Towards the fractional quantum

Hall effect: a noncommutative

geometry perspective

Based on

- M.Marcolli and V.Mathai, Twisted index theory on good orbifolds, II: fractional quantum numbers, Communications in Mathematical Physics, Vol.217, no.1 (2001) 55-87.
- M.Marcolli and V.Mathai, Twisted index theory on good orbifolds, I: noncommutative Bloch theory, Communications in Contemporary Mathematics, Vol.1 (1999) 553-587.

Electrons in solids – Bloch theory

<u>Crystals</u> Bravais lattice $\Gamma \subset \mathbb{R}^d$ (d=2,3)

Periodic potential (electron-ions interaction)

$$U(x) = \sum_{\gamma \in \Gamma} u(x - \gamma)$$
 $T_{\gamma}U = U, \forall \gamma \in \Gamma$

Mutual interaction of electrons

$$\sum_{i=1}^{N} (-\Delta_{x_i} + U(x_i)) + \frac{1}{2} \sum_{i \neq j} W(x_i - x_j)$$

Independent electron approximation

$$\sum_{i=1}^{N} \left(-\Delta_{x_i} + V(x_i) \right)$$

modification V of single electron potential

 $\psi(x_1,\ldots,x_N) = \det(\psi_i(x_j))$ for $(-\Delta + V)\psi_i = E_i\psi_i$ so $\sum (-\Delta_{x_i} + V(x_i))\psi = E\psi$ with $E = \sum E_i$ (reduction to single electron)

Inverse problem: determine V

Bloch electrons

 $T_{\gamma}=$ unitary operator on $\mathcal{H}=L^2(\mathbb{R}^d)$ translation by $\gamma\in\Gamma$

$$T_{\gamma} H T_{\gamma^{-1}} = H \quad \forall \gamma \in \Gamma$$

for $H = -\Delta + V$

Simultaneously diagonalize: characters of $\Gamma \Rightarrow$ Pontrjagin dual $\hat{\Gamma}$

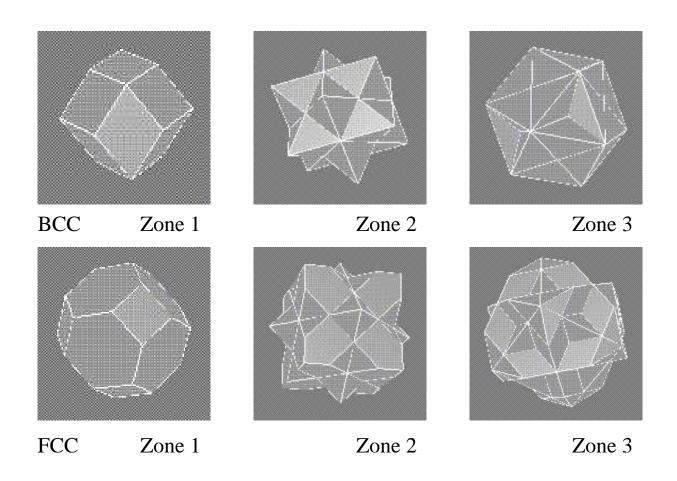
$$T_\gamma\psi=c(\gamma)\psi$$
, with $c:\Gamma o U(1)$ since $T_{\gamma_1\gamma_2}=T_{\gamma_1}T_{\gamma_2}$
$$c(\gamma)=e^{i\langle k,\gamma
angle},\quad k\in\widehat{\Gamma}$$

