Renormalization and the Riemann-Hilbert correspondence

Alain Connes and Matilde Marcolli

Santa Barbara, November 2005

Commutative Hopf algebras and affine group scheme

$k=$ field of characteristic zero
\mathcal{H} commutative algebra $/ k$ with unit
coproduct $\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes_{k} \mathcal{H}$, counit $\varepsilon: \mathcal{H} \rightarrow k$, antipode $S: \mathcal{H} \rightarrow \mathcal{H}$

$$
\begin{array}{ll}
(\Delta \otimes i d) \Delta=(i d \otimes \Delta) \Delta & : \mathcal{H} \rightarrow \mathcal{H} \otimes_{k} \mathcal{H} \otimes_{k} \mathcal{H}, \\
(i d \otimes \varepsilon) \Delta=i d=(\varepsilon \otimes i d) \Delta & : \mathcal{H} \rightarrow \mathcal{H}, \\
m(i d \otimes S) \Delta=m(S \otimes i d) \Delta=1 \varepsilon & : \mathcal{H} \rightarrow \mathcal{H},
\end{array}
$$

Covariant functor G from \mathcal{A}_{k} (commutative k alg with 1) to \mathcal{G} (groups)

$$
G(A)=\operatorname{Hom}_{\mathcal{A}_{k}}(\mathcal{H}, A)
$$

affine group scheme

Examples:

- Additive group $G=\mathbb{G}_{a}$: Hopf algebra $\mathcal{H}=k[t]$ with $\Delta(t)=t \otimes 1+1 \otimes t$.
- Multiplicative group $G=\mathbb{G}_{m}$: Hopf algebra $\mathcal{H}=$ $k\left[t, t^{-1}\right]$ with $\Delta(t)=t \otimes t$.
- Roots of unity μ_{n} : Hopf algebra $\mathcal{H}=k[t] /\left(t^{n}-1\right)$.
- $G=\mathrm{GL}_{n}$: Hopf algebra

$$
\mathcal{H}=k\left[x_{i, j}, t\right]_{i, j=1, \ldots, n} / \operatorname{det}\left(x_{i, j}\right) t-1
$$

with $\Delta\left(x_{i, j}\right)=\sum_{k} x_{i, k} \otimes x_{k, j}$.

- \mathcal{H} fin. gen. alg. $/ k: G \subset \mathrm{GL}_{n}$ linear algebraic group/k.
- $\mathcal{H}=\cup_{i} \mathcal{H}_{i}, \Delta\left(\mathcal{H}_{i}\right) \subset \mathcal{H}_{i} \otimes \mathcal{H}_{i}, S\left(\mathcal{H}_{i}\right) \subset \mathcal{H}_{i}$: projective limit of linear algebraic groups

$$
G=\underset{\varliminf_{i}}{\lim _{i}} G_{i}
$$

Lie algebra: functor \mathfrak{g} from \mathcal{A}_{k} to Lie $\mathfrak{g}(A)=\{L: \mathcal{H} \rightarrow A \mid L(X Y)=L(X) \varepsilon(Y)+\varepsilon(X) L(Y)\}$

Milnor-Moore: $\mathcal{H}=\oplus_{n \geq 0} \mathcal{H}_{n}$, with $\mathcal{H}_{0}=k$ and \mathcal{H}_{n} fin dim / k. Dual \mathcal{H}^{\vee} with primitive elements \mathcal{L} :

$$
\mathcal{H}=U(\mathcal{L})^{\vee}
$$

Reconstruct \mathcal{H} from the Lie algebra $\mathcal{L}=\mathfrak{g}(k)$.

For $\mathcal{H}=\oplus_{n \geq 0} \mathcal{H}_{n}$ action of \mathbb{G}_{m}

$$
u^{Y}(X)=u^{n} X, \forall X \in \mathcal{H}_{n}, u \in \mathbb{G}_{m}
$$

$G^{*}=G \rtimes \mathbb{G}_{m}$

Connes-Kreimer theory

Perturbative QFT

$\mathcal{T}=$ scalar field theory in dimension D

$$
S(\phi)=\int \mathcal{L}(\phi) d^{D} x=S_{0}(\phi)+S_{\mathrm{int}}(\phi)
$$

with Lagrangian density

$$
\mathcal{L}(\phi)=\frac{1}{2}(\partial \phi)^{2}-\frac{m^{2}}{2} \phi^{2}-\mathcal{L}_{\mathrm{int}}(\phi)
$$

Effective action (perturbative expansion):

$$
S_{e f f}(\phi)=S_{0}(\phi)+\sum_{\Gamma \in 1 \mathrm{PI}} \frac{\Gamma(\phi)}{\# \operatorname{Aut}(\Gamma)}
$$

$\Gamma(\phi)=\frac{1}{N!} \int_{\sum_{p_{j}=0}} \widehat{\phi}\left(p_{1}\right) \ldots \widehat{\phi}\left(p_{N}\right) U_{\mu}^{z}\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right) d p_{1} \ldots d p_{N}$
$U\left(\left\ulcorner\left(p_{1}, \ldots, p_{N}\right)\right)=\int d^{D} k_{1} \cdots d^{D} k_{L} I_{\Gamma}\left(k_{1}, \cdots k_{L}, p_{1}, \cdots p_{N}\right)\right.$
$U_{\mu}^{z}\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right):$ DimReg+MS

$$
=\int \mu^{z L} d^{D-z} k_{1} \cdots d^{D-z} k_{L} I_{\Gamma}\left(k_{1}, \cdots k_{L}, p_{1}, \cdots p_{N}\right)
$$

