), with U induced by an automorphism u of ΛΓ and the representation
π on B(L) defined as in (2.4) by setting

(2.10) (Tγ−1f)(x) := (γ ′
v(x))δH/2 f(γx), and (Pγf)(x) := χγ(x)f(x),

where χγ is the characteristic function of the subset ΛΓ(γ) ⊂ ΛΓ.

As in the proof given in [11] of the result for Kleinian Schottky groups of Proposition 2.1,
it is then sufficient to prove that, for i = 1, . . . , 2g, the commutators [D,Si] and [D,S∗

i ] are

bounded. Here Si =
∑

j AijT
∗
γi

Pγj
is the operator (Si f)(x) = (1−χγ−1

i
(x))(γ′

i(x))δH/2 f(γix),

while the adjoint S∗
i acts as (S∗

i f)(x) = χγi
(x)(γ′

i(Tx))−δH/2f(Tx), where T is the one sided

shift on ΛΓ satisfying T |ΛΓ(γi)(x) = γ−1
i (x).

We use the fact ([14], [19]) that the function γ ′
v(x) is locally constant on ∂T , for any chosen

v ∈ T 0. This means that
Πki

(γ′
i) = γ′

i,

for some ki > 0. This implies that we have

Si : Vn+1 → Vn, S∗
i : Vn → Vn+1, ∀n ≥ ki.

Thus the commutator [D,Si] can be written as

(2.11) [D,Si] = −Si(1 − Π0) +

ki−1∑

k=0

(SiΠk+1 − ΠkSi),

since SiΠk+1 = ΠkSi for k ≥ ki. Thus [D,Si] is a bounded operator. The argument for
[D,S∗

i ] is analogous. Thus the commutators [D, a] are bounded for all elements a in the
dense involutive subalgebra of C(ΛΓ) o Γ generated algebraically by the Si.
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We use again, as in Proposition 2.1 above, the fact that the automorphism U of A induced
by the automorphism u of ΛΓ preserves the subalgebra generated algebraically by the Si

and S∗
i so that we have bounded commutators with elements of this dense subalgebra in the

representation twisted by U . The rest of the argument is then analogous to [11] and shows
that we obtain a spectral triple.

�

This construction can be refined by working with the graph H(ΛΓ)/Γ, instead of directly
with the limit set ΛΓ. The hull H(ΛΓ) consists of all the axes L(γ) of γ ∈ Γ. These are the
geodesics in T connecting the fixed points z−(γ) and z+(γ) in ΛΓ. Let A be the directed
edge matrix of the finite graph G = H(ΛΓ)/Γ. This is a 2#G1 × 2#G1 matrix with entries in
{0, 1}, such that Aee′ = 1 is ee′ is an admissible path in G where e, e′ are edges with either
possible orientation, and Aee′ = 0 otherwise. The set S+

A of infinite admissible words, with
the admissibility condition specified by the matrix A, describes the set of infinite walks on the
tree H(ΛΓ) starting at any vertex of a given fundamental domain for the action of Γ. This
gives an identification of S+

A with a union of n copies of ΛΓ, for n = #G0, each corresponding
to walks starting at a given vertex in G. Using this identification, we can define the Hilbert
space LA = L2(S+

A , dµ), with the measure induced by the Patterson–Sullivan measure (2.9)
on ΛΓ. This identification also induces on LA a filtration, for which we can consider the
associated grading D. As in the previous cases, we have a representation of the algebra
A = C(S+

A ) o Γ on the Hilbert space LA. The algebra A is Morita equivalent to a graph C ∗-

algebra of H(ΛΓ)/Γ. As before, we can consider an automorphism of the Cantor set S+
A and

a corresponding automorphism U of the algebra A and a representation on HA = LA ⊕ LA,
where the [F, πU (a)] are compacts (cf. Lemma 4.6, [29]). We can then extend the result of
Proposition 2.2 to θ-summable spectral triples of the form (C(S+

A ) o Γ,HA,D = FD).

The original spectral triple of Proposition 2.2 corresponds to considering the graph TΓ/Γ
instead of H(ΛΓ)/Γ, where TΓ is the Cayley graph of Γ and H(ΛΓ) is the smallest subtree of
T containing all the axes of the elements of Γ, i.e. the infinite geodesics in T with endpoints
z±γ ∈ ΛΓ the fixed points of γ. In the case of Mumford curves, where T is the Bruhat–Tits
tree of PGL(2,K), with K a finite extension of Qp, the graph TΓ/Γ gives the dual graph of
the specialization over the ring of integers O ⊂ K of the algebraic curve C holomorphically
isomorphic to X = ΩΓ/Γ, while H(Λ)/Γ is the dual graph of the minimal smooth model of
C over O, cf. [30].

It is known by [21] p.124 that all finite graphs that are connected and such that every vertex
that is not connected by an edge to itself is the source of at least three edges can occur
as the graph H(ΛΓ)/Γ of a Mumford curve (i.e. for Γ a p-adic Schottky group acting on a
Bruhat–Tits tree). In the recent work [16], we consider the graph C ∗-algebras associated to
such graphs H(ΛΓ)/Γ and classified them via a K-theory computation obtained using the
Bass–Hashimoto edge incidence operator on graphs.

The difference between the graphs TΓ/Γ and H(Λ)/Γ may be used to define a “code building”
procedure of the type considered in §5 of [25] to produce codes from Mumford curves. We
shall not deal with this aspect in the present paper.

The above construction will also work if the group Γ is replaced by a general finitely generated
discrete subgroup N of PGL(2,K). On the side of Mumford curves this corresponds to
orbifold uniformization, or Mumford curves with automorphisms, cf. [15]. Such N always has
a finite index normal free subgroup. Conversely, given such a free group Γ, a finitely generated
discrete subgroup N ⊂ PGL(2,K) contained in the normalizer N(Γ) of Γ in PGL(2,K)
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determines a finite group G = N/Γ ↪→ Aut(X) of automorphisms of the Mumford curve
X = ΩΓ/Γ, since Aut(X) = N(Γ)/Γ. Thus, it becomes relevant to study the equivariant
deformation problem, of how these data can be deformed to another curve of the same
genus with an action of the same group (cf. [15]). For Γ ⊂ N as above, the finite group
G = N/Γ acts on G = H(ΛΓ)/Γ with quotient the finite graph GN = H(ΛΓ)/N . Let
ρ0 : N ↪→ Aut(T ) denote the inclusion of N ⊂ N(Γ) ⊂ Aut(T ). Let Hom∗(N,Aut(T ))
denote the subset of Hom(N,Aut(T )) of injective homomorphisms with discrete image. This
governs the equivariant deformations. There is an open neighborhood of ρ0 in the space
Hom∗(N,Aut(T )) of the form

(2.12) U(ρ0) = {ρ ∈ Hom∗(N,Aut(T ))| ρ(γi)(xi) = yi, ρ(γi)(yi) = γi(yi)}.