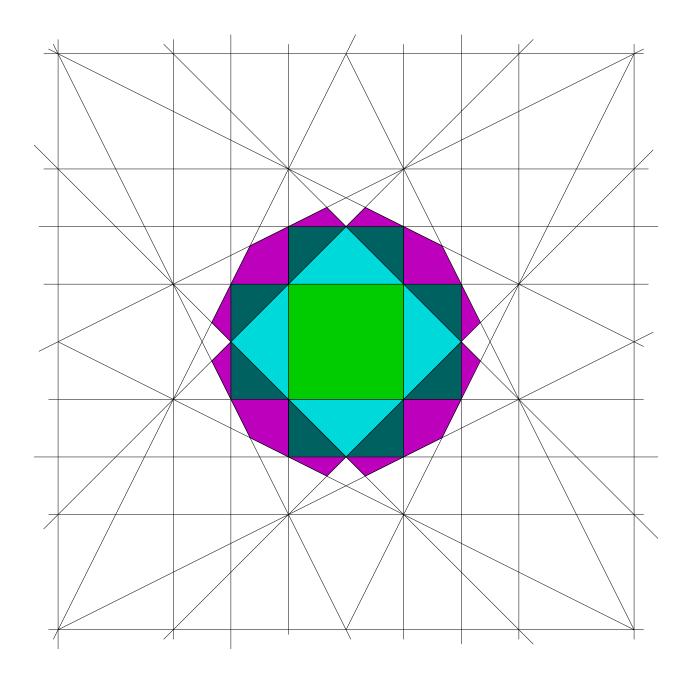
 $\widehat{\Gamma}$ compact group isom to T^d (dual of \mathbb{R}^d mod reciprocal lattice Γ^\sharp

$$\Gamma^{\sharp} = \{ k \in \mathbb{R}^d : \langle k, \gamma \rangle \in 2\pi \mathbb{Z}, \forall \gamma \in \Gamma \}$$

Brillouin zones

Fundamental domains of Γ^{\sharp} : n-th zone, points such that line to the origin crosses exactly (n-1) Bragg hyperplanes of the crystal





Band structure

Self-adjoint elliptic boundary value problem

$$D_k = \begin{cases} (-\Delta + V)\psi = E\psi \\ \psi(x+\gamma) = e^{i\langle k,\gamma\rangle}\psi(x) \end{cases}$$

Eigenvalues $\{E_1(k), E_2(k), E_3(k), ...\}$

$$E(k) = E(k+u) \quad \forall u \in \Gamma^{\sharp}$$

Plot $E_n(k)$ over the n-the Brillouin zone

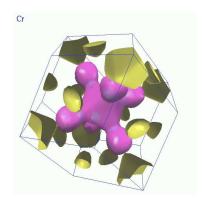
$$k \mapsto E(k) \quad k \in \mathbb{R}^d$$

energy-crystal momentum dispersion relation

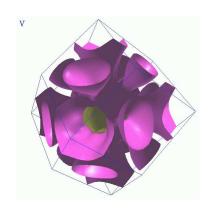
Fermi surface

Surface F in space of crystal momenta k determines electric and optical properties of the solid

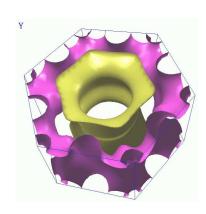
$$F_{\lambda}(\mathbb{R}) = \{ k \in \mathbb{R}^d : E(k) = \lambda \}$$



Chromium



Vanadium



Yttrium

Complex Bloch variety

$$B(V) = \left\{ (k, \lambda) \in \mathbb{C}^{d+1} : \begin{array}{c} \exists \psi \text{ nontriv sol of} \\ (-\Delta + V)\psi = \lambda \psi \\ \psi(x + \gamma) = e^{i\langle k, \gamma \rangle} \psi(x) \end{array} \right\}$$

$$F_{\lambda}(\mathbb{C}) = \pi^{-1}(\lambda) \subset B(V)$$

complex hyperfurface in $\mathbb{C}^d \Rightarrow$ singular projective

$$F_{\lambda} \cap \mathbb{R}^d = F_{\lambda}(\mathbb{R})$$
 cycle in $H_{d-1}(F_{\lambda}(\mathbb{C}), \mathbb{Z})$

Integrated density of states

$$\rho(\lambda)=\lim_{\ell\to\infty}\frac{1}{\ell}\#\{\text{eigenv of }H\leq\lambda\}$$

$$H=-\Delta+V \text{ on }L^2(\mathbb{R}^d/\ell\Gamma)$$

Period

$$\frac{d\rho}{d\lambda} = \int_{F_{\lambda}(\mathbb{R})} \omega_{\lambda}$$

 $\omega_{\lambda} = \text{holom differential on } F_{\lambda}(\mathbb{C})$

Discretization on $\ell^2(\mathbb{Z}^d)$ Random Walk

$$\mathcal{R}\psi(n_1, \dots, n_d) = + \sum_{i=1}^{d} \psi(n_1, \dots, n_i + 1, \dots, n_d) + \sum_{i=1}^{d} \psi(n_1, \dots, n_i - 1, \dots, n_d)$$

