
Seiberg-Witten invariant and Casson-Walker

invariant for rational homology 3-spheres

Matilde Marcolli and Bai-Ling Wang

Abstract We consider a modi�ed version of the Seiberg{Witten invariants for
rational homology 3{spheres, obtained by adding to the original invariants a
correction term which is a combination of �{invariants. We show that these
modi�ed invariants are topological invariants. We prove that an averaged ver-
sion of these modi�ed invariants equals the Casson{Walker invariant. In partic-
ular, this result proves an averaged version of a conjecture of Ozsv�ath and Szab�o
on the equivalence between their �̂ invariant and the Seiberg{Witten invariant
of rational homology 3{spheres.

1 Introduction

Let Y be a closed oriented 3-manifold with a Spinc structure s, endowed with
a Riemannian metric g. One can consider on (Y; s; g) the Seiberg-Witten
monopole equations, for a pair (A; ) consisting of a U(1) connection on the
determinant bundle of the Spinc structure s and a spinor  (cf. [8] and [4] [6]
[9] [14]):

�
=@A + �: = 0;
�FA = �( ;  ) + �

(1)

where � is a co-closed 1-form in 
1(Y; iR) and � is a 1-form in 
1(Y; iR) intro-
duced to achieve smoothness of the moduli spaceMY (s; �; �) of solutions to (1)
modulo gauge transformations.

For a 3-manifold Y with b1(Y ) > 0, for generic �; �, MY (s; �; �) consists
of only �nitely many irreducible points. The counting of points in MY (s; �; �)
with sign given by the orientation de�nes the Seiberg-Witten invariant for (Y; s).
As shown by Meng{Taubes [15] and Turaev [22], this invariant agrees with the
Turaev torsion [21].

For a rational homology 3-sphere Y , assume that the generic � = �d�0 satis-
�es Ker(=@�0+�) = 0, then MY (s; �; �) consists of only �nitely many irreducible
points (where the spinor part does not vanish) and a unique, isolated, reducible
point [�0; 0]. The condition Ker(=@g�0+�) 6= 0 determines a subset of real codi-
mension one in the space of metrics and perturbations.

In this paper, we show that a suitably modi�ed version of the Seiberg{Witten
invariant of a rational homology 3-sphere agrees with the Casson{Walker invari-

1



ant. For any rational homology 3-sphere (Y; s; g) with a Spinc structure s and a
Riemannian metric, the counting of the irreducible Seiberg-Witten monopoles
de�nes the Seiberg-Witten invariant

SWY (s; g) = #
�
M�

Y (s; g)
�
; (2)

where each irreducible monopole inM�
Y (s; g) has a natural orientation from the

linearization of the Seiberg-Witten equations. As studied in [14], SWY (s; g) de-
pends on the metric and perturbation used in the de�nition. In order to obtain
a topological invariant, we can modify SWY (s; g) by a metric and perturba-
tion dependent correction term as follows. Choose any four{manifold X with
boundary Y , such that X is endowed with a cylindrical{end metric modeled on
(Y; gY ). Choose a Spin

c structure sX on X which agrees over the end with s on
Y , and choose a connection A on (X; sX) which extends the unique reducible
�s on (Y; s). Then we set

�Y (s; g) = IndC ( =D
X
A )�

1

8

�
c1(sX)

2 � �(X)
�
; (3)

where IndC ( =D
X
A ) is the complex index of the Dirac operator on (X; sX), twisted

with the extending Spinc connection A, and �(X) is the signature of X . By
the Atiyah{Patodi{Singer index theorem, �Y (s; g) is independent of the choice
of (X; sX) and A. Actually, �Y (s; g) can be expressed as a combination of
the Atiyah{Patodi{Singer eta invariants for the Dirac operator and signature
operator on (Y; s):

�Y (s; g) = �
1

4
�
=@�s
Y (0)�

1

8
�
sign
Y (0):

The modi�ed version of the Seiberg-Witten invariant is de�ned as

^SWY (s) = SWY (s; g)� �Y (s; g): (4)

We prove the following equivalence between ^SW Y and the Casson-Walker in-
variant.

Theorem 1.1. Let Y be a rational homology 3-sphere. Then,

X
s2Spinc(Y )

^SWY (s) =
1

2
jH1(Y;Z)j�(Y );

where �(Y ) is the Casson-Walker invariant of Y (cf. [24]).