Laurent series in z

BPHZ renormalization scheme

Class of subgraphs $\mathcal{V}(\Gamma)$:
\mathcal{T} renormalizable theory, $\Gamma=1$ PI Feynman graph: $\mathcal{V}(\Gamma)$ (not necessarily connected) subgraphs $\gamma \subset \Gamma$ with

1. Edges of γ are internal edges of Γ.
2. Let $\tilde{\gamma}$ be a graph obtained by adjoining to a connected component of γ the edges of Γ that meet the component. Then $\tilde{\gamma}$ is a Feynman graph of the theory \mathcal{T}.
3. The unrenormalized value $U(\tilde{\gamma})$ is divergent.
4. The graph Γ / γ is a Feynman graph of the theory.
5. The components of γ are 1PI graphs.
6. The graph Γ / γ is a 1PI graph.

BPHZ procedure:

Preparation:

$$
\bar{R}(\Gamma)=U(\Gamma)+\sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma) U(\Gamma / \gamma)
$$

Coefficient of the pole part is given by a local term

Counterterms:

$$
\begin{gathered}
C(\Gamma)=-T(\bar{R}(\Gamma)) \\
=-T\left(U(\Gamma)+\sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma) U(\Gamma / \gamma)\right)
\end{gathered}
$$

$T=$ projection on the polar part of the Laurent series

Renormalized value:

$$
\begin{gathered}
R(\Gamma)=\bar{R}(\Gamma)+C(\Gamma) \\
=U(\Gamma)+C(\Gamma)+\sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma) U(\Gamma / \gamma)
\end{gathered}
$$

Connes-Kreimer Hopf algebra of Feynman graphs

Discrete version (over $k=\mathbb{C}$, in fact $k=\mathbb{Q}$)
$\mathcal{H}=\mathcal{H}(\mathcal{T})$ depends on the theory \mathcal{T}

Generators: 1PI graphs 「 of the theory

Grading: $\operatorname{deg}\left(\Gamma_{1} \cdots \Gamma_{r}\right)=\sum_{i} \operatorname{deg}\left(\Gamma_{i}\right)$ and $\operatorname{deg}(1)=0$

Coproduct:

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma \in \mathcal{V}(\Gamma)} \gamma \otimes \Gamma / \gamma
$$

Antipode: inductively (lower deg)

$$
S(X)=-X-\sum S\left(X^{\prime}\right) X^{\prime \prime}
$$

for $\Delta(X)=X \otimes 1+1 \otimes X+\sum X^{\prime} \otimes X^{\prime \prime}$

Affine group scheme $G(\mathcal{H}(\mathcal{T}))=\operatorname{Difg}(\mathcal{T})$
"diffeographisms"

$$
\operatorname{Difg}(\mathcal{T}) \rightarrow \operatorname{Diff}
$$

to formal diffeomorphisms of the coupling constants

$$
g_{\mathrm{eff}}=g+\sum_{n} \alpha_{n} g^{n}, \quad \alpha_{n} \in \mathcal{H}
$$

Lie algebra: (Milnor-Moore)

$$
\left[\Gamma, \Gamma^{\prime}\right]=\sum_{v} \Gamma \circ_{v} \Gamma^{\prime}-\sum_{v^{\prime}} \Gamma^{\prime} \circ_{v^{\prime}} \Gamma
$$

$\Gamma \circ_{v} \Gamma^{\prime}=$ inserting Γ^{\prime} in Γ at the vertes v
Continuous version On $E_{\Gamma}:=\left\{\left(p_{i}\right)_{i=1, \ldots, N} ; \sum p_{i}=0\right\}$ distributions

$$
C_{c}^{-\infty}(E)=\oplus_{\Gamma} C_{c}^{-\infty}\left(E_{\Gamma}\right)
$$

Hopf algebra

$$
\begin{gathered}
\tilde{\mathcal{H}}(\mathcal{T})=\operatorname{Sym}\left(C_{c}^{-\infty}(E)\right) \\
\Delta(\Gamma, \sigma)=(\Gamma, \sigma) \otimes 1+1 \otimes(\Gamma, \sigma)+\sum_{\gamma \in \mathcal{V}(\mathcal{T}) ; i \in\{0,1\}}\left(\gamma_{(i)}, \sigma_{i}\right) \otimes\left(\Gamma / \gamma_{(i)}, \sigma\right)
\end{gathered}
$$

Loops and Birkhoff factorization

$\Delta=$ (infinitesimal) disk around $z=0, C=\partial \Delta$
$C_{+} \cup C_{-}=\mathbb{P}^{1}(\mathbb{C}) \backslash C$
$G(\mathbb{C})=$ complex connected Lie group
loop $\gamma: C \rightarrow G(\mathbb{C})$

Birkhoff factorization problem: is it possible to factor

$$
\gamma(z)=\gamma_{-}(z)^{-1} \gamma_{+}(z)
$$

$\forall z \in C$, with $\gamma_{ \pm}: C_{ \pm} \rightarrow G(\mathbb{C})$ holomorphic, $\gamma_{-}(\infty)=1$