Discretized Laplacian

$$\Delta \psi(n_1, \dots, n_d) = (2d - \mathcal{R}) \ \psi(n_1, \dots, n_d)$$

Bloch variety (polynomial equation in z_i, z_i^{-1})

$$B(V) = \left\{ (z_1 \dots, z_d, \lambda) : (\mathcal{R} + V)\psi = (\lambda + 2d) \psi \\ R_{\gamma_i} \psi = z_i \psi \right\}$$

$$R_{\gamma_i}\psi(n_1,\ldots,n_d)=\psi(n_1,\ldots,n_i+a_i,\ldots,n_d)$$

Random walk for discrete groups on $\mathcal{H} = \ell^2(\Gamma)$

Symmetric set of generators γ_i of Γ

$$\mathcal{R}\,\psi(\gamma) = \sum_{i=1}^{r} R_{\gamma_i}\psi(\gamma) = \sum_{i=1}^{r} \psi(\gamma\gamma_i)$$

Discretized Laplacian $\Delta = r - \mathcal{R}$

The breakdown of classical Bloch theory

- Magnetic field
- Aperiodicity

In both cases $T_{\gamma}H = HT_{\gamma}$ fails \Rightarrow noncommutativity

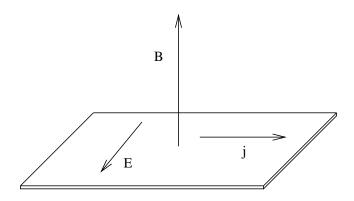
J.Bellissard, A.van Elst, H.Schulz-Baldes, *The noncommutative geometry of the quantum Hall effect*, J.Math.Phys. 35 (1994) 5373–5451

Noncommutative Bloch theory

Integer Quantum Hall Effect

Hall Effect (Classical 1879)

thin metal, orthogonal strong magnetic field ${\bf B}$, current ${\bf j}$ \Rightarrow electric field ${\bf E}$, transverse Hall current



equilibrium of forces ⇒ linear relation

$$Ne\mathbf{E} + \mathbf{j} \wedge \mathbf{B} = 0$$

Hall conductance

$$\sigma_H = \frac{Ne\delta}{B}$$

intensity of Hall current/intensity of magnetic field

$$\sigma_H = \frac{\nu}{R_H}$$

filling factor=density of charge carriers $\cdot \frac{h}{eB}$

Hall resistance $R_H=h/e^2$ universal constant (fine structure constant $e^2/\hbar c$)

Integer Quantum Hall Effect

(von Klitzing 1980)

low temperature ($\leq 1K$), strong magnetic field

- σ_H as function of ν has plateaux at integer multiples of e^2/h
- ullet At values of u corresponding to plateaux, conductivity along current density axis vanishes

(precision 10^{-8} , independent of different samples, geometries, impurities)

Laughlin (1981): geometric origin
Thouless et al. (1982); Avron, Seiler, Simon
(1983): topological (Gauss–Bonnet)
Bellissard et al. (1994): noncommutative geometry (explains also vanishing of direct conductivity)

Magnetic field

2-form $\omega = d\eta$ (field and potential $\mathbf{B} = \operatorname{curl} \mathbf{A}$)

Magnetic Schrödinger operator

$$-(\nabla - i\eta)^2 + V$$

magnetic Laplacian $\Delta^{\eta} := (d - i\eta)^* (d - i\eta)$

Periodicity: $\gamma^*\omega = \omega$ (e.g. constant field) 0 = $\omega - \gamma^*\omega = d(\eta - \gamma^*\eta)$

$$\eta - \gamma^* \eta = d\phi_{\gamma}$$

Magnetic Laplacian no longer commutes with Γ action

What symmetries?

