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Electrons in solids — Bloch theory

Crystals Bravais lattice ' ¢ R% (d = 2,3)

Periodic potential (electron—ions interaction)

U(z) = ) ulz—7) WU =U,Vyel
yel

Mutual interaction of electrons

N
d (—Dg; +U(zy)) + % > W(x; —xj)
i=1 =y

Independent electron approximation

N
1=1

modification V of single electron potential

Y(x1,...,xn) = det(yi(x;)) for (A + V), = Epp; so
Y (—Ay + V(xi))y = Ey with E = ) E; (reduction to
single electron)

Inverse problem: determine V




Bloch electrons

T, = unitary operator on 'H = L2(R%) transla-
tion by vy eI

TYHT, 1=H Vyerl
for H=-A+V

Simultaneously diagonalize: characters of [ =
Pontrjagin dual [

T = c(y)y, with ¢: T —- U(1) since T4, =T, T,

c(y) =k kef

~~

[ compact group isom to T4 (dual of R¢ mod
reciprocal lattice I'*

= {keR®: (k,~v) € 2rZ,Vy € T'}



Brillouin zones

Fundamental domains of I#: n-th zone, points

such that line to the origin crosses exactly (n—1) Bragg

hyperplanes of the crystal

Zone 3

Zone 3






Band structure

Self-adjoint elliptic boundary value problem

o _[ (a+Vie=Ey
T w4 y) = BNy ()
Eigenvalues {FE1(k), E>2(k), E3(k),...}

E(k) =E(k+u) VYueTlt

Plot E,(k) over the n-the Brillouin zone
k— E(k) keR?

energy—crystal momentum dispersion relation



Fermi surface

Surface F' in space of crystal momenta k de-
termines electric and optical properties of the
solid

F(R) ={keR?: E(k) = \}

Chromium Vanadium Y ttrium



Complex Bloch variety

dv¢» nontriv sol of
B(V) =S (k,A) eC:  (=A+ V) =Xy
bz + ) = ey (a)

F(C) =71\ c B(V)

complex hyperfurface in C¢ = singular projective
F\NRY = F\(R) cycle in H;_1(Fy(C),Z)

Integrated density of states

1
p(A) = lim —#{eigenv of H < A}
l—oo £

H=—-A+V on L>(R?/4)

Period
dp /
d\ Fy(R)

wy = holom differential on F,(C)



Discretization on ¢2(Z%) Random Walk

R?ﬂ(?’bl,...,?’bd) — +Zgl:]_¢(nlaanz+ 1,...,7’Ld)
—I—Zglzlgb(nl,...,ni— 1,...,ng)
Discretized Laplacian

Aw(nla e 7nd) — (Qd_R) w(nla e 7nd)

Bloch variety (polynomial equation in zz-,z;l)

Iy € £2(I") nontriv sol of
B(V)=<(z1...,2¢6N): (R+V)Y =+ 2d)
Ryp = 29
Ryyp(ni,...,ng) =v(ni,...,ni+ ai,...,ng)

Random walk for discrete groups on H = EQ(I‘)

Symmetric set of generators ~; of I

T T
Ry(y) =) Ry (v) =) v(vn)
Discretized Laplacian A =r — R



The breakdown of classical Bloch theory

e Magnetic field

e Aperiodicity

In both cases T, H = HT fails
= noncommutativity

J.Bellissard, A.van Elst, H.Schulz-Baldes, The noncom-
mutative geometry of the quantum Hall effect,
J.Math.Phys. 35 (1994) 5373-5451

Noncommutative Bloch theory

Integer Quantum Hall Effect
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Hall Effect (Classical 1879)

thin metal, orthogonal strong magnetic field B, current
Jj = electric field E, transverse Hall current

L

equilibrium of forces = linear relation

NeE4+jAB =0
Hall conductance

Ned
o p—
H="p
intensity of Hall current/intensity of magnetic field
1%
O — —
Ry

filling factor=density of charge carriers 'e%

Hall resistance Ry = h/e? universal constant
(fine structure constant e?/hc)
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Integer Quantum Hall Effect
(von Klitzing 1980)

low temperature (< 1K), strong magnetic field

e oy as function of v has plateaux at integer
multiples of e2/h

e At values of v corresponding to plateaux,
conductivity along current density axis van-
iIshes