In general no: for $G(\mathbb{C})=\mathrm{GL}_{n}(\mathbb{C})$ only

$$
\gamma(z)=\gamma_{-}(z)^{-1} \lambda(z) \gamma_{+}(z)
$$

$\lambda(z)$ diagonal $\left(z^{k_{1}}, z^{k_{2}}, \ldots, z^{k_{n}}\right)$: nontrivial holomorphic vector bundles on $\mathbb{P}^{1}(\mathbb{C})$ with $c_{1}\left(L_{i}\right)=k_{i}$ and

$$
E=L_{1} \oplus \ldots \oplus L_{n}
$$

\mathcal{H} commutative Hopf algebra over \mathbb{C} :
$K=\mathbb{C}(\{z\})=\mathbb{C}\{z\}\left[z^{-1}\right], \mathcal{O}=\mathbb{C}\{z\}, \mathcal{Q}=z^{-1} \mathbb{C}\left[z^{-1}\right]$,
$\tilde{\mathcal{Q}}=\mathbb{C}\left[z^{-1}\right]$
loop $\gamma(z)$: element $\phi \in G(K)=\operatorname{Hom}_{\mathcal{A}_{\mathbb{C}}}(\mathcal{H}, K)$
positive part $\gamma_{+}(z)$: element $\phi_{+} \in G(\mathcal{O})$
negative part $\gamma_{-}(z)$: element $\phi_{-} \in G(\widetilde{\mathcal{Q}})$
$\gamma_{-}(\infty)=1 \Leftrightarrow \varepsilon_{-} \circ \phi_{-}=\varepsilon$
Birkhoff $\gamma(z)=\gamma_{-}(z)^{-1} \gamma_{+}(z)$ becomes

$$
\phi=\left(\phi_{-} \circ S\right) * \phi_{+}
$$

Product $\phi_{1} * \phi_{2}$ dual to coproduct

$$
\left\langle\phi_{1} * \phi_{2}, X\right\rangle=\left\langle\phi_{1} \otimes \phi_{2}, \Delta(X)\right\rangle
$$

$G=$ pro-unipotent affine group scheme of a commutative Hopf algebra $\mathcal{H}=\oplus_{n \geq 0} \mathcal{H}_{n}$

Always have Birkhoff factorization: inductive formula (CK)

$$
\begin{gathered}
\phi_{-}(X)=-T\left(\phi(X)+\sum \phi_{-}\left(X^{\prime}\right) \phi\left(X^{\prime \prime}\right)\right) \\
\phi_{+}(X)=\phi(X)+\phi_{-}(X)+\sum \phi_{-}\left(X^{\prime}\right) \phi\left(X^{\prime \prime}\right)
\end{gathered}
$$

for $\Delta(X)=X \otimes 1+1 \otimes X+\sum X^{\prime} \otimes X^{\prime \prime}$
$\overline{\mathrm{BPHZ}}=$ Birkhoff Take $G=\widetilde{\mathrm{Difg}}(\mathcal{T})$ (continuous version)

Data $U^{z}\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right)$: homomorphism $U: \tilde{\mathcal{H}}(\mathcal{T}) \rightarrow K$

$$
\left(\ulcorner, \sigma) \mapsto h(z)=\left\langle\sigma, U^{z}\left(\Gamma\left(p_{1}, \ldots, p_{N}\right)\right)\right\rangle\right.
$$

Laurent series
$\phi=U, \phi_{-}=C, \phi_{+}=R$: same as BPHZ!

Dependence on mass scale: $\gamma_{\mu}(z)$

$$
\gamma_{\mu}(z)=\gamma_{\mu^{-}}(z)^{-1} \gamma_{\mu^{+}}(z)
$$

Grading by loop number:
$Y(X)=n X, \forall X \in \mathcal{H}_{n}^{\vee}(\mathcal{T})$

$$
\theta_{t} \in \operatorname{Aut}(\operatorname{Difg}(\mathcal{T})),\left.\quad \frac{d}{d t} \theta_{t}\right|_{t=0}=Y
$$

Main properties of scale dependence:

$$
(*)=\left\{\begin{array}{l}
\gamma_{e^{t} \mu}(z)=\theta_{t z}\left(\gamma_{\mu}(z)\right) \\
\frac{\partial}{\partial \mu} \gamma_{\mu^{-}}(z)=0 .
\end{array}\right.
$$

Renormalization group:

$$
F_{t}=\lim _{z \rightarrow 0} \gamma_{-}(z) \theta_{t z}\left(\gamma_{-}(z)^{-1}\right)
$$

action $\gamma_{e^{\prime} \mu^{+}}(0)=F_{t} \gamma_{\mu^{+}}(0)$
Beta function: $\beta=\left.\frac{d}{d t} F_{t}\right|_{t=0} \in \mathfrak{g}$
$\beta:=Y \operatorname{Res} \gamma, \quad \operatorname{Res}_{z=0} \gamma:=-\left(\frac{\partial}{\partial u} \gamma_{-}\left(\frac{1}{u}\right)\right)_{u=0}$

Connes-Kreimer theory in a nutshell:
$G=$ pro-unipotent affine group scheme $(=\operatorname{Difg}(\mathcal{T}))$
$L(G(\mathbb{C}), \mu)=$ loops $\gamma_{\mu}(z)$ with $(*)$ properties