Magnetic translations

$$\phi_\gamma(x)=\int_{x_0}^x (\eta-\gamma^*\eta)$$

$$T_\gamma^\phi\psi:=\exp(i\phi_\gamma)T_\gamma\psi$$
 then $(d-i\eta)T_\gamma^\phi=T_\gamma^\phi(d-i\eta)$

Magnetic translations no longer commute

$$T_{\gamma}^{\phi}T_{\gamma'}^{\phi} = \sigma(\gamma, \gamma')T_{\gamma\gamma'}^{\phi}$$

projective representation of Γ

$$\sigma(\gamma, \gamma') = \exp(-i\phi_{\gamma}(\gamma'x_0))$$

$$\phi_{\gamma}(x) + \phi_{\gamma'}(\gamma x) - \phi_{\gamma'\gamma}(x)$$
 indep of x

(except integer flux case, where commute)

Pontrjagin dual vs. group C^* -algebra

 Γ discrete abelian $\Leftrightarrow \widehat{\Gamma}$ compact abelian

Pontrjagin dual $e^{i\langle k,\gamma\rangle}$ characters Algebra of functions

$$C(\widehat{\Gamma}) \cong C_r^*(\Gamma)$$

 C^* -algebra generated by Γ regular representation on

$$\ell^{2}(\Gamma) = \{ \psi : \Gamma \to \mathbb{C} : \sum_{\gamma} |\psi(\gamma)|^{2} < \infty \}$$

Fourier transform

When Γ non-abelian, $C_r^*(\Gamma)$ still makes sense (non-abelian)

 $\hat{\Gamma}$ exists as a noncommutative space

Magnetic field \Rightarrow Brillouin zone becomes noncommutative space

Harper operator (discretized magnetic Laplacian)

$$H_{\alpha_1,\alpha_2}\psi(m,n) = e^{-i\alpha_1 n} \quad \psi(m+1,n)$$

$$+ e^{i\alpha_1 n} \quad \psi(m-1,n)$$

$$+ e^{-i\alpha_2 m} \quad \psi(m,n+1)$$

$$+ e^{i\alpha_2 m} \quad \psi(m,n-1)$$

Let
$$\sigma((m', n'), (m, n)) = \exp(-i(\alpha_1 m' n + \alpha_2 m n'))$$

(2-cocycle $\sigma : \Gamma \times \Gamma \to U(1)$)

Magnetic translations $U = R^{\sigma}_{(0,1)}$, $V = R^{\sigma}_{(1,0)}$

$$U\psi(m,n) = \psi(m,n+1)e^{-i\alpha_2 m}$$

$$V\psi(m,n) = \psi(m+1,n)e^{-i\alpha_1 n}$$

 \Rightarrow Noncommutative torus ($\theta = \alpha_2 - \alpha_1$)

$$UV = e^{i\theta}VU$$

Harper operator $H_{\sigma} = U + U^* + V + V^*$

Harper operators for discrete groups

multiplier
$$\sigma: \Gamma \times \Gamma \to U(1)$$
 (2-cocycle)

$$\sigma(\gamma_1, \gamma_2)\sigma(\gamma_1\gamma_2, \gamma_3) = \sigma(\gamma_1, \gamma_2\gamma_3)\sigma(\gamma_2, \gamma_3)$$

$$\sigma(\gamma, 1) = \sigma(1, \gamma) = 1$$

Hilbert space: $\ell^2(\Gamma)$

Left/right σ -regular representations

$$L_{\gamma}^{\sigma}\psi(\gamma') = \psi(\gamma^{-1}\gamma')\sigma(\gamma, \gamma^{-1}\gamma')$$

$$R_{\gamma}^{\sigma}\psi(\gamma') = \psi(\gamma'\gamma)\sigma(\gamma',\gamma)$$

satisfy

$$L^{\sigma}_{\gamma}L^{\sigma}_{\gamma'} = \sigma(\gamma, \gamma')L^{\sigma}_{\gamma\gamma'} \qquad R^{\sigma}_{\gamma}R^{\sigma}_{\gamma'} = \sigma(\gamma, \gamma')R^{\sigma}_{\gamma\gamma'}$$

Harper operator

(symmetric set of generators $\{\gamma_i\}_{i=1}^r$ of Γ)

$$\mathcal{R}_{\sigma} = \sum_{i=1}^{r} R_{\gamma_i}^{\sigma}$$

Twisted group algebras

 $\mathbb{C}(\Gamma,\sigma)$ algebra of observables (magnetic translations), rep in $\mathcal{B}(\ell^2(\Gamma))$ by right σ -regular rep R^σ_γ

- weak closure $\mathcal{U}(\Gamma, \sigma)$ twisted group von Neumann algebra
- norm closure $C_r^*(\Gamma, \sigma)$ twisted (reduced) group C^* -algebra