(precision 108, independent of different samples, ge-

ometries, impurities)

Laughlin (1981): geometric origin

Thouless et al. (1982); Avron, Seiler, Simon

(1983): topological (Gauss—Bonnet)

Bellissard et al. (1994): noncommutative ge-

ometry (explains also vanishing of direct conductivity)
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Magnetic field
2-form w = dn (field and potential B = curlA)

Magnetic Schrodinger operator

—(V—in?+V

magnetic Laplacian A" := (d —in)* (d — in)

Periodicity: ~*w = w (e.g. constant field) O
w—y'w=d(n—v"n)

n—"n=dpy

Magnetic Laplacian no longer commutes with [T action

What symmetries?
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Magnetic translations

y(z) = [z, (n—"n)
Tt := exp(igy) Ty

then (d — in)T¢ = T9(d — in)

Magnetic translations no longer commute
T$T$ = 0(%7’)Tf,y,
projective representation of
o(v,7") = exp(—ipy(v'z0))
¢~ (x) + ¢ (yx) — Py () indep of x

(except integer flux case, where commute)
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Pontrjagin dual vs. group C*-algebra

[ discrete abelian & I compact abelian

Pontrjagin dual  e!k7) characters

Algebra of functions

C(F) 2 C()

C*-algebra generated by I regular representation on

PO ={g:T—>C: ) [p()I? < oo}

Fourier transform

When I non-abelian, C;(I") still makes sense
(non-abelian)

[ exists as a noncommutative space

Magnetic field = Brillouin zone becomes
noncommutative space
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Harper operator (discretized magnetic Laplacian)

Hal,a2¢(mo n) = e~ ton Y(m+1,n)
+ 1™ (m—1,n)
4+ et2m 4y(m,n 4+ 1)
4+ et2m ah(m,n — 1)

Let o((m/,n'), (m,n)) = exp(—i(aim'n + aomn’))
(2-cocycle o : ' x T = U(1))

Magnetic translations U = Rl 1y, V= R{ o

Urp(m,n) = p(m,n + 1)e 2™

Vip(m,n) = (m+ 1,n)e 1"

= Noncommutative torus (0 = a> — a1)

UV = Pvu
Harper operator Ho =U +U*+V + V*
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Harper operators for discrete groups

multiplier o : ' x I — U(1) (2-cocycle)

o(v1,72)0(7172,73) = o(71,7273)0 (2, 73)

o(1,1) = 0(1,7) =1
Hilbert space: ¢2(IN)

Left/right o-regular representations
Lp(Y) = (v o (v, 77 )

RIY(Y) = (V) (v',7)

satisfy

orT0 __ / o oo __ / o
LILY, = o(v,v)L], RIRS, =o(v,7Y)RI,

Harper operator
(symmetric set of generators {~;}/_; of I")

,
Ro = Z Rgi
1=1
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Twisted group algebras

C(I', o) algebra of observables (magnetic
translations), rep in B(¢2(I")) by right o-regular
rep Ri‘y

e weak closure U(I, o) twisted group
von Neumann algebra

e norm closure C} (I, o) twisted
(reduced) group C*-algebra

Integer QHE case
[ =72 (o and 6 as above)

Cr(lFo) = Ap
irrational rotation algebra, NC torus
Connes-Chern character = integer

quantization of Hall conductance
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Spectral theory

Magnetic Schrodinger R° +V

potential V € C(I', o)

Self—adjoint bounded = Spec(R? +V) CR
complement = collection of intervals

e Finitely many (Band structure, gaps)

e Infinitely many (Cantor-like spectrum)

For I = Z2, depends on rationality/irrationality of flux

® = ([a],[I'])
Hofstadter butterfly

=
v 1
R | B
% ,
oy o
A% .- & ai |~ o ,"' J
e '. F 1 . : a4 . J X
Energy | Mleldo [d6|pse- | e |si | 45 4{4M
i 4 -.-"|.r:.5.‘1l'_|. o B dh_llt ‘
< ‘r'fl'jf: |
|2

Magnetic Flux ®/d,
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Fractional Quantum Hall Effect

