From Noncommutative to Arithmetic Geometry

 Matilde Marcolli2003

Credits:

- C.Consani and M.Marcolli, Noncommutative geometry, dynamics and ∞-adic Arakelov geometry, preprint
- C.Consani and M.Marcolli, Spectral triples from Mumford curves, preprint.
- C.Consani and M.Marcolli, Triplets spectraux en geometrie d'Arakelov, C.R.Acad.Sci. Paris, Ser. I 335 (2002) 779-784.
- Yu.Manin and M.Marcolli, Continued fractions, modular symbols and noncommutative geometry, Selecta Math. 8(3) (2002) 475-520.
- Yu.Manin and M.Marcolli, Holography principle and arithmetic of algebraic curves, Adv.Theor.Math.Phys. Vol.5, N. 3 (2001) 617-650.
- M.Marcolli, Limiting modular symbols and the Lyapunov spectrum, J. Number Theory, Vol. 98 N. 2 (2003) 348-376.

What is a Noncommutative space?

measure theory	von Neumann algebras
topology	C^{*}-algebras
smooth structures	smooth subalgebras
Riemannian geometry	spectral triples

Warning: More rigid structure in the noncommutative case!
C^{*}-algebras: Gel'fand-Naimark correspondence (loc. comp. Hausdorff space \Leftrightarrow Commutative C^{*}-algebra)

$$
X \Leftrightarrow C_{0}(X) \quad \text { Topology }
$$

but for NC tori C^{*}-algebra T_{θ} "like" \mathbb{C} structure, NC elliptic curves

Noncommutativity from quotients

Algebra of functions for a quotient space $X=$ Y / \sim :

- Functions on Y with $f(a)=f(b)$ for $a \sim b$. Poor!
- Functions $f_{a b}$ on the graph of the equivalence relation. Good!

For sufficiently nice quotients: Morita equivalent.

Simplest example: $Y=[0,1] \times\{0,1\}$; equivalence ($x, 0$) \sim $(x, 1)$ for $x \in(0,1)$. First method: constant functions \mathbb{C}; second method:

$$
\left\{f \in C([0,1]) \otimes M_{2}(\mathbb{C}): f(0) \text { and } f(1) \text { diagonal }\right\}
$$

Warning: Different NC spaces from same quotient (Quantization is an art not a functor)

Geometry on NC spaces

Connes, "Geometry from the spectral point of view", Lett.Math.Phys. 34 (1995) 3

Infinitesimal distance element $d s$ on a compact Riemannian spin manifold in terms of Dirac operator $D . \Rightarrow$ Data ($\left.C^{\infty}(X), L^{2}(S), D\right)$ completely determine the Riemannian geometry

Spectral Triples

$\mathcal{A} \rightsquigarrow C^{*}$-algebra (or dense sub-algebra)
$\mathcal{H} \leadsto$ Hilbert space H
$D \rightsquigarrow$ (unbounded) "Dirac operator" on H
With the following conditions:

1. D self-adjoint
2. $\forall \lambda \notin \mathbb{R}:(D-\lambda)^{-1}$ compact
3. $\forall a \in \mathcal{A}$: $[D, a]$ bounded on H

Spectral triples and zeta functions

$(\mathcal{A}, \mathcal{H}, D)$ spectral triple

$$
s, z \in \mathbb{C} \quad \zeta_{a, D}:=\sum_{\lambda} \operatorname{Tr}\left(a, \prod(\lambda,|D|)\right)(s-\lambda)^{-z}
$$

$\Pi(\lambda,|D|)=$ orthog. proj. on the eigsp. $E(\lambda,|D|)$ $a \in \widetilde{\mathcal{A}}=$ algebra generated by \mathcal{A} and $[D, \mathcal{A}]$

Have: Mellin transform

$$
\begin{aligned}
\zeta_{a, D}(s, z) & =\frac{1}{\Gamma(z)} \int_{0}^{+\infty} \theta_{a, D, s}(t) t^{z-1} d t \\
(*) \quad \theta_{a, D, s}(t) & :=\sum_{\lambda} \operatorname{Tr}\left(a, \prod(\lambda,|D|)\right) e^{(s-\lambda) t}
\end{aligned}
$$