Integer QHE case

 $\Gamma = \mathbb{Z}^2$ (σ and θ as above)

$$C_r^*(\Gamma, \sigma) \cong A_\theta$$

irrational rotation algebra, NC torus

Connes-Chern character ⇒ integer quantization of Hall conductance

Spectral theory

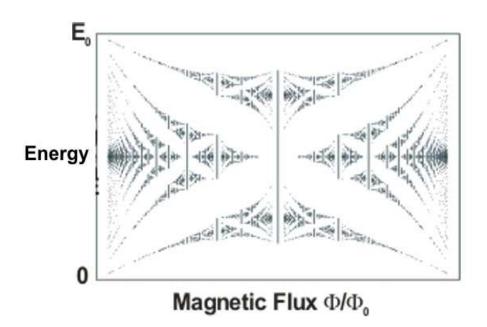
Magnetic Schrödinger $\mathcal{R}^{\sigma} + V$ potential $V \in \mathbb{C}(\Gamma, \sigma)$ Self-adjoint bounded \Rightarrow Spec $(\mathcal{R}^{\sigma} + V) \subset \mathbb{R}$ complement = collection of intervals

- Finitely many (Band structure, gaps)
- Infinitely many (Cantor-like spectrum)

For $\Gamma = \mathbb{Z}^2$, depends on rationality/irrationality of flux

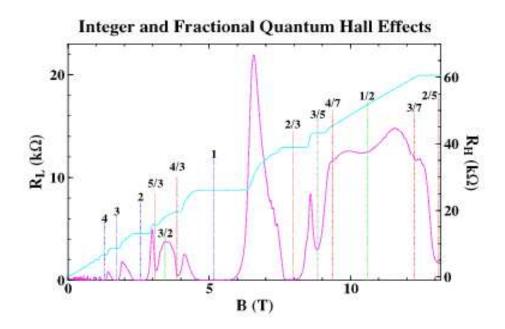
$$\Phi = \langle [\sigma], [\Gamma] \rangle$$

Hofstadter butterfly



Fractional Quantum Hall Effect

(Stormer and Tsui, 1983)



(high quality semi-conductor interface, low carrier concentration, and extremely low temperatures $\sim 10mK$, strong magnetic field)

- \bullet Plateaux at certain rational multiples of e^2/h
- Strongly interacting electrons

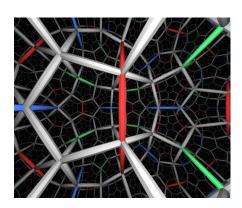
Noncommutative geometry model?

What is expected of such model?

- Account for strong electron interactions
- Exhibit observed fractions (+predictions)
- Account for varying width of plateaux

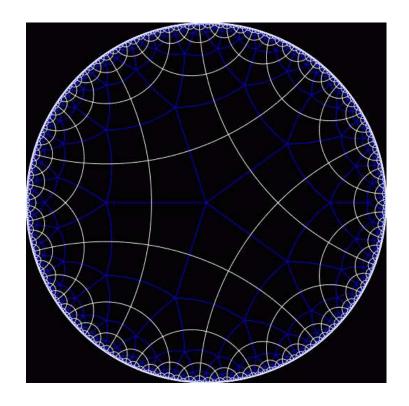
Simulate interaction via curvature

single electron in curved geometry "as if" subject to an average strong multi-electron interaction



Hall effect in the hyperbolic plane

Cocompact Fuchsian group $\Gamma = \Gamma(g, \nu_1, \dots, \nu_n)$ $\Gamma \subset \mathsf{PSL}(2,\mathbb{R})$ discrete cocompact, genus g, elliptic elements order ν_1, \dots, ν_n



Presentation (i = 1, ..., g, j = 1, ..., n)

$$\Gamma = \left\{ a_1, b_i, c_j, \left| \prod_{i=1}^g [a_i, b_i] c_1 \cdots c_n = 1, c_j^{\nu_j} = 1 \right. \right\}$$

Good orbifolds
$$\Sigma = \underline{B}\Gamma = \Gamma \setminus \underline{E}\Gamma$$

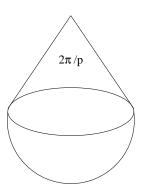
(orbifold-covered by a smooth manifold)

$$\Sigma_{g'} \xrightarrow{G} \Sigma(g; \nu_1, \dots, \nu_n) = \Gamma \backslash \mathbb{H}^2$$