Here {γi}
g
i=1 is a set of generators for the Schottky group Γ ⊂ N and xi, yi are points on

the axes L(γi) that specify the Schottky data. As shown in [19], the neighborhood U(ρ0) has
the property that, for all ρ ∈ U(ρ0), the group ρ(Γ) is a Schottky group, of finite index in
ρ(N), with the same Schottky data as the original ρ0(Γ). In particular, in our setting, this
shows that, by themselves, the spectral triples introduced in the previous section will not
distinguish Mumford curves in the family ρ(Γ) ⊂ ρ(N), with ρ ∈ U(ρ0). However, one can
implement in the construction the induced action of the group G on the C ∗-algebra of the
graph G = H(ΛΓ)/Γ, or consider G-equivariant spectral geometries for the Morita equivalent
algebra C(S+

A × G) o N , with N acting on the left on G = N/Γ.

In [12] the local L-factor Lv(H
1(X), s) = det(1 − Fr∗vN(v)−s|H1(X̄, Q`)

Iv)−1 of a Mumford
curve was recovered from the data (A,H,D) of a theta-summable spectral triple as described
above. Another possible direction in which the construction of such spectral triples may be
of arithmetic significance is by associating to a Mumford curve some cocycles in the entire
cyclic cohomology of a smooth subalgebra of A.

Cyclic cohomology was introduced by Connes as a natural receptacle for the characters of
finitely summable Fredholm modules. Similarly, in the theta summable case that corresponds
to “infinite dimensional geometries”, one can also define characters through the JLO cocycle
ϕ = (ϕ2n) (cf. IV.8.ε [8]) of the form
(2.13)

ϕ2n(a0, . . . , an) =

∫
si≥0

P

si=1

sTr
(
a0e−s0D

2

[D, a1]e−s1D
2

· · · [D, a2n]e−s2nD
2
)

ds0 · · · ds2n,

where sTr denotes the supertrace. These live naturally in the entire cyclic cohomology, as
shown in §IV.7 of [8].

3. Finitely summable spectral triples

It is clear that the θ-summable condition imposes a strong limitation on how one may be able
to apply tools from noncommutative geometry to the arithmetic context, most notably the
local index formula of [10], which requires the finitely summable setting. There were already
strong indications from the original construction (cf. [13]) that it should be possible to obtain
finitely summable spectral triples associated to Mumford curves.
In fact the Cuntz–Krieger algebra OA has up to stabilization (i.e. tensoring with compact
operators) a second description as a crossed product (cf. [18]). Namely, one has an identifi-
cation

(3.1) OA
∼= FA oT Z,
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where FA is an approximately finite dimensional (AF) algebra, i.e. a direct limit of finite
dimensional algebras. Here for a unital C∗-algebra A we use the notation A = A ⊗K with
K the algebra of compact operators. The algebra A is no longer unital.

In the case of the algebra OA
∼= C(ΛΓ) o Γ, the hyperbolic growth of the Schottky group

Γ prevents one from constructing a finitely summable Dirac operator. This is no longer the
case for the algebra AΓ := FA o Z. The fact that this algebra can be written as a crossed
product by the integers implies that, by Connes’ result on hyperfiniteness [7], it may carry a
finitely summable spectral triple.

However, the fact of working with non-unital algebras forces one to relax the axioms of finitely
summable spectral triple to a suitable “local” version, as discussed in [20] in the important
example of Moyal planes.

Definition 3.1. Let A be a non-unital C∗-algebra. A spectral triple (A,H,D) consists of the
data of a representation π : A → B(H) of the algebra as bounded operators on a separable
Hilbert space H, together with an unbounded self-adjoint operator D on H such that the
subalgebra

(3.2) A∞ := {a ∈ A | aDomD ⊆ DomD, [D, a] ∈ B(H), a(1 + D2)−1 ∈ K(H)}

is dense in A.

In (3.2) K(H) denotes the ideal of compact operators. In particular, if D has compact
resolvent, then the last property of A∞ is automatically fulfilled.

In the case we are interested in, the AF algebra FA can be described in terms of a groupoid
C∗-algebra associated to the “unstable manifold” in the Smale space (S, T ). In fact, consider

the algebra Oalg
A generated algebraically by the Si and S∗

i subject to the Cuntz–Krieger

relations (2.3). Elements in Oalg
A are linear combinations of monomials SµS∗

ν , for multi-
indices µ, ν, cf. [18]. The AF algebra FA is generated by elements SµS∗

ν with |µ| = |ν|,
and is filtered by finite dimensional algebras FA,n generated by elements of the form SµPiS

∗
ν

with |µ| = |ν| = n and Pi = SiS
∗
i the range projections, and embeddings determined by the

matrix A. The commutative algebra C(ΛΓ) sits as a subalgebra of FA generated by all range
projections SµS∗

µ. The embedding is compatible with the filtration and with the action of
the shift T , which is implemented on FA by the transformation a 7→

∑
i Si aS∗

i . (cf. [18].)

The stabilization FA is a non-unital AF algebra.

We use the description (3.1) as the starting point for the construction of finitely summable
spectral triples.

The following result provides a modification of Theorem 2.1 of [1], where the AF-algebra is
now not necessarily unital, the sequence of eigenvalues need not be positive, and the growth
condition required for the sequence of eigenvalues is finer. This will suffice for our purpose
of defining a finitely summable spectral triple.

Theorem 3.2. Let A be a (not necessarily unital) AF-algebra, and let p be a positive real
number. Then there exists an unbounded Fredholm module (H,D) over A such that (1 +

D2)−p/2 ∈ L1(H). In particular, (A,H,D) is a p-summable odd spectral triple.

Proof. We can write A = ∪∞
n=1An, where each An is a finite dimensional C∗-algebra.

Let τ be a state on A, that is, a continuous linear functional τ : A → C of norm one, such
that τ(a∗a) ≥ 0 for all a ∈ A. The norm of a positive linear functional is the limit of its
evaluation at any approximate identity, so that, in the unital case a state is just a positive
linear functional with τ(1) = 1. We denote by H = L2(A, τ) the Hilbert space of the GNS
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representation defined by the state τ . Namely, H is the Hilbert space completion of the
quotient A/Nτ with respect to the inner product induced by τ(b∗a), where Nτ is the closed
left ideal Nτ = {x ∈ A : τ(x∗x) = 0}. In this non-unital case the cyclic vector ξ in the GNS
representation is obtained as the limit in the norm of H of the classes of a given approximate
identity for A.
Let η denote the quotient map η : A → H. We set Hn = η(An). These are finite dimensional
subspaces of H with dimHn ≤ dimAn and Hn ⊂ Hn+1. We assume that the Hn give a

filtration of H. Let Πn : H → Hn be the orthogonal projection onto Hn and put Π̂n =
Πn − Πn−1, for n ≥ 2, and Π̂1 = Π1.
Following the construction of [1], we now show that we can choose a sequence (λn) of real

numbers such that the unbounded operator D =
∑∞

n=1 λnΠ̂n defined on the dense subspace
∪∞

n=1Hn of H satisfies the p-summability condition.