The proof of this result relies on surgery formulae for the counting of
monopoles (2), which we prove in Proposition 3.1, and for the correction term
(3), which we prove in Proposition 3.2.2. The result then follows from the
surgery formula of Theorem 3.3, which also proves an averaged version of a
conjecture of Ozsv�ath and Szab�o [19] on the equivalence of the SW invariant

and their �̂ invariant for rational homology 3{spheres.
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In the case that Y is an integer homology 3-sphere, the equivalence of
Seiberg-Witten and Casson invariants was established by Lim [11], and was
also proved in [3].

Acknowledgements Some of our arguments are inspired by the paper of
Ozsv�ath and Szab�o on the theta divisor and the Casson{Walker invariant. The
�rst author is partially supported by Humboldt Foundation (Sofja Kovalevskaya
Award). The second author is supported by Australian Research Council.

2 Monopoles on knot complement and gluing

theorem

In this section, we brie
y review results in [5], concerning the Seiberg-Witten
monopoles on a knot complement in any rational homology 3-sphere and the
corresponding gluing theorem to obtain the Seiberg-Witten monopoles on any
3-manifold from Dehn surgery along the knot. Some of these results were also
obtained by Lim in [12] [13].

Let Y be a rational homology sphere, K is a smoothly embedded knot in Y ,
such that the map H1(@(Y ��(K));Z)! H1(Y ��(K);Z) has one dimensional
kernel whose generator has divisibility n in H1(T

2;Z) (T 2 = @(Y ��(K))), then

jH1(Y;Z)j

jTorsion(H1(Y � �(K);Z))j
= n:

Denote by V the knot complement Y � K with a cylindrical end metric
modelled on T 2 � [0;1). Let s be a Spinc structure on V with trivial determi-
nant over the end. We use the notation �0(T

2; V ) for the moduli space of 
at
connections on det(s) over T 2 modulo the gauge transformations which can be
extended to V . Notice that �0(T

2; V ) is a Z�Zn{covering of the moduli space
�(T 2) of 
at connections modulo the full gauge groupMap(T 2; U(1)). In �(T 2)
there is a unique point � such that the Dirac operator on T 2 coupled with �

has non-trivial kernel. We have the following structure theorem for the moduli
space MV (s) of �nite energy monopoles.

Theorem 2.1. (Cf. Theorem 1.2 in [5] and Theorem 1.3 in [13]) For generic

metrics and perturbations, the moduli space of Seiberg-Witten monopoles on V ,

denoted by MV (s) consists of the union of a circle of reducibles �(V ) and an

irreducible piece M�
V (s) which is a smooth oriented 1-dimensional manifold,

compact except for �nitely many ends limiting to �(V ). Moreover, there is a

continuous boundary value map

MV (s)
@1! �0(T

2; V )
�
! �(T 2); (5)

de�ned by taking the asymptotic limit of the Seiberg-Witten monopoles on V

over the end. Under @1, �(V ) is mapped to a circle in �0(T
2; V ), and

the compacti�cation �M�
V (s) is mapped to a collection of compact immersed
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curves in �0(T
2; V ) whose boundary points consist of a �nite set of points

in ��1(�) [ @1(�(V )). For generic perturbations the interior of the curve

@1(M�
V (s)) is transverse to any given �nite set of curves in �0(T

2; V ).

We also establish a gluing theorem for the moduli spaces of monopoles on
3-manifold glued along a torus where one piece is a solid torus �(K). That is,
if T 2 is a splitting torus in a closed 3-manifold Z = V [T 2 �(K), we may cut Z
along T 2 and glue in a long cylinder [�r; r] � T 2, resulting in a new manifold
denoted by Z(r). Let s be a Spinc structure on V with trivial determinant
along the boundary T 2. Let Spinc(Z; s) be the set of Spinc structures on Z

whose restriction to V is s. Then in [5], we established the following gluing
theorem.

Theorem 2.2. (Cf. Theorem 1.3 in [5] and x1.4 [12]) For a suÆciently large

r, under suitable perturbations and metrics, there exist the following di�eomor-

phism given by the gluing maps on the �bered products

M�
V;Z(s)��0(T 2;Z) �(�(K) � Z) �!