Divergences (counterterms) $\gamma_{-}(z)$

Renormalized values γ_{μ} (0)
\Rightarrow Understand data $L(G(\mathbb{C}), \mu)$ and $\gamma_{-}(z)$

Renormalization and the Riemann-Hilbert correspondence (AC-MM)

Tannakian formalism

Abelian category \mathcal{C} :

- $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ abelian groups ($\exists 0 \in \operatorname{Obj}(\mathcal{C})$ with $\operatorname{Hom}_{\mathcal{C}}(0,0)$ trivial group)
- There are products and coproducts: $\forall X, X^{\prime} \in \operatorname{Obj}(\mathcal{C})$, $\exists Y \in \operatorname{Obj}(\mathcal{C})$ and

$$
X \xrightarrow{f_{1}} Y \stackrel{f_{2}}{\rightleftharpoons} X^{\prime} \quad \text { and } \quad X \stackrel{h_{1}}{\leftarrow} Y \xrightarrow{h_{2}} X^{\prime},
$$

with $h_{1} f_{1}=1_{X}, h_{2} f_{2}=1_{X^{\prime}}, h_{2} f_{1}=0=h_{1} f_{2}$, $f_{1} h_{2}+f_{2} h_{1}=1_{Y}$.

- There are Kernels and Cokernels: $\forall X, Y \in \operatorname{Obj}(\mathcal{C})$, $\forall f: X \rightarrow Y$ can decompose $j \circ i=f$,

$$
K \xrightarrow{k} X \xrightarrow{i} I \xrightarrow{j} Y \xrightarrow{c} K^{\prime},
$$

with $K=\operatorname{Ker}(f), K^{\prime}=\operatorname{Coker}(f)$, and $I=\operatorname{Ker}(k)=$ Coker (c).
k-linear category $\mathcal{C}: \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a k-vector space $\forall X, Y \in \operatorname{Obj}(\mathcal{C})$.

Tensor category $\mathcal{C}: k$-linear with $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$

- $\exists 1 \in \operatorname{Obj}(\mathcal{C})$ with $\operatorname{End}(1) \cong k$ and functorial isomorphisms

$$
\begin{gathered}
a_{X, Y, Z}: X \otimes(Y \otimes Z) \rightarrow(X \otimes Y) \otimes Z \\
c_{X, Y}: X \otimes Y \rightarrow Y \otimes X \\
l_{X}: X \otimes 1 \rightarrow X \quad \text { and } \quad r_{X}: 1 \otimes X \rightarrow X .
\end{gathered}
$$

- Commutativity: $c_{Y, X}=c_{X, Y}^{-1}$

Rigid tensor category \mathcal{C} : tensor with duality $\vee: \mathcal{C} \rightarrow \mathcal{C}^{o p}$

- $\forall X \in \operatorname{Obj}(\mathcal{C})$ the functor $-\otimes X^{\vee}$ is left adjoint to $-\otimes X$ and the functor $X^{\vee} \otimes$ - is right adjoint to $X \otimes-$.
- Evaluation morphism $\epsilon: X \otimes X^{\vee} \rightarrow 1$ and unit morphism $\delta: 1 \rightarrow X^{\vee} \otimes X$ with $(\epsilon \otimes 1) \circ(1 \otimes \delta)=1_{X}$ and $(1 \otimes \epsilon) \circ(\delta \otimes 1)=1_{X^{\vee}}$.

Functors $\omega: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$
faithful: $\omega: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(\omega(X), \omega(Y))$ injection additive: $\omega: \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(\omega(X), \omega(Y)) k$-linear exact: $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ exact $\Rightarrow 0 \rightarrow \omega(X) \rightarrow$ $\omega(Y) \rightarrow \omega(Z) \rightarrow 0$ exact
tensor: functorial isomorphisms $\tau_{1}: \omega(1) \rightarrow 1$ and $\tau_{X, Y}$: $\omega(X \otimes Y) \rightarrow \omega(X) \otimes \omega(Y)$

Fiber functor, Tannakian categories \mathcal{C} be a k linear rigid tensor category: fiber functor ω : $\mathcal{C} \rightarrow$ Vect $_{K}$ exact faithful tensor functor, K extension of k.
$\Rightarrow \mathcal{C}$ Tannakian (=has fiber functor), neutral Tannakian ($K=k$)
(Grothendieck, Savendra-Rivano, Deligne, ...)
\mathcal{C} neutral Tannakian $\Rightarrow \mathcal{C} \cong \operatorname{Rep}_{G}$ $G=\underline{\text { Aut }}^{\otimes}(\omega)$ affine group scheme $\operatorname{Gal}(\mathcal{C})$

Example: $\operatorname{Rep}_{\mathbb{Z}} \cong \operatorname{Rep}_{G}$ affine group scheme $G=\overline{\mathbb{Z}}$ dual to $\mathcal{H}=\mathbb{C}[e(q), t]$, for $q \in \mathbb{C} / \mathbb{Z}$, with relations $e\left(q_{1}+\right.$ $\left.q_{2}\right)=e\left(q_{1}\right) e\left(q_{2}\right)$ and coproduct $\Delta(e(q))=e(q) \otimes e(q)$ and $\Delta(t)=t \otimes 1+1 \otimes t$.

