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1. Introduction

The following problem in operator algebra has been open for several years.

Problem 1.1. For some number field K (other than Q) exhibit an explicit quantum statistical me-
chanical system (A, σt) with the following properties:

(1) The partition function Z(β) is the Dedekind zeta function of K.
(2) The system has a phase transition with spontaneous symmetry breaking at the pole β = 1 of

the zeta function.
(3) There is a unique equilibrium state above critical temperature β = 1.
(4) The quotient CK/DK of the idèle class group CK of K by the connected component DK of

the identity acts as symmetries of the system (A, σt).
(5) There is a subalgebra A0 of A with the property that the values of extremal ground states on

elements of A0 are algebraic numbers and generate the maximal abelian extension Kab.
(6) The Galois action on these values is realized by the induced action of CK/DK on the ground

states, via the class field theory isomorphism

(1.1) θ : CK/DK → Gal(Kab/K).

The problem originates from the work of Bost–Connes, [3], [4], where a system with all the properties
listed above was constructed for K = Q. Important developments in the direction of generalizing the
Bost–Connes system to other number fields were obtained by Harari and Leichtnam [11], Cohen [6],
Arledge, Laca and Raeburn [1], Laca and van Frankenhuijsen [12]. These results all assume restrictions
on the class number of K. It was widely believed that a system satisfying all the properties of Problem
1.1 would exist (supposedly for any number field and certainly at least in the case where K is an
imaginary quadratic field). However, a complete construction (without special assumptions on the
class number) had not been obtained so far for any case other than Q.
The purpose of the present paper is to give a complete solution to Problem 1.1, for K an imaginary
quadratic field, without any restriction on the class number of K. In an accompanying paper [8], we
explain the geometry underlying and motivating the construction presented in this paper, and we make
a detailed comparison between the properties of the system described here, the original Bost–Connes
system [4] and the GL2-system of [7].

2. Quantum statistical mechanics for imaginary quadratic fields

In this section we construct a quantum statistical mechanical system (AK , σt) associated to an imag-
inary quadratic field K.

We begin by recalling some basic notions and notation that we will use through the paper.
For any ring R, we write R∗ for the group of invertible elements, while R× denotes the set of nonzero
elements of R, which is a semigroup if R is an integral domain.
We write O for the ring of algebraic integers of the imaginary quadratic field K = Q(

√
−d), where d

is a positive integer.
We also use the notation

(2.1) Ô := O ⊗ Ẑ AK,f = Af ⊗Q K and IK = A∗
K,f = GL1(AK,f ),
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where Ẑ is the profinite completion of Z and Af = Ẑ⊗Q is the ring of finite adeles of Q. Notice that
K∗ embeds diagonally into IK .
We can write the ring of integers in the form O = Z + Zτ and the imaginary quadratic field as
K = Q(τ), where we fix the embedding K ↪→ C so that τ ∈ H. We can regard C as a K-vector space
and in particular an O-module.

2.1. K-lattices and commensurability.

We introduce the main geometric notions underlying our system.

Definition 2.1. For K an imaginary quadratic field, a 1-dimensional K-lattice (Λ, φ) is a finitely
generated O-submodule Λ ⊂ C, such that Λ ⊗O K ∼= K, together with a morphism of O-modules

(2.2) φ : K/O → KΛ/Λ.

A 1-dimensional K-lattice is invertible if φ is an isomorphism of O-modules.

Notice that in the definition we assume that the O-module structure is compatible with the embeddings
of both O and Λ in C.

Lemma 2.2. As an O-module, Λ is projective.

Proof. As an O-module Λ is isomorphic to a finitely generated O-submodule of K, hence to an ideal
in O. Every ideal in a Dedekind domain O is finitely generated projective over O. �

Definition 2.3. Two 1-dimensional K-lattices (Λ1, φ1) and (Λ2, φ2) are commensurable if KΛ1 =
KΛ2 and φ1 = φ2 modulo Λ1 + Λ2.

One checks easily, as in Proposition 1.11 of [7], that commensurability is indeed an equivalence relation.

Lemma 2.4. Up to scaling by some λ ∈ C∗, any K-lattice Λ is equivalent to a K-lattice Λ′ = λΛ ⊂
K ⊂ C. The lattice Λ′ is unique modulo K∗.

Proof. The K-vector space KΛ is 1-dimensional. If ξ is a generator, then ξ−1Λ ⊂ K. The remaining
ambiguity is only by scaling by elements in K∗. �

Proposition 2.5. For invertible 1-dimensional K-lattices, the element of K0(O) associated to the
O-module Λ is an invariant of the commensurability class up to scaling.

Proof. Two invertible 1-dimensional K-lattices that are commensurable are in fact equal. The same
holds for lattices up to scaling. Thus, the corresponding O-module class is well defined. �

There is a canonical isomorphism K0(O) ∼= Z + Cl(O) (cf. Corollary 1.11, [14]), where the Z part is
given by the rank, which is equal to one in our case, hence the invariant of Proposition 2.5 is the class
in the class group Cl(O).

In contrast to Proposition 2.5, every 1-dimensional K-lattice is commensurable to a K-lattice whose
O-module structure is trivial. This follows, since every ideal in O is commensurable to O.

Proposition 2.6. The data (Λ, φ) of a 1-dimensional K-lattice are equivalent to data (ρ, s) of an

element ρ ∈ Ô and s ∈ A∗
K/K∗, modulo the Ô∗-action given by (ρ, s) 7→ (x−1ρ, xs), x ∈ Ô∗. Thus,

the space of 1-dimensional K-lattices is given by

(2.3) Ô ×Ô∗ (A∗
K/K∗).

Proof. The O-module Λ can be described in the form Λs = s−1
∞ (sf Ô ∩K), where s = (sf , s∞) ∈ A∗

K .

This satisfies Λks = Λs for all k ∈ (Ô∗ × 1) K∗ ⊂ A∗
K . Indeed, up to scaling, Λ can be identified with

an ideal in O. These can be written in the form sf Ô∩K (cf. [17] §5.2). If Λs = Λs′ , then s′∞s−1
∞ ∈ K∗
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and one is reduced to the condition sf Ô ∩ K = s′f Ô ∩ K, which implies s′fs−1
f ∈ Ô∗. The data φ of

the 1-dimensional K-lattice can be described by the composite map φ = s−1
∞ (sf ◦ ρ)

K/O ρ
//

∼=

��

K/O //

∼=

��

K/(sf Ô ∩ K)

∼=

��

AK,f/Ô ρ
// AK,f/Ô

sf
// AK,f/sf Ô

(2.4)

where ρ is an element in Ô. By construction the map (ρ, s) 7→ (Λs, s
−1
∞ (sf ◦ ρ)) passes to the quotient

Ô ×Ô∗ (A∗
K/K∗) and the above shows that it gives a bijection with the space of 1-dimensional K-

lattices.
�

Notice that, even though Λ and O are not isomorphic as O-modules, on the quotients we have
K/Λ ' K/O as O-modules, with the isomorphism realized by sf in the diagram (2.4).