In fact, for any n we may assume that Hn ( Hn+1, since otherwise we would have Π̂n+1 = 0,
and An ( An+1, so that we have dimAn+1 > dimAn. This gives dimAn ≥ n, since
dimA1 ≥ 1. Now, if we choose the eigenvalues λn so that |λn| ≥ (dimAn)q, for some
q > 2/p, we obtain an estimate of the form

Tr(1 + D2)−p/2 =
∞∑

n=1

(1 + |λn|
2)−p/2 dimEλn

=

∞∑

n=1

(1 + |λn|
2)−p/2(dimHn − dimHn−1)

≤
∞∑

n=1

|λn|
−p(dimHn) ≤

∞∑

n=1

|λn|
−p(dimAn)

≤
∞∑

n=1

(dimAn)−pq(dimAn) ≤
∞∑

n=1

1

npq−1
< ∞ ,

where we set A0 = {0}. Also notice that, for m ≥ n we have Am(Hn) ⊂ Hn, so that for

n > m and a ∈ Am we have [Π̂n, a] = 0. Thus, we obtain [D, a] =
∑m

n=1 λn[Π̂n, a]. This
shows that [D, a] has a bounded closure on H. Moreover, if a ∈ Am then aDomD ⊆ DomD.
Thus, the subalgebra

A∞ := {a ∈ A | aDomD ⊆ DomD and [D, a] admits a bounded closure}

contains ∪∞
n=1An, hence it is dense in A. �

In fact, one can strenghten the result of the theorem as in Corollary 3.3 below. However, we
are interested in allowing for possibly non-faithful states, since we are interested in a state
that encodes the data of the uniformization through the Patterson–Sullivan measure on the
limit set as in the theta summable construction.

Corollary 3.3. In the construction of Theorem 3.2 one can always choose the state τ to be
faithful.

Proof. It is enough to show that every separable C ∗-algebra admits a faithful state. Let A
be a separable C∗-algebra and let A+ be its positive cone. Choose a sequence (am) which
is dense in A+, and choose a bounded approximate identity (un) for A in B1(A+). Set
wn,m := unamun in A+, and choose a state τn,m on A such that τ(wn,m) = ‖wn,m‖. Now
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define

τ :=

∞∑

n,m≥1

τn,m

2n+m
.

One can see that τ is a faithful state on A. �

In the case of a faithful state, the Hilbert space H is the closure of A in the inner product
〈a, b〉 = τ(b∗a) and the filtration of H is given by Hn = η(An) = An.

We then obtain a finitely summable spectral triple for the algebra (3.1) through the following
construction.

Theorem 3.4. Let (A,H,D) be an odd spectral triple for the (not necessarily unital) C ∗-
algebra A, and assume that D has compact resolvent. Consider the crossed product A oα

Z, and assume that the dense subalgebra A∞ of the spectral triple contains a dense α-
invariant subalgebra A′

∞ such that, for any fixed a ∈ A′
∞ the sequence of bounded opera-

tor {[D, αn(a)]}n∈Z is uniformly bounded in the operator norm. Let (C(S1), `2(Z), ∂) be the
standard spectral triple on the circle. Consider then the data

(3.3) (A oα Z,H,D)

where H = `2(Z,H) ⊕ `2(Z,H) is the direct sum of two copies of the Hilbert space for the
regular representation of A oα Z (as a reduced crossed product) and

D =

(
0 D∗

0
D0 0

)
,

for D0 = D ⊗ 1 + i⊗ ∂. The data (3.3) define an even spectral triple for the algebra Aoα Z,
with respect to the grading on H given by

γ =

(
1 0
0 −1

)
.

If (A,H,D) is (p,∞)-summable, then (A oα Z,H,D) is (p + 1,∞)-summable.

Proof. Notice D is in fact the tensor product of D and ∂ in the Baaj-Julg’s picture [2] of
Kasparov’s external product in K-homology

K1(A) × K1(C(S1)) → K1(A⊗ C(S1)).

In particular, the facts that D is a selfadjoint operator with compact resolvent and is finitely
summable is already well known.
Let V denote the regular representation of C(S1) = C∗(Z) in `2(Z), as part of the data
(C(S1), `2(Z), ∂). Put L = `2(Z,H), so that H = L ⊕ L and A oα Z acts diagonally on H.
Then, for all ξ ∈ L, one has

(3.4) (D0ξ)(k) = D(ξ(k)) − ikξ(k), ∀k ∈ Z.

An element a ⊗ V n ∈ Cc(Z,A) ⊂ A oα Z, for a ∈ A′
∞ and n ∈ Z, is represented in L by

((a ⊗ V n)ξ)(k) = αk(a)(ξ(n + k)), ∀k ∈ Z.

Using (3.4) one obtains

[D, a ⊗ V n] =

(
0 T1 + inT2

T1 − inT2 0

)
,

where Ti : L → L are (unbounded) operators for i = 1, 2 given by (T1ξ)(k) = [D,αk(a)](ξ(n+
k)) and (T2ξ)(k) = αk(a)(ξ(n + k)), for k ∈ Z. These satisfy the estimates ‖T1‖ ≤
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supk ‖[D,αk(a)]‖ < ∞, and ‖T2‖ ≤ ‖a‖ < ∞. Therefore we see that [D, a ⊗ V n] admits
a bounded closure in B(H). �

From an index theoretic perspective, it may be preferable to work with a finitely summable
even spectral triples on the AF-algebra, since it is the K0-group of an AF algebra that carries
all the interesting information, while the K1-group is trivial. It is easy to modify the previous
construction to accommodate this case. As before, let A = ∪∞

n=1An be an AF-algebra and
let τ be a state on A. Consider the Hilbert space H = L2(A, τ) ⊕ L2(A, τ). One can take
the diagonal action of A on H in the GNS representation, although it is better to proceed
as in the θ-summable case and introduce a twisting on one of the copies of L2(A, τ) by a
nontrivial automorphism of the algebra. Now one can choose a sequence of complex (not
necessarily real) numbers λn satisfying a suitable growth condition (e.g. |λn| ≥ (dimAn)q,

where q > 2/p) as the eigenvalues of an operator D0 =
∑∞

n=1 λnΠ̂n on L2(A, τ). One then
consider the operator on H defined by

D =

(
0 D∗

0
D0 0

)
.

Then (A,H,D) is a p-summable even spectral triple with respect to the grading on H given
by

γ :=

(
1 0
0 −1

)
.

The construction of Theorem 3.4 is correspondingly modified to yield an odd spectral triple
(AoαZ,H,D) with H = `2(Z,H) = H⊗`2(Z), the Hilbert space for the regular representation
of A oα Z as before, and with the Dirac operator given by D := D ⊗ 1 + γ ⊗ ∂. Again, if
(A,H,D) is (p,∞)-summable then (A oα Z,H,D) is (p + 1,∞)-summable.