Riemann-Hilbert correspondence

Tannakian formalism applied to categories of differential systems (differential Galois theory)
$(K, \delta)=$ differential field
e.g. $K=\mathbb{C}\{z\}\left[z^{-1}\right]$ or $K=\mathbb{C}((z))$

Category \mathcal{D}_{K} of differential modules over K : Objects (V, ∇), vector space $V \in \operatorname{Obj}\left(\mathcal{V}_{K}\right)$ and connection
\mathbb{C}-linear map $\nabla: V \rightarrow V$ with $\nabla(f v)=\delta(f) v+f \nabla(v)$, for all $f \in K$ and all $v \in V$
Morphisms Hom $\left(\left(V_{1}, \nabla_{1}\right),\left(V_{2}, \nabla_{2}\right)\right) K$-linear maps $T: V_{1} \rightarrow V_{2}$ with $\nabla_{2} \circ T=T \circ \nabla_{1}$
$\left(V_{1}, \nabla_{1}\right) \otimes\left(V_{2}, \nabla_{2}\right)=\left(V_{1} \otimes V_{2}, \nabla_{1} \otimes 1+1 \otimes \nabla_{2}\right)$ and dual $(V, \nabla)^{\vee}$

Fiber functor $\omega(V, \nabla)=\operatorname{Ker} \nabla$. Neutral Tannakian category $\mathcal{D}_{K} \cong \operatorname{Rep}_{G}$

For $K=\mathbb{C}((z))$, affine group scheme $G=\mathcal{T} \rtimes \overline{\mathbb{Z}}$ of Ramis exponential torus $\mathcal{T}=\operatorname{Hom}\left(\mathcal{B}, \mathbb{C}^{*}\right)$ with $\mathcal{B}=\cup_{\nu \in \mathbb{N}} \mathcal{B} \nu$, for $\mathcal{B}_{\nu}=z^{-1 / \nu} \mathbb{C}\left[z^{-1 / \nu}\right]$.

For $K=\mathbb{C}\{z\}\left[z^{-1}\right]$ extra generators: Stokes phenomena (resummation of divergent series in sectors)

Example: ODE $\delta(u)=A u$, subcategory of $\mathcal{D}_{K} \Rightarrow$ differential Galois group (Aut of PicardVessiot ring)

Example: $\operatorname{ODE} \delta(u)=A u$ regular-singular iff $\exists T$ invertible matrix coeff. in $K=\mathbb{C}((z))$, with $T^{-1} A T-T^{-1} \delta(T)=B / z, B$ coeff. in $\mathbb{C}[[z]]$. Tannakian subcategory $\mathcal{D}_{K}^{r s}$ of \mathcal{D}_{K} gen. by regular-singular equations $\mathcal{D}_{K}^{r s} \cong \operatorname{Rep}_{\overline{\mathbb{Z}}}$ (monodromy $\left.\mathbb{Z}=\pi_{1}\left(\Delta^{*}\right)\right)$

Claim: There is a Riemann-Hilbert correspondence associated to the data of perturbative renormalization

- Not just over the disk Δ but a \mathbb{C}^{*}-fibration B over Δ, so we exit from the category \mathcal{D}_{K}.
- Equivalence relation on connections by gauge transformations regular at $z=0$.
- Class of connections (equisingular connections) not regular-singular: setting of "irregular" RiemannHilbert correspondence with arbitrary degree of irregularity, as for \mathcal{D}_{K}.
- The Galois group same in formal and non-formal case (no Stokes phenomena).

Data of CK revisited

$G=$ pro-unipotent affine group scheme $(=\operatorname{Difg}(\mathcal{T}))$ $L(G(\mathbb{C}), \mu)=$ loops $\gamma_{\mu}(z)$ with

$$
(*)=\left\{\begin{array}{l}
\gamma_{e^{t} \mu}(z)=\theta_{t z}\left(\gamma_{\mu}(z)\right) \\
\frac{\partial}{\partial \mu} \gamma_{\mu^{-}}(z)=0 .
\end{array}\right.
$$

Divergences (counterterms) $\gamma_{-}(z)$

First step (CK):

$$
\gamma_{-}(z)^{-1}=1+\sum_{n=1}^{\infty} \frac{d_{n}}{z^{n}}
$$

coefficients $d_{n} \in \mathcal{H}^{\vee}$

$$
Y d_{n+1}=d_{n} \beta \quad \forall n \geq 1, \quad \text { and } \quad Y d_{1}=\beta
$$

\Rightarrow Can write as iterated integrals

Time ordered exponential

$\mathfrak{g}(\mathbb{C})$-valued smooth $\alpha(t), t \in[a, b] \subset \mathbb{R}$
$\mathrm{T} e^{\int_{a}^{b} \alpha(t) d t}:=1+\sum_{1}^{\infty} \int_{a \leq s_{1} \leq \cdots \leq s_{n} \leq b} \alpha\left(s_{1}\right) \cdots \alpha\left(s_{n}\right) d s_{1} \cdots d s_{n}$
product in \mathcal{H}^{\vee}, with $1 \in \mathcal{H}^{\vee}$ counit ε of \mathcal{H}

- Paired with $X \in \mathcal{H}$ the sum is finite.
- Defines an element of $G(\mathbb{C})$.
- Value $g(b)$ of unique solution $g(t) \in G(\mathbb{C})$ with $g(a)=$ 1 of

$$
d g(t)=g(t) \alpha(t) d t
$$

- Multiplicative over sum of paths:

$$
\mathbf{T} e^{\int_{a}^{c} \alpha(t) d t}=\mathbf{T} e^{\int_{a}^{b} \alpha(t) d t} \mathbf{T} e^{\int_{b}^{c} \alpha(t) d t}
$$