 $\Sigma_{q'}=$ smooth compact Riemann surface genus

$$g' = 1 + \frac{\#G}{2}(2(g-1) + (n-\nu))$$

$$\nu = \sum_{j=1}^n \nu_j^{-1}$$



Exception: teardrop orbifold

Orbifold Euler characteristic $\chi_{orb}(\Sigma) \in \mathbb{Q}$

Multiplicative over orbifold covers, usual χ for smooth, inclusion—exclusion

$$\chi_{orb}(\Sigma_1 \cup \cdots \cup \Sigma_r) = \sum_i \chi_{orb}(\Sigma_i) - \sum_{i,j} \chi_{orb}(\Sigma_i \cap \Sigma_j) + (-1)^{r+1} \chi_{orb}(\Sigma_1 \cap \cdots \cap \Sigma_r)$$

$$\chi_{orb}(\Sigma(g; \nu_1, \dots, \nu_n)) = 2 - 2g + \nu - n$$

Spectral theory

$$H_{\sigma} \in \mathbb{C}(\Gamma, \sigma) \subset C_r^*(\Gamma, \sigma) \subset \mathcal{U}(\Gamma, \sigma)$$

Spectral projections $P_E = \chi_{(-\infty,E]}(H_\sigma) \in \mathcal{U}(\Gamma,\sigma)$

$$E \notin \operatorname{Spec}(H_{\sigma}) \Rightarrow P_E \in C_r^*(\Gamma, \sigma)$$

 $\exists F$ holom function on neighb of $\operatorname{Spec}(H_{\sigma})$

$$P_E = \chi_{(-\infty, E]}(H_\sigma) = F(H_\sigma) = \int_C \frac{d\lambda}{\lambda - H_\sigma}$$

 $C = \text{contour around Spec}(H_{\sigma}) \text{ left of } E$

Counting gaps in the spectrum \Leftrightarrow counting projections in $C_r^*(\Gamma, \sigma)$

Trace
$$\tau(T) = \langle Te_1, e_1 \rangle_{\ell^2(\Gamma)}$$

 $\mathsf{tr} = \tau \otimes \mathsf{Tr} : \mathsf{Proj}(C_r^*(\Gamma, \sigma) \otimes \mathcal{K}) \to \mathbb{R}$

[tr] on $K_0(C_r^*(\Gamma, \sigma))$

Range of the Trace

Morita equiv $(A \otimes C_0(G)) \rtimes \Gamma \simeq C_0(\Gamma \backslash G, \mathcal{E})$ $\mathcal{E} = A \times_{\Gamma} G \to \Gamma \backslash G$

$$K_{\bullet}(C_r^*(\Gamma)) \cong K_{SO(2)}^{\bullet}(P(g; \nu_1, \dots, \nu_n))$$

$$\cong K_{orb}^{\bullet}(\Sigma(g;\nu_1,\ldots,\nu_n)) \cong \begin{cases} \mathbb{Z}^{2-n+\sum \nu_j} & \bullet = even \\ \mathbb{Z}^{2g} & \bullet = odd \end{cases}$$

Twisted case $C_0(\Gamma \backslash G, \mathcal{E}) \simeq C_0(\Gamma \backslash G, \mathcal{E}_{\sigma})$ provided

$$\delta(\sigma) = 0$$

 $\delta: H^2(\Gamma, U(1)) \to H^3(\Gamma, \mathbb{Z})$ surjection from long exact sequence of $1 \to \mathbb{Z} \hookrightarrow \mathbb{R} \stackrel{\exp(2\pi i \cdot)}{\longrightarrow} U(1) \to 1$

$$[tr](K_0(C_r^*(\Gamma,\sigma))) = \mathbb{Z} + \theta \mathbb{Z} + \sum_j \nu_j^{-1} \mathbb{Z}$$

 $\theta = \langle [\sigma], [\Gamma] \rangle$ rational \Rightarrow finitely many gaps

Fundamental class $\Gamma = \frac{[\Sigma_g]}{\#G}$

 $\theta = irrational$?