4. Some motivating examples

We look here at some simple examples that give some motivation for introducing spectral
triples associated to Mumford curves and justify why it may be interesting to derive invariants
from these spectral geometries that are more refined than the C ∗-algebra OA itself.
We first look at the case of genus two Mumford curves discussed in [12], [13]. In this case we
are considering a Schottky group Γ of rank two in PGL(2,K) where K is a finite extension of
Qp. The combinatorially different forms of the graph TΓ/Γ of the special fiber are illustrated
in Figure 1.
In terms of corresponding Cuntz–Krieger C∗-algebras, we are considering in this case the
algebras OAi

, i = 1, 2, 3 with directed edge matrices Ai of the form

A1 =




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1




in the first case. In the second case (cf. Figure 1) we label by a = e1, b = e2 and c = e3

the oriented edges in the graph TΓ/Γ, so that we have a corresponding set of labels E =
{a, b, c, ā, b̄, c̄} for the edges in the covering tree TΓ. A choice of generators for the group
Γ ' Z ∗ Z acting on TΓ is obtained by identifying the generators g1 and g2 of Γ with the
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Figure 1. The graphs TΓ/Γ for genus g = 2, and the corresponding trees TΓ.

chains of edges ab̄ and ac̄. The directed edge matrix is then of the form

A2 =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




.

The third case in Figure 1 is analogous. A choice of generators for the group Γ ' Z∗Z acting
on ∆Γ is given by abā and c. The directed edge matrix is then

A3 =




0 0 1 0 0 1
1 1 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 1 0
0 0 0 1 0 1




.

Recall that, for a Cuntz–Krieger algebra the K-theory is computed in terms of the n × n
matrix A in the form (cf. [18])

(4.1) K0(OA) = Zn/(1 − At)Zn K1(OA) = Ker(1 − At) ⊂ Zn.

In general, combinatorially different graphs TΓ/Γ are not distinguished by the associated
graph C∗-algebras alone. We can see this in the genus two case as follows.
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Lemma 4.1. In the case of genus g = 2, the C∗-algebras OAi
, i = 1, 2, 3, associated to the

graphs of Figure 1 are isomorphic.

Proof. First an explicit calculation shows that the K-groups are of the form

(4.2) Kj(OAi
) ∼= Z2,

for j = 0, 1 and i = 1, 2, 3. Moreover, by [37], for simple Cuntz–Krieger algebras (i.e. algebras
OA where the matrix A is irreducible and not a permutation matrix) the condition that the
groups K0(OAi

) are isomorphic implies that the algebras OAi
are isomorphic. �

This can be seen as a special case of the more general result of [16].

Thus, a first question is whether more refined invariants coming from a spectral triple may
be able to distinguish combinatorially different geometries. There is a more subtle kind of
question of a similar nature.
As we discussed in §2.2 above, while the finite graph TΓ/Γ only carries the combinatorial
information on the special fiber of the Mumford curve, one can consider the finite graph
H(ΛΓ)/Γ, where H(ΛΓ) is the smallest subtree in the Bruhat–Tits tree T of the field K that
contains axes of all elements of Γ. When one considers the tree H(ΛΓ) instead of TΓ one
is typically adding extra vertices. The way the tree H(ΛΓ) sits inside the Bruhat–Tits tree
T depends on where the Schottky group Γ lies in PGL(2,K), unlike the information on the
graph TΓ/Γ which is purely combinatorial (cf. e.g. [28]).

We can consider a specific geometric example, again in the genus two case, by looking at
a 1-parameter family of Mumford curves considered by Fumiharu Kato in [22]. There one
considers the free amalgamated product N = Zm∗Zn of two cyclic groups. For k a (discretely)
non-archimedean valued field of characteristic coprime to m and n, one considers the discrete
embedding of N in PGL(2, k) given by

(4.3) 〈

(
ζmt 0

ζm − 1 t

)
,

(
ζn −(ζn − 1)t−1

0 1

)
〉.

One then considers the free subgroup Γ of N generated by commutators

(4.4) Γ := [Zm, Zn].

This group Γ is a maximal free subgroup of N of free rank g := (m − 1)(n − 1). It is the
Schottky group of a curve XΓ. If one looks at the particularly simple case with m = 2 and
n = 3 one finds a curve of genus two with Z6-symmetry. It is not hard to see that the graph
of the special fiber is the second graph in Figure 1. Moreover, one can see that, if π denotes
a uniformizer and we take t = πr then the graph H(ΛΓ)/Γ is again topologically of the same
form but with 2r + 1 vertices inserted on each of the three lines, namely it looks like the
graph in Figure 2.

A direct calculation shows that in this case again the corresponding algebras OAr associated
to these graphs are stably isomorphic. In fact, one can show as in the previous example that
they have the same K-theory groups. (Again this follows from the general result of [16].)

This again raises the question of whether more refined invariants, such as the spectral triple
which introduces a smooth subalgebra and a Dirac operator, can capture more interesting
information on the geometry and the uniformization parameters. We hope to return to this
general question in future work by looking more closely at such invariants. For the moment
we can give a heuristic justification of why we think this may be possible.
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Figure 2. The graph H(ΛΓ)/Γ for t = π5 in Kato’s family.

In the case of the θ-summable case the information on the uniformization is stored in the
Patterson–Sullivan measure which is used to define both the representation of the algebra on
the Hilbert space and the Dirac operator. In the case of the finitely summable construction
the dependence on the uniformization will enter again through a choice of a state τ on the
AF algebra induced by the the Patterson–Sullivan measure.

The reason why the Patterson–Sullivan measure on the limit set is especially good in order
to detect geometric properties that depend on the Schottky uniformization lies in a very
general type of rigidity result (see [44]). This type of result implies, in our case, given two
Schottky uniformizations of a fixed genus, if the abstract isomorphism of the Schottky groups
Γ induces a homeomorphism of the limit sets which is absolutely continuous with respect to
the Patterson–Sullivan measure, then the abstract isomorphism comes from an automorphism
of the ambient group PGL(2,K). One knows that these are either inner or they come from
automorphisms of the field K, so that one can in fact recover much of the information on
the Schottky uniformization (the Schottky group up to conjugation) from information on the
Patterson–Sullivan measure.

Ongoing work in this direction [17] shows that the zeta functions of a finitely summable
spectral triple on a Mumford curve, for a choice of the state τ that encodes the Patterson–
Sullivan measure, are enough to completely reconstruct the isomorphism class of the Mumford
curve.

5. Higher rank cases

We now proceed to consider some higher dimensional classes of buildings. The case of rank two
is the most interesting because the classification problem is especially difficult for rank two and
the construction of new invariants can be useful to that purpose. We first consider the simplest
case that can be reduced to the construction for trees and some simple generalizations. We
then discuss some more general classes in the hyperbolic case.

5.1. Products of trees.

The first case of 2-dimensional buildings to which the construction given for trees can be
extended is the case considered in [24]. This deals with affine buildings ∆ whose 2-cells are
euclidean squares and whose 1-skeleton is the product of two trees. On such buildings one
considers the action of Burger–Mozes (BM) groups (cf. [5]), which are discrete torsion free
subgroups Γ ⊂ Aut(T1) × Aut(T2) acting freely and transitively on the set of vertices. If
the trees Ti have even valences ni, then the quotient ∆/Γ is a polyhedron with one vertex
and n1n2/4 square faces, with fundamental group Γ. The link of the vertex is a complete
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bipartite graph with n1 + n2 vertices and edges between each of the first set of n1 vertices
and each of the second set of n2 vertices.