Under suitable hypothesis on asymptotic expansion of ($*$):
$\zeta_{a, D}(s, z)$ admits a unique analytic continuation and there is an associated Regularized determinant (Ray-Singer)

$$
\operatorname{det}_{\infty, a, D}(s):=\exp \left(-\frac{d}{d z} \zeta_{a, D}(s, z)_{\mid z=0}\right)
$$

Arithmetic (Compactifications)

- Moduli spaces: NC spaces as "boundaries"
- Infinite primes: archimedean fibers as NC spaces

NC Geom and compactifications (philosophy):
(1) NC tori in M-theory (Connes-Douglas-Schwarz)
(2) degenerations of CY manifolds (Kontsevich-Soibelman);
(3) Foliations and boundary of Teichmüller spaces (Thurston);
(4) Instantons (Nekrasov-Schwarz);

Modular curves (Simplest significant example of moduli spaces)
$G=$ finite index subgroup of $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ or $\operatorname{PGL}(2, \mathbb{Z}) ; \mathbb{P}:=\Gamma / G$ cosets $; \mathbb{H}^{2}=2$-dim real hyperbolic plane

$$
X_{G}:=G \backslash \mathbb{H}^{2} \cong \Gamma \backslash\left(\mathbb{H}^{2} \times \mathbb{P}\right)
$$

Compactification by cusps

$$
G \backslash \mathbb{P}^{1}(\mathbb{Q}) \cong \Gamma \backslash\left(\mathbb{P}^{1}(\mathbb{Q}) \times \mathbb{P}\right)
$$

If count irrational points $\mathbb{P}^{1}(\mathbb{R})$ as "part of boundary" \Rightarrow NC spaces

NC spaces associated to X_{G} :

- $\Gamma \backslash\left(\mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}\right) \Rightarrow C^{*}$-algebra

$$
C\left(\mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}\right) \rtimes \Gamma
$$

Modular interpretation.
Precise: $\left\ulcorner\backslash \mathbb{P}^{1}(\mathbb{R})=\right.$ Morita equivalence classes of NC tori T_{θ}

Heuristic: degeneration of elliptic curves
Jacobi uniformization: $q \in \mathbb{C}^{*},|q|<1(q=$ $\exp (2 \pi i \tau), \operatorname{Im}(\tau)>0)$

$$
E_{q}=\mathbb{C}^{*} / q^{\mathbb{Z}}
$$

fundamental domain: annulus radii 1 and q, identification via scaling and rotation

As $q \rightarrow \exp (2 \pi i \theta) \in S^{1}, \theta \in \mathbb{R} \backslash \mathbb{Q}$,
$E_{q} \longrightarrow \mathrm{NC}$ torus T_{θ}

Same classical quotient!

$\operatorname{PGL}(2, \mathbb{Z})$ orbits in $\mathbb{P}^{1}(\mathbb{R}) \simeq$ orbits of $[0,1]$ under $T x=$ $1 / x-[1 / x]$ of continued fraction expansion

$$
x \sim_{T} y \Leftrightarrow \exists n, m: T^{n} x=T^{m} y
$$

- Action of shift $T:[0,1] \times \mathbb{P} \rightarrow[0,1] \times \mathbb{P}$

$$
T(x, s)=\left(\frac{1}{x}-\left[\frac{1}{x}\right],\left(\begin{array}{cc}
-[1 / x] & 1 \\
1 & 0
\end{array}\right) \cdot s\right)
$$

Groupoid
$\mathcal{G}([0,1] \times \mathbb{P}, T)=\left\{((x, s), m-n,(y, t)): T^{m}(x, s)=T^{n}(y, t)\right\}$ $\mathcal{G}^{0}=\{((x, s), 0,(x, s))\}$
$\Rightarrow C^{*}$-algebra $C^{*}(\mathcal{G}([0,1] \times \mathbb{P}, T))$, encodes properties of the dynamics of T, Cuntz-like algebras (Renault)
\Rightarrow limiting behavior (for arithmetic invariants defined on modular curves) when $\tau \rightarrow \theta \in \mathbb{R} \backslash \mathbb{Q}$ (e.g. limiting modular symbols)

Recover modular curves from NC spaces
Notation: $\tilde{I}=\Gamma \cdot i, \widetilde{R}=\Gamma \cdot \rho, \rho=e^{\pi i / 3}, I=G \backslash \tilde{I}, \quad R=G \backslash \widetilde{R} ; \sigma, \tau$ gen $\operatorname{PSL}(2, \mathbb{Z})=\mathbb{Z} / 2 * \mathbb{Z} / 3, \sigma^{2}=1$ and $\tau^{3}=1 ; \mathbb{P}_{I}=\langle\sigma\rangle \backslash \mathbb{P}$ and $\mathbb{P}_{R}=\langle\tau\rangle \backslash \mathbb{P}$