[
s2Spinc(Z;s)

M�
Z(s):

Here �0(T
2; Z) for the character variety (or moduli space) of 
at connections

on a trivial line bundle over T 2 modulo the gauge transformations on T 2 which

can be extended to Z. For any tubular neighbourhood �(K) in Z, we denote

by �(�(K) � Z) the moduli space of 
at connections on �(K) modulo the

gauge transformations on �(K) which can be extended to Z. There is a nat-

ural map �(�(K) � Z)! �0(T
2; Z). M�

V;Z(s) is the irreducible Seiberg-Witten

monopoles on (V; s) modulo the gauge transformations on V which can be ex-

tended to Z.

Let Y be a rational homology 3-sphere with a smoothly embedded knot
K as before. Endow K with the framing (m; l) in a �xed identi�cation:
�(K) �= D2 � S1 such that l represents a generator in the kernel of the map
H1(@(Y � �(K));Z) ! H1(Y � �(K);Z). Let p and q be relatively prime in-
tegers. The Dehn surgery with coeÆcient p=q 2 Q [ f1g on K gives rise to
another closed manifold Yp=q as follows.

Under the identi�cation of the framing, let m be the right-handed meridian
(intersecting l once), the orientation determined by m ^ l coincides with the
orientation induced from Y . Similarly, let m0 and l0 be the meridian and longi-
tude in the tubular neighbourhood of the knot �(K). The meridian m0 bounds
a disk D2 in �(K), and l0 generates H1(�(K);Z) and parallels to K. The Dehn
surgery with coeÆcient p=q 2 Q [f1g on K is the operation of removing �(K)
and gluing in D2 � S1 by an orientation reversing di�eomorphism fp=q of T 2

that satis�es

fp=q(m
0) = pm� ql:

Note that Y0 = Y0=1 is a rational homology S1 � S2 and the other Yp=q is a
rational homology 3-sphere.
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Denote by Spinc(V ) the set of equivalence classes of Spinc structures on
V = Y n�(K) with trivial restriction to the boundary T 2. Then, for any Yp=q ,
there is a surjective map:

�Yp=q : Spinc(Yp=q)! Spinc(V );

where, for any s 2 Spinc(Yp=q), �Yp=q (s) is given by the restriction to V � Yp=q .
The �ber of �Yp=q is given by a cyclic group generated by the Poincar�e dual of
the core of Yp=qnV . Formally, for s 2 Spinc(V ), we identify the �ber of �Y with
the following set of Spinc structures

Spinc(Y; s) =
[

m=0;��� ;n�1

fs
 Lmjc1(Lm) = mPD([K]) 2 H2(Y;Z)g:

Similarly the �ber of �Yp=q is given by

Spinc(Yp=q ; s) =
[

m=0;��� ;np�1

fs
 Lmjc1(Lm) = mPD([K]) 2 H2(Yp=q ;Z)g;

and the �ber of �Y0 is given by

Spinc(Y0; s) =
[
m2Z

fs
 Lmjc1(Lm) = mPD([K]) 2 H2(Y0;Z)g:

Here we use the same notation s on Yp=q (Y , or Y0) as the corresponding Spin
c

structure obtained by gluing s 2 Spinc(V ) with the trivial Spinc structure on
�(K) by the trivial gauge transformation on T 2. We hope this notation will not
cause any confusion.

Assume that V and �(K) are equipped with a metric with a cylindrical end
modeled on T 2. Let s be a Spinc structure on Y . By Theorem 2.1, we know
that the irreducible part of the moduli space of �nite energy monopoles on
(V; �Y (s)), still denoted M

�
V (s), is a smooth, oriented 1-dimensional manifold.

The asymptotic values along the cylindrical end and the covering map (5) de�ne
a boundary value map:

@1 : M�
V (s)! �(T 2): (6)

Notice that the reducible part �(V ) of the moduli space on (V; �Y (s)) is
an embedded circle �(V ) � �0(T

2; V ) under the asymptotic value map. This
becomes a circle of multiplicity n in �(T 2). There is a \bad point" in �(T 2),
given by the 
at connections such that the corresponding twisted Dirac operator
has a non-trivial kernel. We can endow �(T 2) with a coordinate system (u; v)
de�ned by the holonomy around the longitude l and the meridian m, respec-
tively, so that the bad point corresponds to (u; v) = (1; 1). Then the reducible
circle �(V ), with the holonomy around the longitude l of order n, is given by
u = u(s), with u(s) 2 f0; 2=n; � � � ; 2(n � 1)=ng. After a suitable perturbation,
and a corresponding shift of coordinates, as discussed in [5], cf. also [13], we

5



can assume that the bad point does not lie on any of these n possible circles
u = u(s) of reducibles �(V ).