The boundary ∂∆ is defined by an equivalence relation on sectors in apartments of ∆, by
which two sectors are equivalent if their intersection contains a sector (this notion extends
the usual shift-tail equivalence of paths in a tree). As in the case of trees, the choice of a
vertex determines a choice of a representative in each class of sectors. In the case we are
considering, this gives a non-canonical identification ∂∆ ' ∂T1 × ∂T2.

The action of Γ on ∆ extends to an action on the boundary, hence one can consider the
C∗-algebra C(∂∆) o Γ. It is shown in [24] that this is isomorphic to a rank 2 Cuntz–Krieger
algebra associated to two subshifts of finite type in the alphabet given by Γ-equivalence
classes of oriented chambers in ∆. More precisely, the alphabet R is given by letters of the
form r = (a, b, b′, a′) with ab = b′a′, and the horizontal and vertical transition matrices A1,
A2 are commuting n1n2 × n1n2 matrices with entries in {0, 1}. They give the admissibility
condition for adjacent squares, in the horizontal and vertical direction, respectively, cf. [24].
(The notion is well defined, due to the special class of groups Γ considered.)

As in the case of trees, we consider functions on the boundary. Namely, we consider the
Hilbert space L = L2(∂∆, dµ), where (after a choice of a base vertex in ∆) the measure can
be identified with a product dµ(x) = dµ1(x1) × dµ2(x2) of Patterson–Sullivan measures on
∂T1 and ∂T2.

Moreover, the subshifts of finite type in the horizontal and vertical directions associated to
the matrices Ai determine a filtration on functions on the boundary, analogous to the one
considered in the case of a single tree. In fact, for a fixed base vertex v0 of ∆, a point
x ∈ ∂∆ is identified with a sector originating at v0. Under the identification ∂∆ ' ∂T1 × ∂T2

determined by v0, we can write, for f ∈ C(∂∆, Z) ⊗ C,

f(x) = f(x1, x2) = f(a0a1a2 . . . , b0b1b2 . . .) = f(a0 . . . a`, b0 . . . bk),

where a0a1a2 . . . is a path in T1 and b0b1b2 . . . is a path in T2, such that the corresponding
infinite 2-dimensional word is admissible according to the conditions given by the matrices
Ai. This means that the space C(∂∆, Z) ⊗ C has a filtration by finite dimensional linear
subspaces V`,k of functions of finite admissible 2-dimensional words in the alphabet R.

We associate a grading operator to this filtration as follows. We denote by Π`,k the orthogonal
projection of L onto the finite dimensional subspace V`,k. We consider the densely defined
unbounded self-adjoint grading operator on L of the form

(5.1) D =

∞∑

m=0

m

m∑

k=0

Π̂m−k,k,

where Π̂`,k is defined by the inclusion-exclusion Π̂`,k = Π`,k − Π`−1,k − Π`,k−1 + Π`−1,k−1.

Proposition 5.1. Let the data (A,H,D) be given by the algebra A = C(∂∆) o Γ acting on
the Hilbert space H = L⊕ L through a representation (2.5), and the operator D = FD, with
D as in (5.1) and F the involution exchanging the two copies of L. The data (A,H,D) define
a θ-summable spectral triple.

Proof. The setting is very similar to the previous cases. We obtain a representation of the
algebra A on the Hilbert space H by letting functions in C(∂∆) act on L as multiplication
operators and elements in the group Γ by unitary operators

(5.2) (Tγ−1 f)(x) = γ′
1(x1)

δ1/2 γ′
2(x2)

δ2/2 f(γ(x)),
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where x = (x1, x2) ∈ ∂∆ ' ∂T1 × ∂T2 and γ = (γ1, γ2) ∈ Γ ⊂ Aut(T1) × Aut(T2).

In order to show that there exists a dense involutive subalgebra A0 ⊂ A, such that the
commutators [D, a] are bounded operators on H for all a ∈ A0, it is sufficient to prove that
the commutators of D with functions in C(∂∆, Z) ⊗ C and with operators Tγ for γ ∈ Γ
are bounded. The first case is clear since a function h ∈ C(∂∆, Z) ⊗ C is contained in some
Vu,v, hence the corresponding multiplication operator maps V`,k to itself whenever V`,k ⊃ Vu,v.
Since the γ ′

i are locally constant on ∂Ti, we also obtain that there exists some integer n = n(γ)
such that Tγ : V`,k → V`+n,k+n whenever V`,k ⊃ Vu,v, for γ′

i ∈ Vu,v. �

It is easy to see that, even if the case considered here is euclidean and not hyperbolic, still
the spectral triple constructed in this way will not be finitely summable. For example, if the
group acting is a product Γ × Γ of two copies of a Schottky group of genus g and T1 = T2

is the Cayley graph of Γ, and A1 = A2 is the directed edge matrix of the quotient group,
namely the matrix with Aij = 1 unless |i − j| = g, then the dimensions of the eigenspaces of
the operator (5.1) are dimEm = (m+1)2g(2g − 1)m−1(2g− 2)2 for m ≥ 2, 4g(2g − 1)(2g− 2)
for m = 1 and 2g(2g − 1) for m = 0.

Noncommutative spaces associated to Euclidean buildings, in the form of crossed product
C∗-algebras C(∂∆) o Γ were also considered in the case of buildings with triangular presen-
tations. Of particular arithmetic interest is the case of the “fake projective planes”. These
are algebraic surfaces with ample canonical class and the same numbers pg = q = 0 and
c2
1 = 3c2 = 9 as the projective plane P2. The first such example was constructed by Mumford

[31] using p-adic uniformization by a discrete cocompact subgroup Γ ⊂ PGL(3, Q2). More
recent examples (known as CMSZ fake projective planes) were obtained, again using actions
on the Bruhat–Tits building of PGL(3, Q2) (see [6], [23]). The formal model of the CMSZ
fake projective planes is obtained by the action on the Bruhat–Tits building ∆ of PGL(3, Q2)
of two subgroups Γ1, Γ2 of index 3. The quotients Γi\Ω, where Ω is Drinfeld’s symmetric
space of dimension 2 over Q2, are non-isomorphic fake projective planes. All these exam-
ples admit a description as Shimura varieties (cf. [23]). The topology of the corresponding
noncommutative spaces Ai = C(∂∆) o Γi distinguishes between the fake projective planes.
In fact, the results of [36] show for instance that, for the CMSZ cases, the K-theory of Ai

is K0(A1) = Z/3 while K0(A2) = Z/2 ⊕ Z/2 ⊕ Z/3. Recently, Gopal Prasad and Sai-Kee
Yeung identified in [32] the complete list of fake projective planes (see also [33] for a higher
dimensional case). It would be interesting to see if these can be studied from the operator
theoretic point of view and whether the K-theory of the relevant C ∗-algebras distinguishes
them or whether more refined invariants of spectral geometry can be used to that purpose.

As we discussed in §4, one can consider higher dimensional cases of combinatorially different
actions of the same group Γ on a building ∆, such as two combinatorially non-equivalent
presentations of the same group acting on a product of two trees of degree four (presentations
42 and 44 from [24]):

P1 = {a1, b1, a2, b2 : a1b1a
−1
1 b−1

1 , a1b2a
−1
1 b−1

2 , a2b1a
−1
2 b2, a2b2a

−1
2 b1}

P2 = {a1, b1, a2, b2 : a1b1a
−1
1 b2, a1b2a

−1
1 b1, a2b1a

−1
2 b2, a2b2a

−1
2 b1}.