- $\gamma_{\mu}(z) \in L(G(\mathbb{C}), \mu)$, then

$$
\gamma_{-}(z)=\top e^{-\frac{1}{z} \int_{0}^{\infty} \theta_{-t}(\beta) d t}
$$

by $\gamma_{-}(z)^{-1}=1+\sum_{n=1}^{\infty} \frac{d_{n}}{z^{n}}$ with

$$
d_{n}=\int_{s_{1} \geq s_{2} \geq \cdots \geq s_{n} \geq 0} \theta_{-s_{1}}(\beta) \theta_{-s_{2}}(\beta) \ldots \theta_{-s_{n}}(\beta) d s_{1} \cdots d s_{n}
$$

- $\gamma_{\mu}(z) \in L(G(\mathbb{C}), \mu)$, then

$$
\gamma_{\mu}(z)=\text { Т } e^{-\frac{1}{z} \int_{\infty}^{-z \log \mu} \theta_{-t}(\beta) d t} \theta_{z \log \mu}\left(\gamma_{\mathrm{reg}}(z)\right)
$$

for a unique $\beta \in \mathfrak{g}(\mathbb{C})$ (with $\gamma_{\mathrm{reg}}(z)$ a loop regular at $z=0$)

The Birkhoff factorization

$$
\begin{gathered}
\gamma_{\mu^{+}}(z)=\mathrm{T} e^{-\frac{1}{z} \int_{0}^{-z \log \mu} \theta_{-t}(\beta) d t} \theta_{z \log \mu}\left(\gamma_{\operatorname{reg}}(z)\right) \\
\gamma_{-}(z)=\mathrm{T} e^{-\frac{1}{z} \int_{0}^{\infty} \theta_{-t}(\beta) d t}
\end{gathered}
$$

Conversely, given $\beta \in \mathfrak{g}(\mathbb{C})$ and $\gamma_{\text {reg }}(z)$ regular $\Rightarrow \gamma_{\mu} \in L(G(\mathbb{C}), \mu)$
$\varpi=\alpha(s, t) d s+\eta(s, t) d t$ flat $\mathfrak{g}(\mathbb{C})$-valued connection

$$
\partial_{s} \eta-\partial_{t} \alpha+[\alpha, \eta]=0
$$

$\mathrm{T} e \int_{0}^{1} \gamma^{*} \varpi$ depends on homotopy class of path
Differential field (K, δ) with $\operatorname{Ker} \delta=\mathbb{C}$ log derivative on $G(K)$

$$
\begin{aligned}
& D(f):=f^{-1} f^{\prime} \in \mathfrak{g}(K) \\
& f^{\prime}(X)=\delta(f(X)), \quad \forall X \in \mathcal{H}
\end{aligned}
$$

Differential equation $D(f)=\varpi$
Existence of solutions: trivial monodromy
$G={\underset{\varliminf}{i m}}_{i} G_{i}$, monodromy

$$
M_{i}(\varpi)(\gamma):=\mathrm{T} e^{\int_{0}^{1} \gamma^{*} \varpi}
$$

punctured disk Δ_{i}^{*} of positive radius

$$
M(\varpi)=1
$$

well defined on G
$(K, \delta), d: K \rightarrow \Omega^{1}, d f=\delta(f) d z$

$$
\begin{gathered}
D: G(K) \rightarrow \Omega^{1}(\mathfrak{g}), \quad D f=f^{-1} d f \\
D(f h)=D h+h^{-1} D f h
\end{gathered}
$$

Two connections ϖ and ϖ^{\prime} are equivalent iff

$$
\varpi^{\prime}=D h+h^{-1} \varpi h, \quad \text { with } \quad h \in G(\mathcal{O})
$$

Equivalent \Leftrightarrow same negative part of Birkhoff: $D\left(f^{\varpi}\right)=\varpi$ and $D\left(f^{\varpi^{\prime}}\right)=\varpi^{\prime}$ solutions in $G(K)$

$$
\varpi \sim \varpi^{\prime} \Longleftrightarrow f_{-}^{\varpi}=f_{-}^{\varpi^{\prime}}
$$

Flat equisingular connections: accounts for μ-dependence Principal $\mathbb{G}_{m}(\mathbb{C})=\mathbb{C}^{*}$-bundle $\mathbb{G}_{m} \rightarrow B \xrightarrow{\pi} \Delta$ over infinitesimal disk Δ.
$P=B \times G, P^{*}=\left.P\right|_{B^{*}}, B^{*}=\left.B\right|_{\Delta^{*}}$
Action of \mathbb{G}_{m} by $b \mapsto u(b), \forall u \in \mathbb{G}_{m}(\mathbb{C})=\mathbb{C}^{*}$ and action of \mathbb{G}_{m} on G dual to graded Hopf algebra $\mathcal{H}=\oplus_{n \geq 0} \mathcal{H}_{n}$

$$
u(b, g)=\left(u(b), u^{Y}(g)\right), \quad \forall u \in \mathbb{G}_{m}
$$

Flat connection ϖ on P^{*} is equisingular iff

- ϖ is \mathbb{G}_{m}-invariant

$$
\begin{aligned}
\varpi(z, u(v))=u^{Y}(\varpi(z, v)), \quad \forall u \in \mathbb{G}_{m} \\
v=(\sigma(z), g), \text { for } z \in \Delta \text { and } g \in G
\end{aligned}
$$