Proposition 2.7. Let A·
K = AK,f × C∗ be the subset of adèles of K with nontrivial archimedean

component. The map Θ(ρ, s) = ρ s,

(2.5) Θ : Ô ×Ô∗ (A∗
K/K∗) → A·

K/K∗,

preserves commensurability and induces an identification of the set of commensurability classes of
1-dimensional K-lattices (not up to scale) with the space A·

K/K∗.

Proof. The map is well defined, because ρs is invariant under the action (ρ, s) 7→ (x−1ρ, xs) of x ∈ Ô∗.
It is clearly surjective. It remains to show that two K-lattices have the same image if and only if they
are in the same commensurability class. First we show that we can reduce to the case of principal
K-lattices, without changing the value of the map Θ. Given a K-lattice (Λ, φ), we write Λ = λJ ,

where J ⊂ O is an ideal, hence Λ = λ(sf Ô ∩ K), where λ = s−1
∞ ∈ C∗ and sf ∈ Ô ∩ A∗

K,f . Then

(Λ, φ) is commensurate to the principal K-lattice (λO, φ). If (ρ, s) is the pair associated to (Λ, φ),
with s = (sf , s∞) as above, then the corresponding pair (ρ′, s′) for (λO, φ) is given by ρ′ = sf ρ and
s′ = (1, s∞). Thus, we have Θ(Λ, φ) = Θ(λO, φ). We can then reduce to proving the statement in the
case of principal K-lattices (s−1

∞ O, s−1
∞ ρ). In this case, the equality s∞ρ = ks′∞ρ′, for k ∈ K∗, means

that we have s∞ = ks′∞ and ρ = kρ′. In turn, this is the relation of commensurability for principal
K-lattices.

�

Thus, we obtain, for 1-dimensional K-lattices, the following Lemma as an immediate corollary,

Lemma 2.8. The map defined as Υ : (Λ, φ) 7→ ρ ∈ Ô/K∗ for principal K-lattices extends to an
identification, given by Υ : (Λ, φ) 7→ sf ρ ∈ AK,f/K∗, of the set of commensurability classes of
1-dimensional K-lattices up to scaling with the quotient

(2.6) Ô/K∗ = AK,f/K∗.

2.2. Algebra of coordinates.

We now describe the noncommutative algebra of coordinates of the space of commensurability classes
of 1-dimensional K-lattices up to scaling.

To this purpose, we first consider the groupoid R̃K of the equivalence relation of commensurability on
1-dimensional K-lattices (not up to scaling). By construction, this groupoid is a subgroupoid of the

groupoid R̃ of commensurability classes of 2-dimensional Q-lattices. Its structure as a locally compact
étale groupoid is inherited from this embedding.
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The groupoid R̃K corresponds to the quotient A·
K/K∗. Its C∗-algebra is given up to Morita equiva-

lence by the crossed product

(2.7) C0(A
·
K) o K∗.

The case of commensurability classes of 1-dimensional K-lattices up to scaling is more delicate. Its
noncommutative algebra of coordinates is given by the algebra AK = C∗(GK) obtained by taking the

quotient by scaling GK = R̃K/C∗ of the groupoid of the equivalence relation of commensurability.

Proposition 2.9. The quotient GK = R̃K/C∗ is a groupoid.

Proof. The simplest way to check this is to write R̃K as the union of the two groupoids R̃K = G0∪G1

corresponding respectively to pairs of commensurable K-lattices (L, L′) with L = (Λ, 0), L′ = (Λ′, 0)
and (L, L′) with L = (Λ, φ 6= 0), L′ = (Λ′, φ′ 6= 0). The scaling action of C∗ on G0 is the identity on
O∗ and the corresponding action of C∗/O∗ is free on the units of G0. Thus the quotient G0/C∗ is a
groupoid. Similarly the action of C∗ on G1 is free on the units of G1 and the quotient G1/C∗ is a
groupoid. �

The quotient topology turns GK into a locally compact étale groupoid. The algebra of coordinates
AK = C∗(GK) is the convolution algebra of weight zero functions on the groupoid R̃K of the equiv-
alence relation of commensurability on K-lattices. Elements in the algebra are functions of pairs
(Λ, φ), (Λ′, φ′) of commensurable 1-dimensional K-lattices satisfying, for all λ ∈ C∗,

f(λ(Λ, φ), λ(Λ′, φ′)) = f((Λ, φ), (Λ′, φ′)).

Lemma 2.10. The algebra AK is unital.

Proof. The set G
(0)
K of units of GK is the quotient of Ô ×Ô∗ (A∗

K/K∗) by the action of C∗. This gives
the compact space

(2.8) X = G
(0)
K = Ô ×Ô∗ (A∗

K,f/K∗).

Notice that A∗
K,f/(K∗ × Ô∗) is Cl(O). Since the set of units is compact the convolution algebra is

unital.
�

There is a homomorphism n from the groupoid R̃K to R∗
+ given by the covolume of a commensurable

pair of K-lattices. More precisely given such a pair (L, L′) = ((Λ, φ), (Λ′, φ′)) we let

(2.9) |L/L′| = covolume(Λ′)/covolume(Λ)

This is invariant under scaling both lattices, so it is defined on GK = R̃K/C∗. Up to scale, we can
identify the lattices in a commensurable pair with ideals in O. The covolume is then given by the
ratio of the norms. This defines a time evolution on the algebra AK by

(2.10) σt(f)(L, L′) = |L/L′|itf(L, L′).

We construct representations for the algebra AK . For an étale groupoid GK , every unit y ∈ G
(0)
K

defines a representation πy by left convolution of the algebra of GK in the Hilbert space Hy =
`2((GK)y), where (GK)y is the set of elements with source y. The representations corresponding to
points that have a nontrivial automorphism group will no longer be irreducible. As in the GL2-case,
this defines the norm on AK as

(2.11) ‖f‖ = sup
y

‖πy(f)‖.

Lemma 2.11. (1) Given an invertible K-lattice (Λ, φ), the map

(2.12) (Λ′, φ′) 7→ J = {x ∈ O|xΛ′ ⊂ Λ}
gives a bijection of the set of K-lattices commensurable to (Λ, φ) with the set of ideals in O.
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(2) Invertible K-lattices define positive energy representations.
(3) The partition function is the Dedekind zeta function ζK(β) of K.

Proof. (1) As in Theorem 1.26 of [7], we use the fact (Lemma 1.27 of [7]) that, if Λ is an invertible
2-dimensional Q-lattice and Λ′ is commensurable to Λ, then Λ ⊂ Λ′. The map above is well defined,
since J ⊂ O is an ideal. Moreover, JΛ′ = Λ, since O is a Dedekind domain. The map is injective,
since J determines Λ′ as the O-module {x ∈ C|xJ ⊂ Λ} and the corresponding φ and φ′ agree. This
also shows that the map is surjective. We then use the notation

(2.13) J−1(Λ, φ) = (Λ′, φ).