From Theorem 2.1, we know that, under the map @1 in (6), the boundary
points @(M�

V (s)) are either mapped to the bad point in �(T 2) or mapped to
the reducible circle u = u(s) on �(T 2).

Let �(�(K) � Yp=q) be the reducible circle on �(K) � Yp=q , which maps
to a closed curve on �(T 2) with slope p=q in the (u; v)-coordinates, parallel to
pv = qu. Looking at the induced Spin structure on T 2 � Yp=q , we know that
the curve �(�(K) � Yp=q) goes through (0; 1) if q is odd or goes through (0; 0)
if q is even, cf. [5]. Again, after a suitable perturbation as in [5], and the
corresponding shift of coordinates, we can assume that this p=q-curve is away
from the bad point on �(T 2) and does not meet u = u(s) along the coordinate
line v = 0. Then we know that u = u(s) intersects �(�(K) � Yp=q) inside �(T

2)
at p points, which are denoted by �1; � � � ; �p, ordered according the orientation
of u = u(s) � �(T 2). They can be lifted to pn points in �0(T

2; V ). We denote

these points by �
(k)
1 ; � � � ; �

(k)
p , (k = 0; 1; � � � ; n� 1) according to the order.

Denote by �0 the intersection point of u = u(s) with v = 0 in �(T 2). This

can be lifted to n-points �
(0)
0 ; �

(1)
0 ; � � � ; �

(n�1)
0 on �0(T

2; V ). Moreover, we can
assume that the map @1 in (6) is transverse to the curves u = u(s), v = 0 and
�(�(K) � Yp=q), by a suitable perturbation of the Seiberg-Witten equations on
V as in [5]. We can also assume that the image @1M

�
V (s) does not meet the

points �0; �1; � � � �p in �(T
2), again by suitable perturbation, as discussed in [5].

Then the Seiberg-Witten monopoles on various manifolds Yp=q can described
as follows from the gluing Theorem 2.2:

Corollary 2.3. Let s be a Spinc structure on V with a trivial determinant over

the end. Then we have

pn�1[
k=0

M�
Yp=q

(s
 Lk) =M�
V (s)��(T 2) �(�(K) � Yp=q);

where �(�(K) � Yp=q) is the p=q-curve in the moduli space �(T 2). The set

f�
(k)
1 ; � � � ; �

(k)
p : k = 0; 1; � � � ; n � 1g consists of the unique reducible monopole

for each (Yp=q ; s
 Lk). Similarly, we have

n�1[
k=0

M�
Y (s
 Lk) =M�

V (s)��(T 2) fv = 0g;

and the reducible set consists of f�
(0)
0 ; �

(1)
0 ; � � � ; �

(n�1)
0 g: After a mild perturbation

of the monopole equations on Y0, we have

[
k2Z

MY0(s
 Lk) =M�
V (s)��(T 2) fu = u(s) + �g:

Here � is a suÆciently small positive number, introduced by e�ect of a small

perturbation, such that there is no reducible monopoles for Y0.
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3 Seiberg{Witten = Casson{Walker invariant

In this section, we derive the relation between the topologically invariant version
of the Seiberg-Witten invariant and the Casson-Walker invariant for rational
homology 3-spheres. Together with the equivalence between the Casson-Walker
invariant and the theta invariant introduced by Ozsv�ath and Szab�o in [19], our
result proves their conjecture relating the Seiberg-Witten invariant and their
theta invariant.

Let Y be a rational homology 3-sphere with a smoothly embedded knot K
as in the previous section. For any pair of relatively prime integers (p; q), the
Dehn surgery with coeÆcient p=q 2 Q [ f1g on K gives rise to another closed
manifold Yp=q .

Assume that V = Y � K and the tubular neighborhood �(K) of K are
equipped with a metric with a cylindrical end modeled on T 2. Let s be a Spinc

structure on V . As discussed in the previous section, the moduli spaceM�
V (s) of

irreducible �nite energy monopoles on (V; s) is a smooth, oriented 1-dimensional
manifold, while the reducible part �(V ) of the moduli space on (V; �Y (s)) is an
embedded circle �(V ) � �0(T

2; V ). With the coordinate system introduced
in the previous section, the reducible circle �(V ) is given by u = u(s), with
u(s) 2 f0; 2=n; � � � ; 2(n� 1)=ng. We can assume that the bad point does not lie
on any of these n possible circles u = u(s) of reducibles �(V ).