One can ask whether in such examples invariants coming from spectral triples may be able
to distinguish the combinatorially different actions.
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5.2. Polyhedra covered by products of trees.

In the previous section we looked at 2-dimensional buildings that are products of trees, with
the action of groups of BM type, Γ ⊂ Aut(T1) × Aut(T2). In this section we show that the
results of the previous section may be applied more generally. Namely, we show the existence
of an infinite family of examples that are not of BM type, but which can be reduced to BM
type by passing to a subgroup of index four.

A polyhedron is a two-dimensional complex obtained from several oriented p-gons by iden-
tification of corresponding sides. Consider a vertex of the polyhedron and take a sphere of
a small radius at this point. The intersection of the sphere with the polyhedron is a graph,
which is called the link at this vertex.

Recall that a graph is bipartite if its set of vertices can be partitioned into two disjoint subsets
P and L such that no two vertices in the same subset lie on a common edge. It is known
by the result of [3] that the universal cover of a polyhedron with square faces and complete
bipartite graphs as links is a 2-dimensional Euclidean building which is a product of two trees
T1 ×T2. This means that an efficient method to construct Euclidean buildings with compact
quotients is by constructing finite polyhedra with appropriate links.

We recall the definition of polygonal presentation given in [40].

Definition 5.2. Suppose given n disjoint connected bipartite graphs G1, G2, . . . Gn. Let Pi

and Li denote the sets of black and white vertices in Gi, for i = 1, ..., n. Let P = ∪Pi and
L = ∪Li, with Pi ∩ Pj = ∅ and Li ∩ Lj = ∅, for i 6= j. Let λ be a bijection λ : P → L.
A set P of k-tuples (x1, x2, . . . , xk), with xi ∈ P , is be called a polygonal presentation over
P compatible with λ if the following properties are satisfied.

(1) If (x1, x2, x3, . . . , xk) ∈ P, then (x2, x3, . . . , xk, x1) ∈ P.
(2) Given x1, x2 ∈ P , then (x1, x2, x3, . . . , xk) ∈ P for some x3, . . . , xk if and only if x2

and λ(x1) are incident in some Gi.
(3) Given x1, x2 ∈ P , then (x1, x2, x3, . . . , xk) ∈ P for at most one x3 ∈ P .

If there exists such P, then the corresponding λ is called a basic bijection.

Polygonal presentations for n = 1, k = 3, with the incidence graph of the finite projective
plane of order two or three as the graph G1, were listed in [6].

One can associate a polyhedron X with n vertices to a polygonal presentation P in the
following way. To every cyclic k-tuple (x1, x2, x3, . . . , xk) we assign an oriented k-gon, with the
word x1x2x3 . . . xk written on its boundary. The polyhedron is then obtained by identifying
sides with the same labels in these polygons, preserving orientation. We say then that the
polyhedron X corresponds to the polygonal presentation P. It was shown in [40] that a
polyhedron X that corresponds to a polygonal presentation P has the graphs G1, G2, . . . , Gn

as links.

In particular, suppose that X is a polyhedron corresponding to a polygonal presentation P
and let si and ti be, respectively, the number of vertices and of edges of the graph Gi, for
i = 1, ..., n. Then X has n vertices (the number of vertices of X is equal to the number of
graphs), k

∑n
i=1 si edges and

∑n
i=1 ti faces. All the faces are polygons with k sides.

We use the procedure illustrated above to construct certain compact polyhedra with square
faces whose links are complete bipartite graphs.

Definition 5.3. We say that the sets G1,G2, . . . ,Gk of connected bipartite graphs are com-
patible, if all graphs in every set have the same number n of white vertices and, for every
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pair G1, Gj, j = 2, . . . , k, there is a corresponding bijection between sets of white vertices that
preserves the degrees of the vertices.

Proposition 5.4. [42] Let G1,G2, . . . ,Gk be compatible sets of connected bipartite graphs,
k ≥ 1. Then there exists a family of finite polyhedra with 2k-gonal faces, whose links at the
vertices are isomorphic to the graphs from G1,G2, . . . ,Gk.

We give now an explicit construction of a particular case of this theorem, when k = 2 and
each of the families Gi, i = 1, 2 contains exactly one complete bipartite graph Gi, with n
white and r black vertices.

By [40], to construct the polyhedron with given links, it is sufficient to construct a corre-
sponding polygonal presentation. By the definition of compatible sets of bipartite graphs,
there is a bijection α from the set of white vertices of G1 to the set of white vertices of G2,
preserving the degrees of the white vertices. We mark the white vertices of Gi, i = 1, 2 by
letters of an alphabet Ai = {xi

1, . . . , x
i
n}, such that the bijection α is induced by the indices

of the letters, i.e. α(x1
m) = xm. We mark the black vertices of Gi, i = 1, 2 by letters of an

alphabet Bi = {yi
1, y

i
2, . . . , y

i
r}. Thus, every edge of Gi, i = 1, 2 can be presented in a form

(xi
myi

l), for m = 1, . . . , n and l = 1, . . . , r.

Having such a bijection α of white vertices we can choose a bijection β of the set of edges
of G1 to the set of edges of G2, which preserves α. Let βj(x

1
my1

l ) = x2
my2

j . We let the cyclic

word (x1
m, y1

l , x
2
m, y2

j ), for m = 1, . . . , n and l, j = 1, . . . , r belong to the set P. It is shown

in [42] (in more general form) that P is a polygonal presentation. Denote then by X the
polyhedron corresponding to this polygonal presentation P.

Definition 5.5. A polygonal presentation P satisfies the stable pairs condition if any word
(x1

m, y1
l , x

2
m, y2

j ) ∈ P if and only if every word in P containing x1
m or x2

m has the form

(x1
m, y1

s , x
2
m, y2

t ) and every word in P containing y1
l or y2

j has the form (x1
p, y

1
l , x

2
p, y

2
j ).

With the condition of Definition 5.5, we obtain the following result.

Lemma 5.6. If X is a polyhedron X corresponding to a polygonal presentation that satsifies
the stable pairs condition, then the fundamental group of X is of BM type.

Proof. Consider a polyhedron X with polygonal presentation P=(x1
m, y1

l , x
2
m, y2

j ), for m =
1, . . . , n and l, j = 1, . . . , r, which satisfies the stable pair condition. This polyhedron has four
vertices and nr faces with words from P on their boundary. To compute its fundamental group
we need letters from one word of P, say (x1

m, y1
l , x

2
m, y2

j ), to be trivial. Because of the stable

pair condition, y1
sy

2
t = 1, for s, t = 1, . . . , r, and x1

px
2
p = 1. All relations of the fundamental

group of X have the form (x1
p, y

1
s , (x

1
p)

−1, (y1
s)

−1), for p = 1, . . . ,m − 1,m + 1, . . . , n and
s = 1, . . . , t − 1, t + 1, . . . , r. It is then a BM group by definition and it acts on a product of
trees of valences 2(n − 1) and 2(r − 1). �

We now consider the following infinite family of examples. Let G be a complete bipartite
graph on 8q vertices, 4q black vertices and 4q white ones. Let A and B be two alphabets on
4q letters, A = {x1, x2, . . . , x4q} and B = {y1, y2, . . . , y4q}. We mark every black vertex with
an element from A and every white vertex with an element from B.