Modular complex computing $H_{1}\left(X_{G}\right)$

Relative homology sequence: $\left(H_{A}^{B}:=H_{1}\left(\overline{X_{G}} \backslash A, B ; \mathbb{Z}\right)\right)$

$$
\begin{aligned}
0 & \rightarrow H_{\text {cusps }} \rightarrow H_{\text {cusps }}^{R \cup I} \xrightarrow{\left(\tilde{\beta}_{R}, \tilde{\beta}_{I}\right)} H_{0}(R) \oplus H_{0}(I) \rightarrow \mathbb{Z} \rightarrow 0, \\
H_{0}(I) & \left.\cong \mathbb{Z}\left[\mathbb{P}_{I}\right], H_{0}(R) \cong \mathbb{Z}_{\mathbb{P}_{R}}\right], H_{\text {cusps }}^{R \cup I}=\mathbb{Z}[\mathbb{P}]: \\
0 & \rightarrow H_{\text {cusps }} \rightarrow \mathbb{Z}[\mathbb{P}] \rightarrow \mathbb{Z}\left[\mathbb{P}_{R}\right] \oplus \mathbb{Z}\left[\mathbb{P}_{I}\right] \rightarrow \mathbb{Z} \rightarrow 0
\end{aligned}
$$

Pimsner-Voiculescu exact sequence for group
Γ acting on a tree ($\left.T^{1} \simeq \Gamma, T^{0} \simeq \Gamma /\langle\sigma\rangle \cup \Gamma /\langle\tau\rangle\right)$
$X:=\mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}, \Gamma_{\sigma}=\mathbb{Z} / 2=\langle\sigma\rangle, \Gamma_{\tau}=\mathbb{Z} / 3=\langle\tau\rangle:$
$K_{0}(C(X)) \xrightarrow{\alpha} K_{0}\left(C(X) \rtimes \Gamma_{\sigma}\right) \oplus K_{0}\left(C(X) \rtimes \Gamma_{\tau}\right) \xrightarrow{\tilde{\alpha}} K_{0}(C(X) \rtimes \Gamma)$
$K_{1}(C(X) \rtimes \Gamma) \underset{\widetilde{\beta}}{\underset{\sim}{~}} K_{1}\left(C(X) \rtimes \Gamma_{\sigma}\right) \oplus K_{1}\left(C(X) \rtimes \Gamma_{\tau}\right) \underset{\beta}{\leftarrow} K_{1}(C(X))$

Can identify $K_{i}(C(X))=\mathbb{Z}[\mathbb{P}], K_{i}\left(C(X) \rtimes \Gamma_{\sigma}\right)=\mathbb{Z}\left[P_{I}\right]$, $K_{i}\left(C(X) \rtimes \Gamma_{\tau}\right)=\mathbb{Z}\left[\mathbb{P}_{R}\right]$ $0 \rightarrow \operatorname{Ker}(\beta) \rightarrow \mathbb{Z}[\mathbb{P}] \rightarrow \mathbb{Z}\left[P_{I}\right] \oplus \mathbb{Z}\left[P_{R}\right] \rightarrow \operatorname{Im}(\widetilde{\beta}) \rightarrow 0$ canonically isomorphic to

$$
0 \rightarrow H_{\text {cusps }} \rightarrow \mathbb{Z}[\mathbb{P}] \rightarrow \mathbb{Z}\left[\mathbb{P}_{R}\right] \oplus \mathbb{Z}\left[\mathbb{P}_{I}\right] \rightarrow \mathbb{Z} \rightarrow 0
$$

(Similar for K_{0} with extra torsion)
e.g. Modular symbols $\{g(0), g(i \infty)\}_{G}$ identified with elements in K-theory

Result from dynamics: shift $T:[0,1] \times \mathbb{P} \rightarrow$ $[0,1] \times \mathbb{P}$.