(2) For an invertible K-lattice, the above gives an identification of (GK)y with the set J of ideals
J ⊂ O. The covolume is then given by the norm. The corresponding Hamiltonian is of the form

(2.14) H εJ = log n(J) εJ ,

with non-negative eigenvalues.
(3) The partition function of the system (AK , σt) is then given by the Dedekind zeta function

(2.15) Z(β) = Tr(e−βH) =
∑

J ideal in O

n(J)−β = ζK(β).

�

We give a more explicit description of the action L 7→ J−1L on K-lattices, for J an ideal of O. This
will be useful later.

Proposition 2.12. Let L = (Λ, φ) be a K-lattice and J ⊂ O an ideal. If L is represented by a pair
(ρ, s), then J−1L is represented by the commensurable pair (sJρ, s−1

J s), where sJ is a finite idèle such

that J = sJÔ ∩ K.

Proof. By [17] §5.2, there is a finite idèle sJ , such that we can write the ideal J in the form J = sJÔ∩K.

The pair (sJρ, s−1
J s) defines an element in Ô ×Ô∗ A∗

K/K∗. In fact, first notice that sJ is in fact in

Ô ∩A∗
K,f , hence the product sJρ ∈ Ô. It is well defined modulo Ô∗, and by direct inspection one sees

that the class it defines in Ô ×Ô∗ A∗
K/K∗ is that of J−1L. By Proposition 2.7, in order to check that

the K-lattices (ρ, s) and (sJρ, s−1
J s) lie in the same commensurability class, it is sufficient to see that

Θ(ρ, s) = ρs = Θ(sJρ, s−1
J s).

�

2.3. Symmetries of the system.

Recall the following general facts about symmetries of a quantum statistical mechanical system (A, σt),
with a unital C∗-algebra A and a 1-parameter group of automorphisms σt, (t ∈ R).

Definition 2.13. An element g ∈ Aut(A) acts as an automorphism of (A, σt) if gσt = σtg, for all
t ∈ R. A unitary u ∈ A such that σt(u) = u , for all t ∈ R, acts as an inner automorphism of (A, σt),
by

(2.16) (Adu) (a) := u a u∗ , ∀a ∈ A .

A ∗-homomorphism ρ : A → A acts as an endomorphism of (A, σt) if ρσt = σtρ, for all t ∈ R. An
isometry u ∈ A, u∗ u = 1, satisfying σt(u) = λit u, for all t ∈ R and for some λ ∈ R∗

+, defines an
inner endomorphism of (A, σt), again of the form (2.16).

In the case of the system (AK , σt) defined above, we have the following symmetries.

Proposition 2.14. The semigroup Ô∩A∗
K,f acts on the algebra AK by endomorphisms. The subgroup

Ô∗ acts on AK by automorphisms. The subsemigroup O× acts by inner endomorphisms.
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Proof. Given an ideal J ⊂ O, consider the set of K-lattices (Λ, φ) such that φ is well defined modulo
JΛ. Namely, the map φ : K/O −→ KΛ/Λ factorises as K/O −→ KΛ/JΛ → KΛ/Λ. We say, in this
case, that the K-lattice (Λ, φ) is divisible by J . The above condition gives a closed and open subset
of the set of K-lattices up to scaling. We denote by eJ ∈ AK the corresponding idempotent. Let
s ∈ Ô ∩ A∗

K,f . Let J = sÔ ∩ K. Given a commensurable pair (Λ, φ) and (Λ′, φ′), and an element
f ∈ AK , we define

(2.17) θs(f)((Λ, φ), (Λ′, φ′)) =

{

f((Λ, s−1φ), (Λ′, s−1φ′)) both K-lattices are divisible by J

0 otherwise.

Formula (2.17) defines an endomorphism of AK with range the algebra reduced by eJ . It is, in fact,

an isomorphism with the reduced algebra. Clearly, for s ∈ Ô∗, the above defines an automorphism.
For s ∈ O×, the endomorphism (2.17) is inner. In fact, for s ∈ O×, let µs ∈ AK be given by

(2.18) µs((Λ, φ), (Λ′, φ′)) =

{

1 Λ = s−1Λ′ and φ′ = φ

0 otherwise.

Then the range of µs is the projection eJ , where J is the principal ideal generated by s. Then we have

θs(f) = µs f µ∗
s , ∀s ∈ O×.

The action of symmetries Ô ∩ A∗
K,f is compatible with the time evolution,

θs σt = σt θs, ∀s ∈ Ô ∩ A∗
K,f , ∀t ∈ R.

The isometries µs are eigenvectors of the time evolution, namely

σt(µs) = n(s)it µs.

�

2.4. KMS states and symmetries.

We recall the definition of KMS states for a quantum statistical mechanical system (A, σt), (cf. [5],
[10]) and their induced symmetries.

Definition 2.15. Suppose given a triple (A, σt, ϕ), with ϕ a state on the algebra A. The Kubo-
Martin-Schwinger (KMS) condition at inverse temperature β is defined as follows.

(1) Assume 0 ≤ β < ∞. The state ϕ is a KMSβ state if, for all x, y ∈ A, there exists a
holomorphic function Fx,y(z) on the strip 0 < Im(z) < β, which extends as a continuous
function to the boundary of the strip, with the property that

(2.19) Fx,y(t) = ϕ(xσt(y)) and Fx,y(t + iβ) = ϕ(σt(y)x), ∀t ∈ R.

(2) Assume β = ∞. The state ϕ is a KMS∞ state if it is a weak limit of KMSβ states. Namely,
for all a ∈ A,

(2.20) ϕ∞(a) = lim
β→∞

ϕβ(a).

For any given β < ∞, the set of KMSβ states is a compact convex Choquet simplex [5, II §5] whose
set of extreme points Eβ consists of the factor states. One can express any KMSβ state uniquely in
terms of extremal states, because of the uniqueness of the barycentric decomposition of a Choquet
simplex. With the definition above, the set of KMS∞ states is a weakly compact convex set, so that
we can still consider the set E∞ of its extremal points.

Symmetries Aut(A, σt) and End(At, σt) of the system, as in Definition 2.13, induce symmetries of the
KMS states as follows (cf. [7]).
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Lemma 2.16. Suppose given (At, σt), with a unital C∗-algebra A and a 1-parameter family of auto-
morphisms σt. Assume that, for sufficiently large β, the map

(2.21) Wβ(ϕ)(a) =
Tr(πϕ(a) e−β H)

Tr( e−β H)
, ∀a ∈ A

is a bijection Wβ : E∞ → Eβ.

(1) The induced action

(2.22) ϕ 7→ g∗(ϕ) := ϕ ◦ g,

for g ∈ Aut(A, σt) and ϕ ∈ Eβ, descends to an action of the quotient group Aut(A, σt)/U .
(2) For ϕ ∈ Eβ, consider endomorphisms ρ ∈ End(At, σt) such that ϕ(ρ(1)) 6= 0. Then the induced

action on KMSβ states is given by

(2.23) ϕ 7→ ρ∗(ϕ) :=
ϕ ◦ ρ

ϕ(ρ(1))

when β < ∞ and by

(2.24) ρ∗(ϕ)(a) := lim
β→∞

ρ∗(Wβ(ϕ))(a) ∀a ∈ A,

when ϕ ∈ E∞.
(3) The action on KMS states of ρ ∈ End(At, σt) descends to an action modulo the inner action

(2.16) of isometries that are eigenvectors of the time evolution, as in Definition 2.13.