We use the notations from the previous section. The reducible circle
�(�(K) � Yp=q) on �(K) � Yp=q is mapped to a closed curve on �(T 2) with
slope p=q in the (u; v)-coordinates. u = u(s) intersects �(�(K) � Yp=q) inside
�(T 2) at p points, which are denoted by �1; � � � ; �p, ordered according the ori-
entation of u = u(s) � �(T 2). We denote the lifting points in �0(T

2; V ) by

�
(k)
1 ; � � � ; �

(k)
p , (k = 0; 1; � � � ; n� 1) according to the order. The point �0 is the

intersection of u = u(s) with v = 0 in �(T 2) which can be lifted to n-points

�
(0)
0 ; �

(1)
0 ; � � � ; �

(n�1)
0 on �0(T

2; V ). Moreover, we can assume that the map @1
in (6) is transverse to the curves u = u(s), v = 0 and �(�(K) � Yp=q), and the
image @1M

�
V (s) does not meet the points �0; �1; � � � �p in �(T

2).
Let I be any open interval in

�(V ) = fu = u(s)g � �0(T
2; V ):

We denote by SFC (=@
V
I ) the complex spectral 
ow of Dirac operator on V , twisted

with the path of reducible connections I on V . From the analysis in [5] and

[14], we know that

#
�
@1j@M�

V
(s)

��1
(I) = SFC (=@

V
I ): (7)

For convenience, we de�ne

SFC (=@
V
[�i;�j ]

) =

n�1X
k=0

SFC (=@
V

[�
(k)

i
;�

(k)

j
]
): (8)

With this notation understood, we can state the following proposition relat-
ing the Seiberg-Witten invariants on Yp=q , Y and Y0.
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Proposition 3.1. Consider generic compatible small perturbations of the

Seiberg-Witten equations on Yp=q, Y and Y0, such that the map @1 as in (6) is

transverse to the curves u = u(s), v = 0 and �(�(K) � Yp=q) and misses the

points �0; �1; � � � ; �p in �(T 2). Then we have the following relation:

Ppn�1

k=0 SWYp=q (s
 Lk; gYp=q)

= p
Pn�1

k=0 SWY (s
 Lk; gY ) + q
P

k2ZSWY0(s
 Lk)

+
Pp

i=1 SFC (=@
V
[�0;�i]

):

Proof. By the gluing theorem for 3-dimensional monopoles as in Theorem 2.2
and Corollary 2.3, we have

pn�1X
k=0

SWYp=q(s
 Lk; gYp=q) = #
�
M�

V (s)��(T 2) �(�(K) � Yp=q)
�
: (9)

Notice that the set f�
(k)
1 ; � � � ; �

(k)
p : k = 0; 1; � � � ; n � 1g consists of the unique

reducible monopole for each (Yp=q ; s
 Lk).
Similarly, we have

n�1X
k=0

SWY (s
 Lk; gY ) = #
�
M�

V (s)��(T 2) fv = 0g
�
: (10)

Here the reducible set consists of f�
(0)
0 ; �

(1)
0 ; � � � ; �

(n�1)
0 g:

In order to avoid the circle of reducibles on (Y0; s 
 L0), we need to intro-
duce a small perturbation such that �(�(K) � Y0) on �(T

2) is a small parallel
shifting of u = u(s) such that the bad point is not contained in the narrow strip
bounded by these two parallel curves. We denote this small shift of u = u(s)
by u = u(s) + �, where � is a suÆciently small positive number. This can be
achieved by a perturbation of the equations as in [5]. Then we have

X
k2Z

SWY0(s
 Lk) = #
�
M�

V (s)��(T 2) fu = u(s) + �g
�
: (11)

In order to compare the three countings in (9) { (11), we need to choose an
oriented 2-chain C in �(T 2) whose boundary 1-chain is given by

�(�(K) � Yp=q)� p�(�(K) � Y )� q�(�(K) � Y0)

= �(�(K) � Yp=q)� pfv = 0g � qfu = u(s) + �g;

and such that C does not contain the bad point in �(T 2). Then, counting the
boundary points of @�1