We define a polygonal presentation P as the following set of cyclic words

(5.3)
(x1+4i, x2+4j , x4+4i, x3+4j), (x1+4i, x1+4j , x4+4i, x4+4j),

(x1+4i, x3+4j , x4+4i, x2+4j), (x2+4i, x2+4j , x3+4i, x3+4j),
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where i, j = 0, 1, . . . , q − 1. The basic bijection λ is given by λ(xl) = yl.

The polyhedron X that corresponds to P has square faces and one vertex whose link is
naturally isomorphic to a complete bipartite graph. By [3] the universal covering ∆ of X is
the direct product of two trees.

For example, in the case q = 1 the polygonal presentation P contains four cyclic words
(x1, x2, x4, x3), (x1, x1, x4, x4), (x1, x3, x4, x2), (x2, x2, x3, x3). The corresponding polyhedron
X consists of four faces and one vertex, with the link at this vertex given by the complete
bipartite graph with four vertices of each color.

In this class of examples, the fundamental group Γ of the polyhedron acts on the 2-dimensional
building ∆ ' T1 × T2 so that X = ∆/Γ, but Γ is not a subgroup of Aut(T1) × Aut(T2). To
reduce this case to the case of BM groups, we have to find in Γ a subgroup of finite index
which is of BM type.

Lemma 5.7. The group Γ with generators xk, k = 1, ..., 4q and relations

(5.4)
x1+4ix2+4jx4+4ix3+4j = 1, x1+4ix1+4jx4+4ix4+4j = 1,

x1+4ix3+4jx4+4ix2+4j = 1, x2+4ix2+4jx3+4ix3+4j = 1,

where i, j = 0, 1, . . . , q − 1, contains a subgroup of index four which is of BM type.

Proof. Consider the polyhedron Y which corresponds to the polygonal presentation (5.3).
It contains one vertex and 4q faces and the group Γ is the fundamental group of Y . The
4-branching cover of Y is a polyhedron with four vertices of type X, which satisfies the
stable pairs condition. Indeed, the polygonal presentation of Y can be obtained (5.3) by
replacing each word (xk, xl, xm, xn) by four: (x1

k, x
2
l , x

3
m, x4

n), (x4
k, x

1
l , x

2
m, x3

n), (x3
k, x

4
l , x

1
m, x2

n),
(x2

k, x
3
l , x

4
m, x1

n). By direct inspection we can see that this satisfies the stable pair condition.
By Lemma 5.6, the fundamental group of X is of BM type, acting on the product of two
trees of valence 2(4q − 1). Thus, the group Γ contains a subgroup Γ0 of index four of BM
type. �

In this case, one can still apply the construction of Proposition 5.1 to the index four subgroup
of Lemma 5.7. This means that we now work with the algebra C(∆) o Γ0, which is Morita
equivalent to C(∆ × S) o Γ, for S = Γ/Γ0 the coset space with the left action of Γ, instead
of working with C(∆) o Γ.

5.3. Hyperbolic 2-dimensional buildings.

Finally, we give a construction of a spectral triple analogous to the one defined on trees, in
the case of a class of hyperbolic 2-dimensional buildings. We will concentrate on the right
angled Fuchsian buildings.

We recall briefly some properties of these buildings (cf. [4]). They are obtained as universal
cover of orbihedra, according to the following construction. One begins with a regular r-
gon P ⊂ H with angles π/2. With the edges labeled clockwise with {i} (i = 1, . . . , r) and
vertices correspondingly labeled {i, i+1} and {r, 1}, for assigned labels qi ≥ 2, one obtains a
orbihedron by assigning the trivial group to the face of P , the cyclic group Γi = Z/(qi + 1)Z
to the {i} edge and the group Γi × Γi+1 to the {i, i + 1} vertex. This orbihedron has
universal cover ∆, with link at an {i} labeled vertex given by the complete bipartite graph
on (qi+1)+(qi+1+1) vertices. The complex ∆ is a hyperbolic building (in fact a Tits building),
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Figure 3. The universal Menger curve (iterative construction).

where every apartment is isomorphic to the hyperbolic plane H with the tessellation given
by the action on P of the cocompact Fuchsian Coxeter group generated by inversions on the
edges. Recall also that a wall in ∆ is a doubly infinite geodesic path in the 1-skeleton of ∆.
By the form of the links, all edges in such a path have the same label {i}. The equivalence
relation on edges given by being in the same wall has the tree-walls as equivalence classes. A
tree-wall with label {i} divides ∆ into (qi + 1) components.

One property of this type of buildings that is useful for the construction of spectral triples we
outline below is the fact that the boundary can always be identified with the Menger curve.
Namely, the boundary ∂∆ is defined by the set of geodesic rays from a base point in ∆. It is
homeomorphic to the universal Menger curve M. Isometries of ∆ extend to homeomorphisms
of the boundary.

The universal Menger curve, also known as the Menger sponge, is obtained by an iterative
construction analogous to that of the ternary Cantor set, starting from a 3-dimensional ball
(cf. Figure 3). It has (real) topological dimension one, and it has the universal property that
any 1-dimensional separable metrizable topological space is homeomorphic to a subset of the
Menger curve.

For a discrete finitely generated Γ ⊂ Isom(∆), the limit set ΛΓ ⊂ ∂∆ is the set of accumulation
points of orbits of Γ. The group Γ is nonelementary if ΛΓ consists of more than two points.
We can also consider, as in the case of trees, the geodesic hull H(ΛΓ), obtained by considering
all infinite geodesics in ∆ with endpoints on the limit set ΛΓ. The group Γ is quasi-convex-
cocompact if H(ΛΓ)/Γ is compact (cf. [14]). For instance, we can consider the case where Γ
is the fundamental group of the orbihedron and ∂∆ = ΛΓ is the Menger curve.

If G∆ denotes the dual graph of ∆, with a vertex for each chamber and an edge connecting two
chambers whenever these share an edge in ∆. If such edge is of type {i} the corresponding edge
in G∆ is given length log qi. This defines a metric d(v, w) on G∆. The horospherical distance
is then defined as in the case of trees (2.7), (2.8), by setting (v1, v2, v) = d(v1, v) − d(v2, v)
which induces a well defined function

(5.5) (v1, v2, x), ∀x ∈ ∂∆,
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satisfying the cocycle relation (v1, v2, x) = (v1, v, x) + (v, v2, x).

On ∂∆ one considers the combinatorial metric δv(x, y) (cf. [4]). If δH is the Hausdorff
dimension and dµv the Hausdorff measure, for γ ∈ Isom(∆) one has

(5.6) (γ∗dµv)(x) = eδHτ(v,γ−1v,x) dµv(x),

where τ is the unique positive solutions to the equation (cf. [4])

(5.7)
r∑

i=1

qx
i + qx

i+1

(1 + qx
i )(1 + qx

i+1)
= 2.