Proof. The argument is the same as in [7]. One verifies using the KMS condition that the inner action
(2.16) is trivial on KMS states, both in the case of automorphisms and of endomorphisms. �

In the case of the system (AK , σt) for an imaginary quadratic field K, we have the following symmetries
of KMS states.

Proposition 2.17. The quotient CK/DK of the idèle class group CK of K by the connected component
of identity DK acts as symmetries of the KMS states of the system (AK , σt). The action of the

subgroup Ô∗/O∗ is by automorphisms.

Proof. Recall that AK,f = Ô.K∗. Thus, we can pass to the corresponding group of symmetries,
modulo inner, which is given by the group A∗

K,f/K∗, which is isomorphic to CK/DK (cf. [17] §5, [2]

§9). We have an exact sequence of groups

1 → Ô∗/O∗ → A∗
K,f/K∗ → Cl(O) → 1,

where Cl(O) is the class group of the ring O, with #Cl(O) = hK , the class number of K. �

This shows that, in the very special case of class number hK = 1, symmetries are given only through
an action by automorphisms, as in the original case of the Bost–Connes system. In the case where
hK 6= 1, the nontrivial elements of Cl(O) have representatives in A∗

K,f/K∗ that act by endomorphisms.

In order to compute the value of KMS states on the projection eJ associated to an ideal J of the ring
O of integers (i.e. the characteristic function of the set of K-lattices divisible by J) we introduce an
isometry µJ ∈ AK such that its range is eJ . This isometry is simply given with our notations by

(2.25) µJ ((Λ, φ), (Λ′, φ′)) =

{

1 Λ = J−1Λ′ and φ′ = φ

0 otherwise.

which is similar to equation (2.18) and reduces to that one when J is principal (generated by s). Thus,
this would seem to imply that it is not only the subsemigroup O× that acts by inner endomorphisms,
but in fact a bigger one, using the isometries µJ ∈ AK . To see what happens, one needs to compare
the endomorphism f → µJfµ∗

J with the endomorphism θs. In the first case one gets

(2.26) µJfµ∗
J((Λ, φ), (Λ′, φ′)) =

{

f((J Λ, φ), (J Λ′, φ′)) both K-lattices are divisible by J

0 otherwise,
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while in the second case one gets the formula (2.17) i.e.

(2.27) θs(f)((Λ, φ), (Λ′, φ′)) =

{

f((Λ, s−1φ), (Λ′, s−1φ′)) both K-lattices are divisible by J

0 otherwise.

The key point here is that the scaling is only allowed by elements of K∗ and the scaling relation
between lattices (s Λ, φ) and (Λ, s−1φ) holds only for s ∈ K∗, but not for ideles. Thus, even though
the µJ always exist (for any ideal), they implement the endomorphism θs only in the case where J is
principal.

2.5. The arithmetic subalgebra.

In order to show that the system (AK , σt) solves Problem 1.1, we need to identify a suitable arithmetic
subalgebra AK,0 of AK .

The algebra AK,0 is obtained by embedding the system (AK , σt) as a sub-system of the GL2-system of
[7] and restricting the arithmetic algebra of the GL2-system to the subgroupoid of commensurability
classes of 1-dimensional K-lattices up to scale.
We recall the notion of 2-dimensional Q-lattices and commensurability.

Definition 2.18. A 2-dimensional Q-lattice is a pair (Λ, φ) , with Λ a lattice in C, and

(2.28) φ : Q2/Z2 −→ QΛ/Λ

a homomorphism of abelian groups. A Q-lattice is invertible if the map (2.28) is an isomorphism. Two
Q-lattices (Λ1, φ1) and (Λ2, φ2) are commensurable if the lattices are commensurable (i.e. QΛ1 = QΛ2)
and the maps agree modulo the sum of the lattices,

φ1 ≡ φ2 mod Λ1 + Λ2.

Let O = Z + Zτ be the ring of integers of an imaginary quadratic field K = Q(τ). The choice of such
a τ ∈ H determines an embedding

(2.29) qτ : K ↪→ M2(Q).

The image of its restriction qτ : K∗ ↪→ GL+
2 (Q) is characterized by the property that (cf. [17]

Proposition 4.6)

(2.30) qτ (K∗) = {g ∈ GL+
2 (Q) : g(τ) = τ}.

For g = qτ (x) with x ∈ K∗, we have

(2.31) det(g) = n(x),

where n : K∗ → Q∗ is the norm map.

The relation between 1-dimensional K-lattices and 2-dimensional Q-lattices is explained in the fol-
lowing Lemma.

Lemma 2.19. A 1-dimensional K-lattice is, in particular, a 2-dimensional Q-lattice. Two 1-dimensional
K-lattices are commensurable iff the underlying Q-lattices are commensurable.

Proof. First notice that KΛ = QΛ, since QO = K. This, together with Λ⊗O K ∼= K, shows that the
Q-vector space QΛ is 2-dimensional. Since RΛ = C, and Λ is finitely generated as an abelian group,
this shows that Λ is a lattice. The basis {1, τ} provides an identification of K/O with Q2/Z2, so that
we can view φ as a homomorphism of abelian groups φ : Q2/Z2 → QΛ/Λ. The pair (Λ, φ) thus gives
a two dimensional Q-lattice.
The second statement holds, since for 1-dimensional K-lattices we have KΛ = QΛ. �

The GL2-system is constructed in [7] by first considering the groupoid R2 of the equivalence relation of
commensurability on the set of 2-dimensional Q-lattices. This is a locally compact étale groupoid. One
then takes the quotient with respect to the scaling action of C∗. Unlike what happens in Proposition
2.9, the quotient R2/C∗ is not a groupoid. However, one can still define a convolution algebra
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associated to R2/C∗ by restricting the convolution product of the algebra of R2 to weight zero
functions with C∗-compact support. Elements of the resulting algebra A2 are functions of pairs of
commensurable 2-dimensional Q-lattices, invariant under the scaling action,

f(λ(Λ, φ), λ(Λ′, φ′)) = f((Λ, φ), (Λ′, φ′)), ∀λ ∈ C∗.

The following result is a direct consequence of Lemma 2.19.

Lemma 2.20. The groupoid R̃K of the equivalence relation of commensurability of 1-dimensional
K-lattices is a subgroupoid of the groupoid R2 of commensurability of 2-dimensional Q-lattices. Its
structure as a locally compact étale groupoid is inherited from this embedding.