Dense *-subalgebra

For $\gamma \in \Gamma$ set $De_{\gamma} = \ell(\gamma)e_{\gamma}$ with $\ell(\gamma) =$ word length Unbounded closed derivation $\delta = [D, \cdot]$ on $C_r^*(\Gamma, \sigma)$

$$\mathcal{R} := \bigcap_{k \in \mathbb{N}} \mathsf{Dom}(\delta^k)$$

 $\mathbb{C}(\Gamma, \sigma) \subset \mathcal{R}$, closed under holo functional calculus

Polynomial growth group cocycles on Γ define cyclic cocycles continuous on \mathcal{R} (Haagerup type inequality)

$$P_E = \chi_{(-\infty,E]}(H_\sigma + V) \in \mathcal{R}$$

Cyclic cocycles
$$t: \mathcal{R} \times \cdots \times \mathcal{R} \to \mathbb{C}$$

$$t(a_0, a_1, \dots, a_n) = t(a_n, a_0, a_1, \dots, a_{n-1})$$

 $\dots = t(a_1, \dots, a_n, a_0)$

and

$$t(aa_0, a_1, \dots, a_n)$$
 $-t(a, a_0a_1, \dots, a_n)$
 \cdots $(-1)^{n+1}t(a_na, a_0, \dots, a_{n-1}) = 0$

Cyclic cocycles pair with K-theory

Conductance

In lattice $\Gamma = \mathbb{Z}^2$, current density in e_1 direction functional derivative δ_1 of H_{σ} by A_1 (component of magnetic potential)

Expected value of current $tr(P\delta_1 H)$ for state P

Using
$$\partial_t P = i[P, H]$$
 and $\partial_t = \frac{\partial A_2}{\partial t} \times \delta_2$ (for $e_2 \perp e_1$) get $i \text{tr}(P[\partial_t P, \delta_1 P]) = -i E_2 \text{tr}(P[\delta_2 P, \delta_1 P])$

(electrostatic potential gauged away: $\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t}$)

In zero temperature limit charge carriers occupy all levels below Fermi level, so $P=P_F$

Conductance

$$\sigma_H = \operatorname{tr}(P_F[\delta_1 P_F, \delta_2 P_F])$$

In curved geometry

On Riemann surfaces changes of potential by real and imaginary parts of holomorphic 1-forms

$$H^1(\Gamma, \mathbb{Z}) = \mathbb{Z}^{2g} \quad \{a_i, b_i\}_{i=1,...,g} \text{ symplectic basis}$$

By effect of electron-electron interaction, to a moving elector the directions $\{e_1,e_2\}$ appear split into $\{e_i,e_{i+g}\}_{i=1,\dots,g}$ corresponding to a_i,b_i

Kubo formula

1-cocycle a on $\Gamma \Rightarrow$ derivation

$$\delta_a(f)(\gamma) = a(\gamma)f(\gamma)$$
 on $f \in \mathbb{C}(\Gamma, \sigma)$

Conductance cocycle:

$$\sum_{i=1}^g \operatorname{tr}\left(f^0\left(\delta_{a_i}(f^1)\delta_{b_i}(f^2) - \delta_{b_i}(f^1)\delta_{a_i}(f^2)\right)\right)$$

defines cyclic 2-cocycle ${\rm tr}^K(f^0,f^1,f^2)$ on ${\mathcal R}$

Area cocycle On $G = PSL(2, \mathbb{R})$ area cocycle

$$C(\gamma_1, \gamma_2) = \text{Area}(\Delta(x_0, \gamma_1^{-1}x_0, \gamma_2x_0))$$

hyperbolic area of geodesic triangle with given vertices Restriction of $\Gamma \subset \mathsf{PSL}(2,\mathbb{R})$ area cocycle on Γ

Area cocycle:

$$\sum_{\gamma_0 \gamma_1 \gamma_2 = 1} f^0(\gamma_0) f^1(\gamma_1) f^2(\gamma_2) C(\gamma_1, \gamma_2) \sigma(\gamma_1, \gamma_2)$$

defines cyclic 2-cocycle ${\rm tr}^C(f^0,f^1,f^2)$ on ${\mathcal R}$

<u>Coboundaries</u> t_1, t_2 cyclic 2-cocycles

$$t_1(a_0, a_1, a_2) - t_2(a_0, a_1, a_2) = \lambda(a_0a_1, a_2) - \lambda(a_0, a_1a_2) + \lambda(a_2a_0, a_1),$$