1 (C), as a 0-chain, we obtain

#
�
@�1
1 (�(�(K) � Yp=q)

�
= p#

�
@�1
1 (fv = 0g)

�
+ q#

�
@�1
1 (fu = u(s) + �g)

�
+#
�
@1 j@(M�

V
(s))

��1
(C):

(12)
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As C does not contain the bad points, we know that the possible points
of @1(@(M�

V (s))) \ C all lie on the curve u = u(s), away from the points
�0; �1; � � � ; �p. It is easy to see that C covers the intervals of u = u(s) between
two consecutive points �i with di�erent multiplicities: the multiplicities are
p; p� 1; � � � ; 1; 0, for the intervals

[�0; �1]; [�1; �2]; � � � ; [�p�1; �p]; [�p; �0];

respectively. By the identity (7) and the de�nition (8), we know that

#
�
@1j@(M�

V
(s))

��1
(C) =

pX
i=1

SFC (=@
V
[�0;�i]

): (13)

Combining all the identities in (9), (10), (11), (12) and (13), we obtain the proof
of the proposition.

The Seiberg-Witten invariant for any rational homology 3-sphere depends
on metric and perturbation (cf.[14]). We now consider the correction term (3)
as de�ned in the introduction. We have the following proposition relating the
correction terms for Yp=q and Y .

Proposition 3.2. 1. For any rational homology 3-sphere Y with a Spinc

structure s and a Riemannian metric gY ,

^SW Y (s) = SWY (s; gY )� �(s; gY )

is a well-de�ned topological invariant.

2. For any relatively prime integers p and q, a positive integer n, and

u 2 f0; 2=n; : : : ; 2(n� 1)=ng, we have that

pn�1X
k=0

�Yp=q (s
 Lk; gYp=q)� p

n�1X
k=0

�Y (s
 Lk; gY )�

pX
i=1

SFC (=@
V
[�0;�i]

)

is independent of the manifold Y and depends only on p; q; n, and

u(s) 2 f0; 2=n; : : : ; 2(n� 1)=ng:

Proof. Claim (1) follows from the wall-crossing formulae in [14] and the
Atiyah-Patodi-Singer index theorem. This was also proved in [12]. The proof
of claim (2) is analogous to the proof of Proposition 7.9 in [19]. We adapt their
arguments to our situation. We write the standard surgery cobordism between
S3 and the Lens space L(p; q) as

W (S3; L(p; q)) =
�
[0; 1]� S1 �D2

�
[[0;1]�S1�S1 Xp=q ;

Then the surgery cobordism between Y and Yp=q can be identi�ed as

Wp=q =
�
[0; 1]� V

�
[[0;1]�S1�S1 Xp=q :
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We �x a metric on Wp=q which respects the product structure [0; 1] � V and
[0; 1] � S1 � S1, and agrees with gY and gYp=q on the boundaries Y and Yp=q ,
respectively.

For a Spinc structure s 
 L
(m)

i in fs 
 Lk : k = 0; � � � ; pn � 1g on

Yp=q , whose reducible monopole corresponds to �
(m)

i (with i 2 f1; � � � ; pg and
m 2 f0; � � �n�1g), we consider the Spinc structure s
Lm on Y whose reducible

monopole is �
(m)
0 . Then we claim that

�Yp=q (s
 L
(m)

i ; gYp=q)� �Y (s
 Lm; gY )� SFC (=@
V

[�
(m)

0 ;�
(m)

i
]
) (14)

is independent of Y and depends only on p; q; n and on
u(s) 2 f0; 2=n; � � � ; 2(n� 1)=ng:

To prove this claim, we choose a Spinc structure ~s on Wp=q whose restric-

tion to Y and Yp=q is given by s 
 Lm and s 
 L
(m)
i , respectively, and such

that c1(~s)
2 = 1. On (Wp=q ;~s), we choose a connection A, whose restriction

to V � [0; 1] is the path of reducibles connecting �
(m)
0 to �

(m)
i along the curve

�(V ) � �0(T
2; V ). Then we have

�Yp=q (s
 L
(m)
i ; gYp=q)� �Y (s
 Lm; gY )

= IndC ( =D
Wp=q

A )�
� c1(~s)2 � �(Wp=q)

8

�
= IndC ( =D

Wp=q

A )

= IndC ( =D
[0;1]�V
A ) + IndC ( =D

Xp=q

A )