The idea now is to obtain a suitable measure space, constructed out of the Menger curve
and the measure (5.6), on which one has a large supply of locally constant functions, as in
the case of the limit sets for actions on trees that we saw before. This can be achieved by
introducing a “disconnection” of the Menger curve, which produces a totally disconnected
compact Hausdorff space. A similar trick was used in [38] in constructing Cuntz–Krieger
type algebras associated to the action of Fuchsian groups on their limit sets, where the limit
set is all of P1(R) instead of being a totally disconnected set.

Definition 5.8. Let M be a 1-dimensional compact Hausdorff space. Let W be a 0-dimensional
subset of M. Given any two points x 6= y ∈ W , and a half-open arc c = [x, y) in M, let
χc denote the characteristic function of c ⊂ M. Let BW be the unital abelian C∗-algebra
generated by C(M) and the functions

{χc : c = [x, y) ⊂ M, x 6= y ∈ W}.

Since BW is an abelian C∗-algebra, there is a locally compact Hausdorff space M̂W such that

BW = C(M̂W ). This is called the “disconnection” of M along W .

The disconnection M̂W is a totally disconnected space if and only if W is dense in M. If
the space M is endowed with a continuous action of a discrete group Γ and the set W is

Γ-invariant, then there is an induced Γ-action on M̂W and one can form the crossed product

algebra C(M̂W ) o Γ.

In our case, we want to consider the disconnection of the Menger curve M ' ∂∆ along the
set W of endpoints of walls. We then have the following result.

Lemma 5.9. Let ∂̂∆W be the disconnection of the Menger curve M along the endpoints of
walls. The function

(5.8) γ′
v(x) := eδHτ(v,γ−1v,x)

is a locally constant function of x ∈ ∂̂∆W .

Proof. This follows from the fact that the function (v1, v2, x) of (5.5) is locally constant on
∂reg∆, the complement in ∂∆ of the set W of endpoints of walls of ∆ (cf. [4]). �

Since ∂reg∆ is of full µv-measure in ∂∆, we can identify the Hilbert spaces

(5.9) L = L2(∂∆, dµv) ∼= L2(∂̂∆W , dµv).

We now want to obtain a filtration on the Hilbert space L. One way of doing so is by using
the inductive construction of the Menger curve. To this purpose, we consider a covering
{Un,i}n≥1,1≤i≤in of the Menger curve ∂∆, chosen in such a way that Un,i = ∂∆∩Cn,i, where
as a cell complex each Cn,i is a cube and the set of vertices of the Cn,i form a Γ-invariant
subset of W = ∂∆r∂reg∆. Here Γ is the fundamental group of the orbihedron. Consider the
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collection of arcs c(n, α) in Un,i coming from the intersection of the 1-skeleton of C(n, i) with
∂∆. The characteristic functions of these arcs are locally constant functions in the C ∗-algebra

C(∂̂∆W ). In the Hilbert space L = L2(∂̂∆W , dµv) we can then construct a filtration where
the subspace Vn is the span of the characteristic functions χc(n,α). This choice of filtration

yields a corresponding grading operator D =
∑

n nΠ̂n, with Πn the orthogonal projection

onto Vn and Π̂n = Πn − Πn−1.

The algebra BW = C(∂̂∆W ) acts on L by multiplication operator, and for Γ as above, we
have an action of the elements γ ∈ Γ by unitaries

(5.10) (Tγ−1 f)(x) = γ′
v(x)1/2 f(γx),

with γ′
v as in (5.8). This gives a representation on L of the crossed product A = BW o Γ.

Theorem 5.10. Consider the data (A,H,D), where A = BW o Γ, as above, H = L⊕L and
D = FD, with F the involution exchanging the two copies of L. Let A0 ⊂ A be the dense
subalgebra generated algebraically by the characteristic functions χc(n,α) and by the elements
γ ∈ Γ. For U an automorphism of A preserving A0, consider the representation (2.5) of A
in BW (H). The data obtained in this way determine a θ-summable spectral triple.

Proof. We check the condition on the commutators with D. The dense involutive subalgebra
of A0 ⊂ A is given by the algebraic crossed product A0 = BalgoΓ, where Balg is the subalgebra
of B generated algebraically by the χc(n,α). If U preserves the subalgebra A0, it is sufficient
to show that the commutators [D, a] are bounded for all a ∈ A0. This is clear for a ∈ Balg

since such elements are in some Vk for some k ≥ 0, hence the corresponding multiplication
operators map Vn to Vn for all n ≥ k. In the case of group elements, the commutator
[Tγ , D] is also bounded, since γ ′

v(x)1/2 is locally constant hence, for some k = k(γ), we have
Tγ : Vn → Vn+k(γ) for all sufficiently large n. �

5.4. Finite summability in higher rank.

There is a setting similar to the one considered in §3 in the higher rank case. In fact, in [35],

Robertson and Steger considered affine buildings ∆ of type Ã2, whose boundary Λ is defined
by an equivalence relation on sectors (just as in the case of trees it is given by an equivalence
relations on geodesics). They showed that, if Γ is a group of type rotating automorphisms of
∆, then the C∗-algebra C(Λ)oΓ is isomorphic to a higher rank Cuntz–Krieger algebra OA1,A2

.
This is a particular (rank two) case of more general higher rank generalizations of Cuntz–
Krieger algebras, associated to a finite collection of transition matrices Aj , j = 1, . . . , r, with
entries in {0, 1}, associated to shifts in r different directions, with the transition matrices
satisfying compatibility conditions (see conditions (H0)–(H3) of [35]). The matrices give
admissibility conditions for r-dimensional words in an assigned alphabet. In the case of the
Cuntz–Krieger algebra OA = C(ΛΓ) o Γ one can choose as generators the partial isometries
Su,v = Tuv−1Pv , for u, v ∈ Γ, with t(u) = t(v) (same tail as edges in the Cayley graph).
Similarly, in the higher rank case, one has generators that are partial isometries Su,v, where
u and v are words in the given alphabet, with t(u) = t(v). These satisfy the relations

(5.11)
S∗

u,v = Sv,u Su,vSv,w = Su,w

Su,v =
∑

Suw,vw Su,uSv,v = 0, ∀u 6= v

The sum here is over r-dimensional words w with source s(w) = t(u) = t(v) and with shape
σ(w) = ej , for j = 1, . . . , r, where ej is the j-th standard basis vector in Zr (see [34], [35] for
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more details). Robertson and Steger also proved ([35] §6) that the higher rank Cuntz–Krieger
algebras OA1,...,Ar are stably isomorphic to a crossed product

(5.12) OA1,...,Ar
∼= FA1,...,Ar oT Zr,

where FA1,...,Ar is the AF algebra generated by the Su,v with σ(u) = σ(v). Again the stabi-

lization FA is a non-unital AF algebra. One expects that a similar technique, based on the
standard spectral triple of the n-torus T n and a spectral triple for the non-unital AF algebra
FA1,...,Ar to yield finitely summable triples for the algebra of (5.12).
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