More explicitly, the convolution algebra A2 is the Hecke algebra of functions on

(2.32) U = {(g, α, z) ∈ GL+
2 (Q) × M2(Ẑ) × H, gα ∈ M2(Ẑ)}

invariant under the Γ × Γ action

(2.33) (g, α, z) 7→ (γ1gγ−1
2 , γ2α, γ2(z)),

with convolution

(2.34) (f1 ∗ f2) (g, α, z) =
∑

s∈Γ\GL+

2
(Q), sα∈M2(Ẑ)

f1(gs−1, sα, s(z)) f2(s, α, z)

and adjoint f∗(g, α, z) = f(g−1, gα, g(z)).
The C∗-algebra completion of A2 is taken with respect to the sup of the norms in the representations
πy by left convolution on the Hilbert space Hy = `2(Ry), where Ry is the set of elements with source

y ∈ R(0). (We refer the reader to [7] for details on the definition and properties of this algebra.)

The time evolution of the GL2-system is given by the covolume of a commensurable pair of 2-
dimensional Q-lattices, that is,

(2.35) σt(f)(g, α, τ) = det(g)itf(g, α, τ),

where, for the pair of commensurable Q-lattices associated to the data (g, α, τ), one has

(2.36) det(g) = covolume(Λ′)/covolume(Λ).

Lemma 2.21. The time evolution (2.10) of (AK , σt) is the restriction to AK of the time evolution
(2.35) of the GL2-system.

Proof. By restriction from the GL2-system, there is a homomorphism n from the groupoid R̃K to R∗
+

given by the covolume of a commensurable pair of K-lattices. Thus, by (2.31), the time evolution of
the system (AK , σt) is the restriction to AK of the time evolution of the GL2-system. �

The modular field F is the field of modular functions over Qab (cf. e.g. [13]). This is the union of the
fields FN of modular functions of level N rational over the cyclotomic field Q(ζN ), that is, such that
the q-expansion at a cusp has coefficients in the cyclotomic field Q(ζN ).

The arithmetic algebra A2,Q of the GL2-system is defined as follows (cf. [7]).

Definition 2.22. Let A2,Q be the subalgebra of continuous functions on the quotient R2/C∗, with the
convolution product (2.34), which satisfy the following properties.

• The support of f in Γ\GL+
2 (Q) is finite.

• The function f is of finite level.
• The functions f(g,m) satisfy f(g,m) ∈ F , for all (g, m).
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• The function f satisfies the cyclotomic condition:

f(g,α(u)m) = cycl(u) f(g,m),

for all g ∈ GL+
2 (Q) diagonal and all u ∈ Ẑ∗, with

α(u) =

(

u 0
0 1

)

.

Here cycl : Ẑ∗ → Aut(F ) is the action of Ẑ∗ ' Gal(Qab/Q) on the coefficients of the q-expansion.

The definition of this algebra is very natural for the GL2-system. The conditions listed above amount
to imposing the simplest possible “algebraicity condition” on the unique continuous modulus (the
q-parameter) that functions in the algebra depend on. The cyclotomic condition is a consistency
condition on the roots of unity that appear in the coefficients of the q-series, which eliminates trivial
cases that would not behave well with respect to a Galois action on the values of states.

Notice that the condition that the functions f have finite support in the left coset space of the action
of Γ on GL2(Q) is compatible with the right Γ-invariance, because the inclusion SL2(Z) ⊂ GL2(Q) is
quasi-normal, so that the image under the projection onto the left coset of a right Γ-orbit is finite.

We define the arithmetic subalgebra of the system (AK , σt) as follows.

Definition 2.23. The algebra AK,0 is the K-algebra obtained by

(2.37) AK,0 = A2,Q|GK
⊗Q K.

Here A2,Q|GK
denotes the Q-algebra obtained by restricting elements of the algebra A2,Q of Definition

2.22 to the C∗-quotient GK of the subgroupoid R̃K ⊂ R̃2.

Since AK is unital, one sees easily that AK,0 is a subalgebra of AK , even though A2,Q is only an
algebra of unbounded multipliers of A2 (cf. [7]).

3. KMS states and class field theory for imaginary quadratic fields

In this section we prove that the system (AK , σt) gives a complete solution to Problem 1.1 for the
imaginary quadratic field K.

Theorem 3.1. Consider the system (AK , σt) described in the previous section. The extremal KMS
states of this system satisfy:

• In the range 0 < β ≤ 1 there is a unique KMS state.
• For β > 1, extremal KMSβ states are parameterized by invertible K-lattices,

(3.1) Eβ ' A∗
K,f/K∗

with a free and transitive action of CK/DK
∼= A∗

K,f/K∗ as symmetries.

• In this range, the extremal KMSβ state associated to an invertible K-lattice L = (Λ, φ) is of
the form

(3.2) ϕβ,L(f) = ζK(β)−1
∑

J ideal in O

f(J−1L, J−1L) n(J)−β ,

where ζK(β) is the Dedekind zeta function, and J−1L defined as in (2.13).
• The set of extremal KMS∞ states (as weak limits of KMSβ states) is still given by (3.1).
• The extremal KMS∞ states ϕ∞,L of the CM system, evaluated on the arithmetic subalgebra
AK,0, take values in Kab, with ϕ∞,L(AK,0) = Kab.

• The class field theory isomorphism (1.1) intertwines the action of A∗
K,f/K∗ by symmetries of

the system (AK , σt) and the action of Gal(Kab/K) on the image of AK,0 under the extremal
KMS∞ states. Namely, for all ϕ∞,L ∈ E∞ and for all f ∈ AK,0,

(3.3) α(ϕ∞,L(f)) = (ϕ∞,L ◦ θ−1(α))(f), ∀α ∈ Gal(Kab/K).

The proof of Theorem 3.1 is given in the following subsections.
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3.1. KMS states at low temperature.

The partition function ZK(β) of (2.15) converges for β > 1. We have also seen in the previous section
that invertible K-lattices L = (Λ, φ) determine positive energy representations of AK on the Hilbert
space H = `2(J ) where J is the set of ideals of O. Thus, the formula

(3.4) ϕβ,L(f) =
Tr (πL(f) exp(−βH))

Tr(exp(−βH))

defines an extremal KMSβ state, with the Hamiltonian H of (2.14). These states are of the form
(3.2). It is not hard to see that distinct elements in AK,f/K∗ define distinct states ϕβ,L.

This shows that we have an injection of AK,f/K∗ ⊂ Eβ . We need to show that, conversely, every
extremal KMSβ state is of the form (3.2).

In order to prove the second and third statements of Theorem 3.1 we shall proceed in two steps.
The first shows (Proposition 3.4 below) that KMSβ states are given by measures on the space X of
K-lattices (up to scaling), as in (3.5) below. The second shows that when β > 1 this measure is
carried by the commensurability classes of invertible K-lattices.

Let p denotes the projection from K-lattices to their class p(L) ∈ X modulo scaling, which we can
write as the projection

p : Ô ×Ô∗ (A∗
K/K∗) → Ô ×Ô∗ (A∗

K,f/K∗).

We obtain the following result.

Lemma 3.2. Let γ = (L, L′) ∈ R̃K with p(L) = p(L′) ∈ X. Then either L = L′ or φ = φ′ = 0.