(15)

where the third equality follows from the splitting principle for the index, as
the Dirac operator has no kernel on the various boundaries and corners [2] [16].
Notice that we have

IndC ( =D
[0;1]�V
A ) = SFC (=@

V

[�
(m)

0 ;�
(m)

i
]
);

and the connection AjXp=q
extends to connection A0 on W (S3; L(p; q)) by a 
at

connection, whose index on [0; 1]� S1 �D2 satis�es

IndC ( =D
[0;1]�S1

�D2

A0
) = 0:

In fact, we can choose the metric on W (S3; L(p; q)) with a positive scalar cur-
vature metric on [0; 1]� S1 �D2. Therefore, we have

IndC ( =D
Xp=q

A ) = IndC ( =D
W (S3;L(p;q))
A0

);

which depends only on p; q; n and u(s), and so does the quantity

�Yp=q (s
 L
(m)

i ; gYp=q)� �Y (s
 Lm; gY )� SFC (=@
V

[�
(m)

0 ;�
(m)

i
]
): (16)

When summing the identity (16) over i 2 f1; � � � ; pg and m 2 f0; � � � ; n � 1g,
notice that the term �Y (s
 Lm; gY ) is independent of i 2 f1; � � � ; pg, hence we
obtain the proof of the claim (2) by using the de�nition (8).

10



With these two propositions in place, we now have the following surgery
formula for the modi�ed version of the Seiberg-Witten invariant.

Theorem 3.3. Given any two relatively prime integers p and q, a positive inte-

ger n and u 2 f0; 2=n; 2(n�1)=ng, there is a rational valued function s(p; q; n; u),
depending only on p; q; n and u, satisfying the following property. Let Y be a ra-

tional homology 3-sphere with a smoothly embedded knot and a canonical framing

(m; l) such that �(K) �= D2 � S1. Assume that K represents a torsion element

of order n in H1(Y;Z). Let s be a Spinc structure on Y . Then we have

Ppn�1

k=0
^SW Yp=q(s
 Lk)

= p
Pn�1

k=0
^SWY (s
 Lk) + q

P
k2ZSWY0(s
 Lk)

+s(p; q; n; u):

Proof. Following from Proposition 3.2, we know that

pn�1X
k=0

�Yp=q (s
 Lk; gYp=q)� p

n�1X
k=0

�Y (s
 Lk; gY )�

pX
i=1

SFC (=@
V
[�0;�i]

) (17)

depends only on p; q; n and u = u(s) 2 f0; 2=n; � � � ; 2(n � 1)=ng. We denote
this term by s(p; q; n; u). By subtracting (17) from the surgery formula for
the Seiberg-Witten invariants in Proposition 3.1, we obtain the proof of this
theorem.

Now we can establish the equivalence between the modi�ed version of the
Seiberg-Witten invariant ^SW and the Casson-Walker invariant for rational ho-
mology 3-spheres.

Theorem 3.4. For any rational homology 3-sphere Y , we have

X
s2Spinc(Y )

^SW Y (s) =
1

2
jH1(Y;Z)j�(Y )

where �(Y ) is the Casson-Walker invariant.

Proof. We �rst derive the surgery formula for the invariantP
s2Spinc(Y )

^SW Y (s) from Theorem 3.3 and the Seiberg-Witten invariant for

Y0 (a rational homology S
1 � S2, i.e., b1(Y0) = 1) (see [15] [7]):

P
s2Spinc(Yp=q)

^SWYp=q (s)

= p
P

s2Spinc(Y )
^SW Y (s) + q

P1

j=0 ajj
2 + jH1(Y;Z)js(p; q; n)

(18)

where s(p; q; n) =
P

u s(p; q; n; u)=n and aj is the coeÆcient of the symmetrized
Alexander polynomial of Y0,

A(t) = a0 +

1X
j=1

aj(t
j + t�j)

11



normalized so that

A(1) = jTorsion(H1(Y0;Z))j:

Set ��(Y ) =
1

2
jH1(Y;Z)j�(Y ) as the normalized Casson-Walker invariant. Then

the surgery formula in [24] for ��(Y ) can be expressed as (cf. [19]):

��(Yp=q) = p��(Y ) + q
P1

j=0 ajj
2

+jH1(Y;Z)j
�q(n2 � 1)

12n2
�
ps(p; q)

2

�
:

(19)