(Stormer and Tsui, 1983)

Integer and Fractional Quantum Hall Effects

20

Ry, (k&)

1 6d)

(z54) Hy

420

l' St = !
BiT)

i
10

(high quality semi-conductor interface, low carrier con-
centration, and extremely low temperatures ~ 10mkK,

strong magnetic field)

e Plateaux at certain rational

e?/h

e Strongly interacting electrons

Noncommutative geometry model?

multiples of
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What is expected of such model?

e Account for strong electron interactions

e EXxhibit observed fractions (+4predictions)

e Account for varying width of plateaux

Simulate interaction via curvature

single electron in curved geometry “as if” subject to an

average strong multi-electron interaction
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Hall effect in the hyperbolic plane

Cocompact Fuchsiangroup I =TI (g,v1,...,vn)
I C PSL(2,R) discrete cocompact, genus g, elliptic ele-

ments order vy,...,v,

Presentation (i=1,...,9,5=1,...,n)

g
= a’labiacja H[a’iabi]cl"'cnzlac' =1
1=1
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Good orbifolds > =Bl =T\ElI

(orbifold-covered by a smooth manifold)
G
Sy — 2(giv1y.- -, n) = I_\]HI2

Zg/ — smooth compact Riemann surface genus

J=1+7700 - 1)+ ()

v = Z?:l I/j_l

Exception: teardrop orbifold v

Orbifold Euler characteristic x,(X) € Q

Multiplicative over orbifold covers, usual x for smooth,
inclusion—exclusion

Xorb(zl U..-uU Zr) — Zz Xorb(zi) - Zi,j Xorb(zi M Z])
+(_1)r+1X0rb(Zl NN ZT)

Xoro(Z(gi V1, vm)) =2 —2g + v —n
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Spectral theory
H, e C(I',o) C C7(IM,0) CU(T,0)

Spectral projections Pg = x(_w.p(Hs) € U(T, o)
E ¢ Spec(Hy,) = PreCi(l,o)

3F holom function on neighb of Spec(H,)

dA
A— H,

Po = X( oo (Ho) = F(H,) = /C

C = contour around Spec(H,) left of E

Counting gaps in the spectrum < counting
projections in Cj(IM, o)

Trace 7(T) = (Te1,e1)er
tr=7® Tr: Proj(C:(IN' o) @ K) —» R

[tr] on Ko(C*(I,0))
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Range of the Trace

Morita equiv (A® Co(G)) x I ~ Co(IM\G, &)
E=AxrG—T\G

Ko(Cr(IM)) = K:qo(g)(P(g; V1,..-,Vn))

o e - ZQ—n—I—Z Vj —
= Kin(Elgin ) 2 { 2T S e

Twisted case Co(IM'\G, &) ~ Co(IM\G, E,) provided
0(c) =0

§: H?(",U(1)) — H3(I",Z) surjection from

long exact sequence of 1 —Z — R exp(2ri) U(l) — 1

[tr](Ko(Cy (M, 0)) =Z+0Z+ > vi Z
J

0 = ([o], [']) rational = finitely many gaps

— [2]

Fundamental class [I'] = ‘Z&

6 = irrational 7
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Dense x-subalgebra

For v € I' set Dey, = £(7y)ey with £(y) = word length
Unbounded closed derivation 6 = [D, -] on C*(I",0)

R:= () Dom (%)
keN

C(I',o) C R, closed under holo functional calculus

Polynomial growth group cocycles on ' define cyclic

cocycles continuous on R (Haagerup type inequality)

Pp = X(—oo,p)(Hs +V) €R

Cyclic cocycles t:Rx---xR—C

t(ao,a1,...,an) = tlan,ag0,a1,...,an_1)
.= t(ay,...,an,ag)
and
t(aao,a1,...,a,) —t(a,aoai,...,an)
(=) ¢ (ana,a0,...,an-1) =0

Cyclic cocycles pair with K-theory
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Conductance

In lattice ' = Z2, current density in e; direction func-
tional derivative 61 of H, by A; (component of magnetic
potential)

Expected value of current tr(Pé1H) for state P
Using ;P = i[P, H] and 8, = % x 8> (for eo L e1) get
’itr(P[atP, 51P]) = —iEQtr(P[(SQP, 51P])