where λ is a cyclic 1-cocycle

Conductance and area differ by coboundary

<u>Comparison</u> Difference between the hyperbolic area of a geodesic triangle and the Euclidean area of its image under the Abel-Jacobi map (curve and Jacobian)

$$U(\gamma_1, \gamma_2) = h(\gamma_2^{-1}, 1) - h(\gamma_1^{-1}, \gamma_2) + h(1, \gamma_1)$$

each term difference of line integrals, one along a geodesic segment in \mathbb{H}^2 and one along a straight line in the universal cover of the Jacobian

$$\operatorname{tr}_{K}(f_{0}, f_{1}, f_{2}) - \operatorname{tr}_{C}(f_{0}, f_{1}, f_{2}) =$$

$$\sum_{\gamma_{0}\gamma_{1}\gamma_{2}=1} f_{0}(\gamma_{0}) f_{1}(\gamma_{1}) f_{2}(\gamma_{2}) U(\gamma_{1}, \gamma_{2}) \sigma(\gamma_{1}, \gamma_{2})$$

This can be written as $\lambda(f_0f_1,f_2)-\lambda(f_0,f_1f_2)+\lambda(f_2f_0,f_1)$

$$\lambda(f_0, f_1) = \sum_{\gamma_0, \gamma_1 = 1} f_0(\gamma_0) f_1(\gamma_1) h(1, \gamma_1) \sigma(\gamma_0, \gamma_1)$$

 \Rightarrow [tr^K] = [tr^C] same values on K-theory

Values of the conductance

(Connes-Moscovici higher index theorem, twisted)

$$\operatorname{Ind}_{c,\Gamma,\sigma}(\mathcal{D}_{\mathcal{E}}^{+}\otimes\nabla) = \frac{1}{2\pi\#G} \int_{\Sigma_{g'}} \widehat{A} \operatorname{tr}(e^{R_{\mathcal{E}}}) e^{\omega} u_{c}$$

 $\omega = d\eta$ 2-form of magnetic field $\nabla^2 = i\omega$ cocycle c and lift u_c to 2-form on $\Sigma_{g'}$

By dimension

$$\operatorname{Ind}_{c,\Gamma,\sigma}(\mathcal{D}_{\mathcal{E}}^{+} \otimes \nabla) = \frac{\operatorname{rank}\mathcal{E}}{2\pi \# G} \int_{\Sigma_{g'}} u_{c}$$

Dependence on magnetic field only through $\mathcal{E} =$ orbifold bundle representing class of P_E spectral projection in $K_0(C_r^*(\Gamma, \sigma)$ (using Baum-Connes)

For area cocycle c 2-form u_c is hyperbolic volume form

$$\int_{\Sigma_{g'}} u_c = 2\pi(2g'-2)$$

Orbifold Euler characteristic

$$\frac{(2g'-2)}{\#G} = -\chi_{orb}(\Sigma) \in \mathbb{Q}$$

Rational values of the onductance

$$\sigma_{H} = \operatorname{tr}^{K}(P_{F}, P_{F}, P_{F})$$
$$= \operatorname{tr}^{C}(P_{F}, P_{F}, P_{F}) \in \mathbb{Z}\chi_{orb}(\Sigma)$$

experimental	$g = 0 \ n = 3$
1/3	$\Sigma(0; 3, 6, 6)$
2/5	$\Sigma(0; 5, 5, 5)$
2/3	$\Sigma(0; 9, 9, 9)$
3/5	$\Sigma(0; 5, 10, 10)$
4/9	$\Sigma(0; 3, 9, 9)$
5/9	$\Sigma(0; 6, 6, 9)$
4/5	$\Sigma(0; 15, 15, 15)$
3/7	$\Sigma(0; 4, 4, 14)$
4/7	$\Sigma(0;7,7,7)$
5/7	$\Sigma(0; 7, 14, 14)$

predicted	$g = 0 \ n = 3$
8/15	$\Sigma(0; 5, 6, 10)$
11/15	$\Sigma(0; 10, 10, 15)$
7/9	$\Sigma(0; 12, 12, 18)$
11/21	$\Sigma(0; 6, 6, 7)$
16/21	$\Sigma(0; 12, 12, 14)$

Problem: does not discriminate against even denominators (too many fractions)

Relation to Chern-Simons approach?

NC versions of Bloch varieties and periods?