Here s(p; q) is the Dedekind sum of relatively prime integers p and q (cf. [24]).
Comparing (18) and (19), we only need to show that

s(p; q; n) =
q(n2 � 1)

12n2
�
ps(p; q)

2
: (20)

Since s(p; q; n) is independent of the manifold Y , we can choose some exam-
ples that can be computed explicitly, and use them to identify the coeÆcient
s(p; q; n). The Lens space L(p; q) can be obtained by a p=q-surgery on an unknot
in S3. The calculation of Nicolaescu [17] for L(p; q) gives us that

X
s2Spinc(L(p;q))

^SWL(p;q)(s) = �
ps(p; q)

2
:

This implies that (20) holds for n = 1. Now we can prove (20) by induction on
n. This is exactly the same argument as in the proof of Theorem 7.5 in [19] on
the equivalence of their theta invariant and the Casson-Walker invariant. The
example is the Seifert manifold M(n; 1;�n; 1; q;�p), obtained by p=q surgery
on a knot of order n in L(n; 1)#L(n; 1). By Kirby calculus it is possible to show
thatM(n; 1;�n; 1; q;�p) can be obtained as (�n)-surgery on a knot in the Lens
space L(pn� q; q), and can be obtained as a sequence of surgeries on knots of
order less than n, see the proof of Theorem 7.5 in [19] for details.

4 Additional Remarks

In the classical theory of topological invariants of 3{manifolds, there is an in-
teresting dichotomy between two types of invariants: the Casson invariant and
torsion. Turaev torsion is de�ned for manifolds with b1(Y ) > 0, as an invari-
ant with values in Z[H], H = H1(Y;Z) being the �rst homology, and can be
extended to a Q[H ]{valued invariant for rational homology 3{spheres, [21]. On
the other hand, the Casson invariant was originally de�ned only for integral
homology spheres [1], and was later extended to rational homology 3{spheres as
the Casson{Walker invariant [24]. A further generalization to all 3{manifolds
due to Lescop [10] revealed that, for b1(Y ) > 0, this invariant gives no more

12



information than Turaev torsion, and in fact can be described as an averaged
version of torsion. Thus, we have on the one hand a �rst invariant that lives
naturally on 3{manifolds with b1(Y ) > 0 and is trivial on integral homology
spheres, and on the other hand a second classical invariant which lives naturally
on integral homology spheres and reduces to an averaged version of the �rst for
manifolds with b1(Y ) > 0. It was also appearant that these are independent
invariants in the intermediate range of rational homology spheres, where both
are de�ned.

The picture that recently emerged, by the results of [11], [15], [18], [22], and
the present paper, identi�es the Seiberg{Witten invariant as a natural unifying
theory behind both Casson invariant and torsion. A recent paper of Nicolaescu
[18] shows how the Seiberg{Witten invariants, with the correction terms we de-
scribe here in Section 2 for rational homology spheres, can be organized as an
invariant SW 0

Y 2 Q[H ], which satis�es the relation SW 0
Y = T 0

Y . The invariant
T 0
Y is a modi�ed version of Turaev torsion, which agrees with Turaev torsion
TY when b1(Y ) > 0, and is corrected so as to satisfy T 0

Y (1) =
1
2
jH j�(Y ) when

b1(Y ) = 0. The proof given by Nicolaescu combines our surgery formula of
Proposition 3.1 with surgery formulae for torsion and Casson{Walker invariant,
and shows that the class of 3{manifolds for which the di�erence of these in-
variants DY := SW 0

Y � T 0
Y (or rather its Fourier transform) is trivial can be

enlarged by admissible surgeries to eventually encompass all rational homology
3{spheres.

A uni�ed theory of Casson{Walker invariant and Turaev torsion was also
derived by Ozsv�ath and Szab�o [19], [20], via their theta invariant.

Given the results of [11], [22], and the present paper, the result SW 0
Y = T 0

Y

for all 3{manifolds amounts to showing that Seiberg{Witten invariants deter-
mine Turaev torsion for rational homology 3{spheres. There is an axiomatic
characterization of Turaev torsion for rational homology 3{spheres [23], which
seems suitable for comparison with Seiberg{Witten invariants, but this seems
to require a more re�ned version of the surgery formula for Seiberg{Witten in-
variants, which is stronger than our Proposition 3.1. This approach may lead
to a simpli�ed proof of the main result of [18].
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