Proof. We first describe the elements γ ∈ GK such that s(γ) = r(γ) i.e. γ = (L, L′) ∈ R̃K such that

the classes of L and L′ modulo the scaling action of C∗ are the same elements of the set X = G
(0)
K of

(2.8). Modulo scaling, we can assume that the lattice Λ ⊂ K. Thus, since L and L′ are commensurable,
it follows that Λ′ ⊂ K. Then, by hypothesis, there exists λ ∈ C∗ such that λL = L′. One has λ ∈ K∗

and φ′ = λφ. By the commensurability of the pair one also has φ′ = φ modulo Λ+Λ′. Writing λ = a
b ,

with a, b ∈ O, we get aφ = bφ and λ = 1 unless φ = 0. �

We let F be the finite closed subset of X given by the set of K-lattices up to scaling such that φ = 0.
Its cardinality is the class number of K. The groupoid GK is the union GK = G0 ∪G1 of the reduced
groupoids by F ⊂ X and its complement.

Lemma 3.3. Let γ ∈ G1\G(0)
1 . There exists a neighborhood V of γ in GK such that

r(V ) ∩ s(V ) = ∅
where r and s are the range and source maps of GK .

Proof. Let γ be the class modulo scaling of the commensurable pair (L, L′). By Lemma 3.2 one has
p(L) 6= p(L′) ∈ X . Let c(Λ) and c(Λ′) denote the classes of Λ and Λ′ in K0(O) (cf. Proposition
2.5). If these classes are different, c(Λ) 6= c(Λ′), then one can simply take a neighborhood V in
such a way that all elements γ1 = (L1, L

′
1) ∈ V are in the corresponding classes: c(Λ1) = c(Λ),

c(Λ′
1) = c(Λ′), for L1 = (Λ1, φ1) and L′

1 = (Λ′
1, φ

′
1). This ensures that range and source are disjoint

sets, r(V ) ∩ s(V ) = ∅. Otherwise, there exists λ ∈ K∗ such that Λ′ = λΛ. Since Λ′ 6= Λ, one has

λ /∈ O∗. One has φ′ = φ 6= 0. Thus, one is reduced to showing that, given ρ ∈ Ô, ρ 6= 0, and λ ∈ K∗,
λ /∈ O∗, there exists a neighborhood W of ρ in Ô such that λW ∩O∗W = ∅. This follows, using a place
v such that ρv 6= 0. In fact, one has λρv /∈ O∗ρv and the same holds in a suitable neighborhood. �

We can now prove the following.

Proposition 3.4. Let β > 0 and ϕ a KMSβ state on (AK , σt). Then there exists a probability measure
µ on X such that

(3.5) ϕ(f) =

∫

X

f(L, L) dµ(L) , ∀f ∈ AK .
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Proof. It is enough to show that ϕ(f) = 0 provided f is a continuous function with compact support

on GK with support disjoint from G
(0)
K . Let hn ∈ C(X), 0 ≤ hn ≤ 1 with support disjoint from F

and converging pointwise to 1 in the complement of F . Let un ∈ AK be supported by the diagonal
and given by hn there.

The formula

(3.6) Φ(f)(Λ, Λ′) := f((Λ, 0), (Λ′, 0))) ∀f ∈ AK

defines a homomorphism of (AK , σt) to the C∗ dynamical system (C∗(G0), σt) obtained by special-
ization to pairs of K-lattices with φ = 0 as in [7].

Since there are unitary eigenvectors for σt for non trivial eigenvalues in the system (C∗(G0), σt) it has
no non-zero KMSβ positive functional. This shows that the pushforward of ϕ by Φ vanishes and by
Proposition 1.5 of [7] that, with the notation introduced above,

ϕ(f) = lim
n

ϕ(f ∗ un) .

Thus, since (f ∗ un)(γ) = f(γ) hn(s(γ)), we can assume that f(γ) = 0 unless s(γ) ∈ C, where C ⊂ X
is a compact subset disjoint from F . Let L ∈ C and V as in lemma 3.3 and let h ∈ Cc(V ). Then,
upon applying the KMSβ condition to the pair a, b with a = f and b supported by the diagonal and
equal to h there. One gets ϕ(b ∗ f) = ϕ(f ∗ b). One has (b ∗ f)(γ) = h(r(γ)) f(γ). Applying this to
f ∗ b instead of f and using h(r(γ)) h(s(γ)) = 0 , ∀γ ∈ V , we get ϕ(f ∗ b2) = 0 and ϕ(f) = 0, using
a partition of unity. �

Lemma 3.5. Let ϕ be a KMSβ state on (AK , σt). Then, for any ideal J ⊂ O one has

ϕ(eJ) = n(J)−β .

Proof. For each ideal J we let µJ ∈ AK be given as above by (2.25)

µJ ((Λ, φ), (Λ′, φ′)) =

{

1 Λ = J−1Λ′ and φ′ = φ

0 otherwise.

One has σt(µJ) = n(J)it µJ∀t ∈ R while µ∗
J µJ = 1 and µJ µ∗

J = eJ thus the answer follows from the
KMS condition. �

Given Proposition 2.6 above, we make the following definition.

Definition 3.6. A K-lattice is quasi-invertible if the ρ in Proposition 2.6 is in Ô ∩ A∗
K,f .

Then we have the following result.

Lemma 3.7. (1) A K-lattice (Λ, φ) that is divisible by only finitely many ideals is either quasi-
invertible, or there is a finite place v such that the component φv of φ satisfies φv = 0.

(2) A quasi-invertible K-lattice is commensurable to a unique invertible K-lattice.

Proof. Let (ρ, s) be associated to the K-lattice (Λ, φ) as in Proposition 2.6. If ρ /∈ A∗
K,f , then either

there exists a place v such that ρv = 0, or ρv 6= 0 for all v and there exists infinitely many places w
such that ρ−1

w /∈ Ow, where Ow is the local ring at w. This shows that the K-lattice is divisible by
infinitely many ideals. For the second statement, if we have ρ ∈ A∗

K,f , we can write it as a product

ρ = s′fρ′ where ρ′ = 1 and s′f = ρ. The K-lattice obtained this way is commensurable to the given
one by Proposition 2.7 and is invertible.

�

Let us now complete the proof of the second and third statements of Theorem 3.1. Let ϕ be a KMSβ

state. Proposition 3.4 shows that there is a probability measure µ on X such that

ϕ(f) =

∫

X

f(L, L) dµ(L) , ∀f ∈ AK .
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With L = (Λ, φ) ∈ X , Lemma 3.5 shows that the probability ϕ(eJ ) that an ideal J divides L is
n(J)−β . Since the series

∑

n(J)−β converges for β > 1, it follows (cf. [16] Thm. 1.41) that, for almost
all L ∈ X , L is only divisible by a finite number of ideals. Notice that the KMS condition implies that
the measure defined above gives measure zero to the set of K-lattices (Λ, φ) such that the component
φv = 0 for some finite place v.
By the first part of Lemma 3.7, the measure µ gives measure one to quasi-invertible K-lattices,

µ
(

(Ô ∩ A∗
K,f ) ×Ô∗ (A∗

K,f/K∗)
)

= 1.