__0A

(electrostatic potential gauged away: E = v

In zero temperature limit charge carriers
occupy all levels below Fermi level, so P = Pp

Conductance

og = tr(Pplé1Pp,62PF])
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In curved geometry

On Riemann surfaces changes of potential by real and

imaginary parts of holomorphic 1-forms

1 _ 2 . .
H-(I,Z) =729 {a;,b;}i=1,... 4 Symplectic basis
By effect of electron-electron interaction, to a moving

elector the directions {e1, ez} appear split into {e;, ei44}i=1,...4
corresponding to a;, b;

Kubo formula

1-cocycle a on [ = derivation
6a(f)(v) = a(y)f(v) on [feC(l,o)

Conductance cocycle:
g
> tr (0 (60, (S8, (F2) = 64, (S 130, (F2)) )
i=1

defines cyclic 2-cocycle tr¥(f9, 1. f2) on R
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Area cocycle On G = PSL(2,R) area cocycle

C(71,v2) = Area(A(zo,v; 0, Y270)

hyperbolic area of geodesic triangle with given vertices
Restriction of ' C PSL(2,R) area cocycle on I

Area cocycle:

S FPGo) ) F2(2)C(v1,72) o (1, 72)

Y07172=1
defines cyclic 2-cocycle tr¢ (9, f1. f2) on R

Coboundaries t1,to cyclic 2-cocycles

tl(ao, ai, CLQ) — tQ(ao,al, CLQ) = )\(aoal, CLQ) — )x(ao, a1a2)
+ X(azao,a1),
where X\ is a cyclic 1-cocycle

Conductance and area differ by coboundary
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Comparison Difference between the hyperbolic area

of a geodesic triangle and the Euclidean area of its image

under the Abel-Jacobi map (curve and Jacobian)

U(y1,72) = h(v5 1, 1) — (37 1, 42) + h(1, 1)

each term difference of line integrals, one along a geodesic
segment in H? and one along a straight line in the uni-

versal cover of the Jacobian

trx (fo, f1, f2) — tra(fo, f1, f2) =
> fo(v) f1(v1) F2(2)U(v1,v2)o (1, v2)

Yov1v2=1

This can be written as A(fof1, f2)—=X(fo, fif2)+X(fafo, f1)
A(fo, f1) = ) fo(y0) f1(71)A(1, v1)o (0, 71)

’70’)/1:1

= [trE] = [tr®] same values on K-theory
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Values of the conductance

(Connes—Moscovici higher index theorem, twisted)

Indc,l‘,a(ﬁg_ ®V) = A tr(e'€)eu,

2n#HG Zg/
w = dn 2-form of magnetic field V? = iw

cocycle ¢ and lift u. to 2-form on >,

By dimension

rank&
— U
27T#G Zg/

Dependence on magnetic field only through £ = orbifold

Indc,r,a(ﬁg_ ®V) =

C

bundle representing class of Pgr spectral projection in
Ko(C*(I',o) (using Baum—Connes)

For area cocycle ¢ 2-form wu. is hyperbolic volume form

/ ue = 27(2¢' — 2)
2

g
Orbifold Euler characteristic

(29#552) — _Xorb(z) cQ
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Rational values of the onductance

OH

tr& (Pp, Pr, Pr)
tr¢(Pg, Pr, Pr) € ZXorp(Z)

| experimental || g=0n= |
1/3 >(0;3,6,6)
2/5 >(0;5,5,5)
2/3 >(0;9,9,9)
3/5 >(0;5,10,10)
4/9 > (0;3,9,9)
5/9 >(0;6,6,9)
4/5 > (0;15,15,15)
3/7 >(0;4,4,14)
4/7 >(0;7,7,7)
5/7 >(0;7,14,14)

Problem: does not discriminate against even denomina-

tors (too many fractions)

| predicted || g=0n=3 |
8/15 >(0;5,6,10)
11/15 > (0;10,10,15)
7/9 >(0;12,12,18)
11/21 >(0;6,6,7)
16/21 >(0;12,12,14)

Relation to Chern—Simons approach?

NC versions of Bloch varieties and periods?
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