- all the restrictions are equivalent

$$
\sigma_{1}^{*}(\varpi) \sim \sigma_{2}^{*}(\varpi)
$$

σ_{1} and σ_{2} are two sections of B as above, with $\sigma_{1}(0)=$ $y_{0}=\sigma_{2}(0)$

The connections $\sigma_{1}^{*}(\varpi)$ and $\sigma_{2}^{*}(\varpi)$ have the same type of singularity at the origin $z=0$

Equivalence: ϖ and ϖ^{\prime} on P^{*} equivalent iff

$$
\varpi^{\prime}=D h+h^{-1} \varpi h,
$$

with h a G-valued \mathbb{G}_{m}-invariant map regular in B.

Thm: Bijective correspondence between equivalence classes of flat equisingular G-connections ϖ on P^{*} and elements $\beta \in \mathfrak{g}(\mathbb{C})$ $\varpi \sim D \gamma$ with

$$
\gamma(z, v)=\mathrm{T} e^{-\frac{1}{z} \int_{0}^{v} u^{Y}(\beta) \frac{d u}{u}}
$$

(integral on the path $u=t v, t \in[0,1]$)
Correspondence independent of choice of section $\sigma: \Delta \rightarrow B$ with $\sigma(0)=y_{0}$.

Key step: vanishing of monodromies around Δ^{*} and \mathbb{C}^{*}

Category of equivariant flat vector bundles

$V=\oplus_{n \in \mathbb{Z}} V_{n}$ fin dim \mathbb{Z}-graded vector space; trivial vector bundle $E=B \times V$ filtered by

$$
W^{-n}(V)=\oplus_{m \geq n} V_{m}
$$

\mathbb{G}_{m} action induced by grading.
W-connection on a filtered vector bundle (E, W) over B :

$$
\begin{gathered}
W^{-n-1}(E) \subset W^{-n}(E), \\
G r_{n}^{W}(E)=W^{-n}(E) / W^{-n-1}(E)
\end{gathered}
$$

Connection ∇ on $E^{*}=\left.E\right|_{B^{*}}$, compatible with filtration: restricts to $W^{-n}\left(E^{*}\right)$ and induces trivial connection on $G r^{W}(E)$

Two W-connections ∇_{i} on E^{*} are W-equivalent iff $\exists T \in$ Aut (E), preserving filtration, inducing identity on $G r^{W}(E)$, with $T \circ \nabla_{1}=\nabla_{2} \circ T$

A W-connection ∇ on E is equisingular if it is $\mathbb{G}_{m^{-}}$ invariant and all restrictions to sections $\sigma: \Delta \rightarrow B$ with $\sigma(0)=y_{0}$ are W-equivalent.

Category \mathcal{E} equisingular flat vector bundles
$\operatorname{Obj}(\mathcal{E})$ pairs $\Theta=(V,[\nabla])$
$V=$ fin $\operatorname{dim} \mathbb{Z}$-graded vector space, $[\nabla]=W$-equivalence class of flat equisingular W-connection ∇ on $E^{*}=B^{*} \times V$

Morphisms: $T \in \operatorname{Hom}_{\mathcal{E}}\left(\Theta, \Theta^{\prime}\right)$ linear map T : $V \rightarrow V^{\prime}$
compatible with the grading and on $\left(E^{\prime} \oplus E\right)^{*}$

$$
\begin{gathered}
\nabla_{1}=\left(\begin{array}{cc}
\nabla^{\prime} & 0 \\
0 & \nabla
\end{array}\right) \\
\nabla_{2}=\left(\begin{array}{cc}
\nabla^{\prime} & T \nabla-\nabla^{\prime} T \\
0 & \nabla
\end{array}\right)
\end{gathered}
$$

are W-equivalent on B
(Notice: category of filtered vector spaces, with morphisms linear maps respecting filtration, is not an abelian category)

For $G=\operatorname{Difg}(\mathcal{T}), \varpi=$ flat equisingular connection on $P^{*}=B^{*} \times G$, fin dim lin rep $\xi: G \rightarrow \mathrm{GL}(V) \Rightarrow \Theta \in$ $\operatorname{Obj}(\mathcal{E})$. Equivalent ϖ give same Θ.

THM The category \mathcal{E} is a neutral Tannakian category (over \mathbb{C}, over \mathbb{Q})
with fiber functor $\omega(\Theta)=V$

$$
\mathcal{E} \cong \operatorname{Rep}_{\mathbb{U} *}
$$

$\mathbb{U}^{*}=\mathbb{U} \rtimes \mathbb{G}_{m}$ affine group scheme, $\mathbb{U}=$ prounipotent dual to Hopf algebra

$$
\mathcal{H}_{\mathbb{U}}=U\left(\mathcal{L}_{\mathbb{U}}\right)^{\vee}
$$

$\mathcal{L}_{\mathbb{U}}=\mathcal{F}(1,2,3, \cdots)$ • denote the free graded Lie algebra generated by elements e_{-n} of degree n, for each $n>0$