Notice that these K-lattices form a Borel subset which is not closed. Then, by the second part of
Lemma 3.7, the KMSβ condition shows that the measure µ is entirely determined by its restriction to
invertible K-lattices, so that, for some probability measure ν,

ϕ =

∫

ϕβ,L dν(L).

It follows that the Choquet simplex of extremal KMSβ states is the space of probability measures on

the compact space Ô ×Ô∗ (A∗
K,f/K∗) of invertible K-lattices modulo scaling and its extreme points

are the ϕβ,L. 2

The action of the symmetry group IK/K∗ on Eβ is then free and transitive. In fact, recall that (Lemma

1.28 [7]) the action of GL+
2 (Q) on 2-dimensional Q-lattices has as its only fixed points the Q-lattices

(Λ, φ) with φ = 0.

The action is given explicitly, for L = (Λ, φ) an invertible K-lattice and for s ∈ Ô∗/O∗ ⊂ IK/K∗, by

(3.7) (ϕβ,L ◦ θs)(f) = ZK(β)−1
∑

J∈J

f((J−1Λ, s−1φ), (J−1Λ, s−1φ)) n(J)−β = ϕβ,(Λ,s−1φ)(f),

for f ∈ AK . More generally, for s ∈ Ô ∩ A∗
K,f let Js = sÔ ∩ K, one then has,

(3.8)

(ϕβ,L ◦ θs)(f) = ZK(β)−1
∑

J∈J θs(f)((J−1Λ, φ), (J−1Λ, φ)) n(J)−β

= ZK(β)−1
∑

J⊂Js
f((J−1Λ, s−1φ), (J−1Λ, s−1φ)) n(J)−β

= ZK(β)−1
∑

J∈J f(J−1Ls, J
−1Ls) n(J Js)

−β = n(Js)
−β ϕβ,Ls

(f),

for f ∈ AK , and with Ls the invertible K-lattice (J−1
s Λ, s−1φ). To prove the last equality one uses

the basic property of Dedekind rings that any ideal J ⊂ Js can be written as a product of ideals
J = J ′ Js.

3.2. KMS states at zero temperature and Galois action.

The weak limits as β → ∞ of states in Eβ define states in E∞ of the form

(3.9) ϕ∞,L(f) = f(L, L).

The action of the symmetry group AK,f/K∗ on extremal KMS states at zero temperature is given, as
in Lemma 2.16 by (2.24). In fact, for an invertible K-lattice L, evaluating ϕ∞,L on θs(f) would not
give a nontrivial action, while (2.24) gives the action

(3.10) Θs(ϕ∞,L)(f) = lim
β→∞

(Wβ(ϕ∞,L) ◦ θs) (f),

with Wβ as in (2.21). This gives

(3.11) Θs(ϕ∞,L) = ϕ∞,Ls
,

with Ls as in (3.8).

Thus the action of the symmetry group IK/K∗ is given by

(3.12) L = (Λ, φ) 7→ Ls = (J−1
s Λ, s−1φ) , ∀s ∈ IK/K∗ .
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When we evaluate states ϕ∞,L on elements f ∈ AK,0 of the arithmetic subalgebra we obtain

(3.13) ϕ∞,L(f) = f(L, L) = g(L) ,

where the function g is the lattice function of weight 0 obtained as the restriction of f to the diagonal.
By construction of AK,0, one obtains in this way all the evaluations f 7→ f(z) of elements of the
modular field F on the finitely many modules z ∈ H of the classes of K-lattices.

Consider the subring B of F consisting of those modular functions f ∈ F that are defined at τ . The
theory of complex multiplication (cf. [17], §5) shows that the subfield Fτ ⊂ C generated by the values
f(τ), for f ∈ B, is the maximal abelian extension of K (we have fixed an embedding K ⊂ C),

(3.14) Fτ = Kab.

Moreover, the action of α ∈ Gal(Kab/K) on the values f(z) is given by

(3.15) αf(z) = f σqτ θ−1(α)(z).

In this formula the notation f 7→ fγ denotes the action of an element γ ∈ Aut(F ) on the elements
f ∈ F . The map θ is the class field theory isomorphism (1.1),

θ : A∗
K,f/K∗ → Gal(Kab/K).

The map qτ : A∗
K,f ↪→ GL2(Af ) is the embedding determined by the choice of the basis {1, τ}, as in

(2.29). The map σ is as in the diagram with exact rows

1 // K∗ ι
// GL1(AK,f )

qτ

��

θ
// Gal(Kab/K) // 1

1 // Q∗ // GL2(Af )
σ

// Aut(F ) // 1.

(3.16)

Thus, when we act by an element α ∈ Gal(Kab/K) on the values on AK,0 of an extremal KMS∞ state
we have

(3.17) α ϕ∞,L(f) = ϕ∞,Ls
(f)

where s = θ−1(α) ∈ IK/K∗.

This result makes essential use of an important result of Shimura (cf. [17] §6.6) that characterizes the
automorphism group of the modular field by the exact sequence

1 → Q∗ → GL2(Af ) → Aut(F ) → 1.

We also use another deep result of the theory of modular curves, namely Shimura reciprocity (cf. [17]
§6.8), which gives (3.15).

Thus, the intertwining of the geometric action of A∗
K,f/K∗ as symmetries and the Galois action on

the values of extremal states on elements of the arithmetic subalgebra relies essentially on the classical
complex multiplication theory. For more general number fields, while it is possible to obtain systems
with the right geometric action (see e.g. the construction of [9]) and the right partition function,
the Galois aspect is not yet understood and might deserve further study even in the CM case. The
distinction between the geometric action of symmetries and a Galois action on values of states becomes
essential in possible generalizations of the GL2 system either in the context of Shimura varieties or in
the direction of the Langlands program, where one is working in the non-abelian context. Already in
the GL2 case of [7] the intertwining of geometric and Galois action is very subtle, with new phenomena
that appear for non-generic extremal states, and also in that case one has to rely essentially on the
classical theory of Shimura.
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3.3. Uniqueness of high temperature KMS state.

The proof follows along the line of [15]. We first discuss uniqueness. By Proposition 3.4, one obtains
a measure µ on the space X of K-lattices up to scale. As in Lemma 3.5, this measure fulfills the
quasi-invariance condition

(3.18)

∫

X

µJ f µ∗
J dµ = n(J)−β

∫

X

f dµ,

for all ideals J , where µJ is as in (2.25). To prove uniqueness of such a measure, for β ∈ (0, 1],
one proceeds in the same way as in [15], reducing the whole argument to an explicit formula for the
orthogonal projection P from L2(X, dµ) to the subspace of functions invariant under the semigroup
action

(3.19) L = (Λ, φ) 7→ J−1L,

which preserves commensurability. As in [15], one can obtain such formula as a weak limit of the
orthogonal projections PA associated to finite sets A of non-archimedean places.

Let A be a finite set of non-archimedean places. Let JA be the subsemigroup of the semigroup J of
ideals, generated by the prime ideals in A. Any element J ∈ JA can be uniquely written as a product

(3.20) J =
∏

v∈A

Jnv
v ,

where Jv is the prime ideal associated to the place v ∈ A.

Lemma 3.8. Let L = (Λ, φ) be a K-lattice such that φv 6= 0 for all v ∈ A. Let J ∈ JA, J =
∏

v∈A Jnv
v

be the smallest ideal dividing L. Let (ρ, s) ∈ Ô ×Ô∗ A∗
K/K∗ be the pair associated to L. Then, for

each v ∈ A, the valuation of ρv is equal to nv.

Proof. Let (ρ, s) be as above, and mv be the valuation of ρv . Then it is enough to show that an ideal
J divides L if and only if J is of the form (3.20), with nv ≤ mv. The map φ is the composite of
multiplication by ρ and an isomorphism, as in the diagram (2.4), hence the divisibility is determined
by the valuations of ρv. �

Definition 3.9. With A as above we shall say that a K-lattice L = (Λ, φ) is A-invertible iff the
valuation of ρv is equal to zero far all v ∈ A.

We now define basic test functions associated to a Hecke Grössencharakter. Given such a character
χ, the restriction of χ to Ô∗ only depends on the projection on Ô∗

Bχ
=

∏

v∈Bχ
Ô∗

v , for Bχ a finite set

of non-archimedean places. Let B be a finite set of non-archimedean places B ⊃ Bχ. We consider the

function f = fB,χ on Ô ×Ô∗ A∗
K/K∗, which is obtained as follows. For (ρ, s) ∈ Ô ×Ô∗ A∗

K/K∗, we let

f = 0 unless ρv ∈ Ô∗
v for all v ∈ B, while f(ρ, s) = χ(ρ′s), for any ρ′ ∈ Ô∗ such that ρ′

v = ρv for all
v ∈ B. This is well defined, because the ambiguity in the choice of ρ′ does not affect the value of χ,
since Bχ ⊂ B. The function f obtained this way is continuous.

Let H(B) be the subspace of L2(X, dµ) of functions that only depend on s and on the projection of ρ

on ÔB . Let us consider the map that assigns to a K-lattice L the smallest ideal J ∈ JB dividing L,
extended by zero if some φv = 0. By Lemma 3.8, the value of this map only depends on the projection

of ρ on ÔB . Thus, we can consider corresponding projections EB,J in H(B), for J as above. By
construction the projections EB,J give a partition of unity on the Hilbert space H(B). Note that
EB,0 = 0, since the measure µ gives measure zero to the set of K-lattices with φv = 0 for some v.

Let VJf(L) = f(J−1L) implementing the semigroup action (3.19). For J ∈ JB , the operator
n(J)−β/2V ∗

J maps isometrically the range of EB,O to the range of EB,J .

Lemma 3.10. The functions V ∗
J fB,χ span a dense subspace of H(B).
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Proof. It is sufficient to prove that the fB,χ form a dense subspace of the range of EB,O. The image

of Ô∗ in Ô∗
B ×A∗

K/K∗ by the map u 7→ (u, u−1) is a closed normal subgroup. We let Ô∗
B ×Ô∗ A∗

K/K∗

be the quotient. This is a locally compact group. The quotient GB by the connected component of
identity DK in A∗

K/K∗ is a compact group. Then C(GB) is identified with a dense subspace of the
range of EB,O. The characters of GB are all the Grössencharakter χ that vanish on the connected
component of identity and such that Bχ ⊂ B. Thus, by Fourier transform, we obtain the density
result. �

Let A be a finite set of non-archimedean places, and JA as above. Let HA be the subspace of
functions constant on JA-orbits, and let PA be the corresponding orthogonal projection. The PA

converge weakly to P .

Proposition 3.11. Let A ⊃ B be finite sets of non-archimedean places. Let L be an A-invertible
K-lattice, and f ∈ H(B), the restriction of PAf to the JA-orbit of L is constant and given by the
formula

(3.21) PAf |JAL = ζK,A(β)−1
∑

J∈JA

n(J)−β f(J−1L),

where ζK,A(β) =
∑

J∈JA
n(J)−β.

Proof. By construction, the right hand side of the formula (3.21) defines an element fA in HA∩H(A).
One checks, using the quasi-invariance condition (3.18) on the measure µ, that 〈fA, g〉 = 〈f, g〉 for all
g ∈ HA, as in [15]. �

Let L be an invertible K-lattice and χ a Grössencharakter vanishing on the connected component
of identity DK . We define χ(L) as χ(ρs), for any representative (ρ, s) of L. This continues to make

sense when L is an A-invertible K-lattice and A ⊃ Bχ taking χ(ρ′s) where ρ′ ∈ Ô∗ and ρ′v = ρv for
all v ∈ A.

Finally we recall that to a Grössencharakter χ vanishing on the connected component of identity DK

one associates a Dirichlet character χ̃ defined for ideals J in JBc
χ
, where Bc

χ is the complement of Bχ.

More precisely, given J ∈ JBc
χ
, let sJ be an idèle such that J = sJ Ô ∩K and (sJ )v = 1 for all places

v ∈ Bχ. One then define χ̃(J) to be the value χ(sJ). This is independent of the choice of such sJ .

Proposition 3.12. Let A ⊃ B ⊃ Bχ and L an A-invertible K-lattice. The projection PA of (3.21)
applied to the function fB,χ gives

(3.22) PAfB,χ|JAL =
χ(L)

ζK,A(β)

∑

J∈JA\B

n(J)−β χ̃(J)−1.

Proof. Among ideals in JA, those that have nontrivial components on B do not contribute to the sum
(3.21) computing PAfB,χ|JAL. It remains to show that fB,χ(J−1L) = χ(L)χ̃(J)−1, for J ∈ JA\B .

Let J = sJ Ô ∩K and (sJ )v = 1 for all places v ∈ B. Let L be given by (ρ, s), we have J−1L given by

(ρ sJ , s s−1
J ) using Proposition 2.12. Thus, for any choice of ρ′ ∈ Ô∗ with ρ′v = (ρ sJ )v for all v ∈ B

one has fB,χ(J−1L) = χ(ρ′s s−1
J ) = χ(ρ′s)χ̃(J)−1. Note that (sJ)v = 1 for all places v ∈ B thus the

choice of ρ′ is governed by ρ′
v = ρv for all v ∈ B. Since L is A-invertible and A ⊃ B ⊃ Bχ we get

χ(ρ′s) = χ(L) for a suitable choice of ρ′. �

It then follows as in [15] that PAfB,χ tend weakly to zero for χ nontrivial. The same argument gives
an explicit formula for the measure, obtained as a limit of the PAfB,1, for the trivial character. In
particular, the restriction of the measure to GB is proportional to the Haar measure. Positivity is
ensured by the fact that we are taking a projective limit of positive measures. This completes the
proof of existence and uniqueness of the KMSβ state for β ∈ (0, 1].
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