Renormalization group

$$
e=\sum_{1}^{\infty} e_{-n}
$$

determines $\mathbf{r g}: \mathbb{G}_{a} \rightarrow \mathbb{U}$

Universal singular frame

$$
\gamma_{\mathbb{U}}(z, v)=T e^{-\frac{1}{z} \int_{0}^{v} u^{Y}(e) \frac{d u}{u}}
$$

Universal source of counterterms

Coefficients:
$\gamma_{\mathbb{U}}(z, v)=\sum_{n \geq 0} \sum_{k_{j}>0} \frac{e_{-k_{1}} e_{-k_{2}} \cdots e_{-k_{n}}}{k_{1}\left(k_{1}+k_{2}\right) \cdots\left(k_{1}+k_{2}+\cdots+k_{n}\right)} v^{\sum k_{j}} z^{-n}$
(local index formula Connes-Moscovici)

Key step in proof of THM: for $\Theta=[V, \nabla]$ be an object of \mathcal{E}, there exists a unique representation $\rho=\rho_{\Theta}$ of \mathbb{U}^{*} in V, such that

$$
D \rho\left(\gamma_{\mathbb{U}}\right) \simeq \nabla
$$

universal singular frame $\gamma_{\mathbb{U}}$
Note: $\mathbb{Q}(n) \in \operatorname{Obj}(\mathcal{E})$ with V 1-dim over \mathbb{Q} in deg n, ∇ trivial connection on assoc bundle E over B. Fiber functor:

$$
\omega_{n}(\Theta)=\operatorname{Hom}\left(\mathbb{Q}(n), \operatorname{Gr}_{-n}^{W}(\Theta)\right)
$$

For $G=\operatorname{Difg}(\mathcal{T})$, canonical bijection: equivalence classes of flat equisingular connections on P^{*} and graded representations

$$
\rho: \mathbb{U}^{*} \rightarrow G^{*}=G \rtimes \mathbb{G}_{m}
$$

Using the beta function:

$$
\beta=\sum_{1}^{\infty} \beta_{n}
$$

$Y\left(\beta_{n}\right)=n \beta_{n}$, representation $\mathbb{U} \rightarrow G$ compatible with \mathbb{G}_{m} :

$$
e_{-n} \mapsto \beta_{n}
$$

Action on physical constants through Difg \rightarrow Diff map:

$$
\mathbb{U} \rightarrow \operatorname{Difg}(\mathcal{T}) \rightarrow \operatorname{Diff}
$$

Motives

Cohomologies for alg varieties:
de Rham $H_{d R}^{\cdot}(X)=\mathbb{H}^{\cdot}\left(X, \Omega_{X}\right)$
Betti $H_{B}^{\prime}(X, \mathbb{Q})$ (singular homology) étale $H_{e t}^{b}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$ for $\ell \neq$ char k and \bar{X} over \bar{k}.

Isomorphisms: period isomorphism

$$
H_{d R}^{i}(X, k) \otimes_{\sigma} \mathbb{C} \cong H_{B}^{i}(X, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

and comparison isom

$$
H_{B}^{i}(X, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell} \cong H_{e t}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)
$$

Universal cohomology theory? Motives

Linearization of the category of algebraic varieties (adding morphisms; analog with Morita theory for algebras)

$$
X \mapsto h(X)=\oplus_{i} h^{i}(X)
$$

if $h^{j}=0, \forall j \neq i$, pure of weight i
Pure motives "direct summands of algebraic varieties"

Pure Motives

Objects $(X, p), p=p^{2} \in \operatorname{End}(X), X$ smooth projective

Morphisms $\operatorname{Hom}(X, Y)$ correspondences: alg cycles in $X \times Y$, codim $=\operatorname{dim} X$. Equivalences (numerical, rational,...) $\operatorname{Hom}((X, p),(Y, q))=q \operatorname{Hom}(X, Y) p$

> Tate motives $\mathbb{Q}(1)$ inverse of $h^{2}\left(\mathbb{P}^{1}\right), \mathbb{Q}(0)=$ $h(p t), \mathbb{Q}(n+m)=\mathbb{Q}(n) \otimes \mathbb{Q}(m)$
(Grothendieck standard conjectures) Jannsen: numerical equivalence \Rightarrow neutral Tannakian category (fiber functor Betti cohomology) \Rightarrow $R^{R e p}{ }_{G}$ affine group scheme G

Tate motives $G=\mathbb{G}_{m}$.

Mixed motives

Extend "universal cohomology theory" to X not smooth projective: technically much more complicated, via constructions of derived category (Voevodsky, Levine, Hanamura)

Mixed Tate motives
(filtered: graded pieces Tate motives)

Full subcategory of Tate motives (over a field k or a scheme S) $\mathcal{M} \mathcal{T}_{\text {mix }}(S)$ (Deligne-Goncharov)

Motivic Galois group of $\mathcal{M} \mathcal{T}_{\text {mix }}(k)$ extension $G \rtimes \mathbb{G}_{m}, G$ pro-unipotent, Lie (G) free one generator in each odd degree $n \leq-3$

THM(CM) (non-canonical) isomorphism $U^{*} \sim$ $G_{\mathcal{M}_{T}}(\mathcal{O})$ with motivic Galois group of the scheme S_{4} of 4-cyclotomic integers
$\mathcal{O}=\mathbb{Z}[i][1 / 2]$