- Modular symbols at irrational points of the "boundary" (localized on closed geodesics = periodic cont fr)
geodesics between cusps \Rightarrow modular symbols $\{\alpha, \beta\}_{G}$ homology classes, lin combin of $\varphi(s)=\{g(0), g(i \infty)\}_{G}$ for $g G=s \in \mathbb{P}$
Limiting modular symbols β irrational

$$
\begin{aligned}
\{\{*, \beta\}\}_{G} & :=\lim _{\tau \rightarrow \infty} \frac{1}{\tau}\{x, y(\tau)\}_{G} \in H_{1}\left(X_{G}, \mathbf{R}\right), \\
& \lim _{n \rightarrow \infty} \frac{1}{\lambda(\beta) n} \sum_{k=1}^{n} \varphi \circ T^{k}(s)
\end{aligned}
$$

($\lambda(\beta)=$ Lyapunov exponent of $T)$
Periodic case:

$$
\{\{*, \beta\}\}_{G}=\frac{\{0, g(0)\}_{G}}{\log \wedge_{g}}=\frac{1}{\lambda(\beta) \ell} \sum_{k=1}^{\ell} \varphi \circ T^{k}(s)
$$

Non-periodic case: vanishing result a.e. T-inv measure (depends on spectral theory of Ruelle transfer operator)

- Modular forms obtained as integral averages on the boundary

Application: Mixmaster Universe

Cosmological models with $S O(3)$ symmetry on the spacelike hypersurfaces and cosmological singularity at $t \rightarrow 0$

$$
d s^{2}=-d t^{2}+a(t) d x^{2}+b(t) d y^{2}+c(t) d z^{2}
$$

Kasner metric $\left(\sum p_{i}=1=\sum_{i} p_{i}^{2}\right)$

$$
d s^{2}=-d t^{2}+t^{2 p_{1}} d x^{2}+t^{2 p_{2}} d y^{2}+t^{2 p_{3}} d z^{2}
$$

Mixmaster universe (p_{i} depend on a parameter u) $p_{1}=-u /\left(1+u+u^{2}\right) p_{2}=(1+u) /\left(1+u+u^{2}\right) p_{3}=u(1+u) /\left(1+u+u^{2}\right)$

Discretization: Eras, cycles: $u_{n+1}=\frac{1}{u_{n}-\left[u_{n}\right]}$ and permutation of space axis

Result: Infinite geodesics on the modular curve $X_{\Gamma_{0}(2)}$ not ending at cusps \Leftrightarrow solutions of the mix-master universe

NC and Arakelov geometry

Arithmetic surfaces $\left(\mathbb{K}=\right.$ number field $O_{\mathbb{K}}=$ ring of integers) Smooth algebraic curve X over $\mathbb{K} \Rightarrow$ model $X_{O_{\mathbb{K}}}$, arithmetic surface over $\operatorname{Spec}\left(O_{\mathbb{K}}\right)$. Closed fiber of $\mathcal{X}_{O_{\mathbb{K}}}$ over a prime $\wp \in O_{\mathbb{K}}: X_{\wp}=$ reduction $\bmod \wp$

Arithmetic infinity: embeddings $\alpha: \mathbb{K} \hookrightarrow \mathbb{C}$ (real or complex conjugate) $=$ archimedean primes \Rightarrow Riemann surfaces $X_{\alpha}: X_{/ \mathbb{R}}$ or $X_{/ \mathbb{C}}$
$\overline{\operatorname{Spec}\left(O_{\mathbb{K}}\right)}$: adding "archimedean places" $\{\alpha\}$
$\overline{\mathcal{X}}$: adding formal real linear combinations of "fibers at $\infty^{\prime \prime}$:

$$
\sum_{\alpha} \lambda_{\alpha} F_{\alpha}, \quad F_{\alpha}=\text { formal symbols }
$$

Hermitian metric $d s_{\alpha}^{2}$ on each Riemann surface X_{α}

Arakelov's philosophy: Hermitian geometry on the $X_{\alpha} \Rightarrow$ geometry of the "fibers at infinity" F_{α}

Green function

compact Riemann surface $X_{\mathbb{C}}$, Green function $g_{\mu, A}$: divisor $A=\sum_{x} m_{x}(x)$, positive real-analytic 2 -form $d \mu$

- Laplace equation: g_{A} satisfies

$$
\partial \bar{\partial} g_{A}=\pi i\left(\operatorname{deg}(A) d \mu-\delta_{A}\right)
$$

with δ_{A} the δ-current $\varphi \mapsto \sum_{x} m_{x} \varphi(x)$.

- Singularities: $z=$ loc coord in neighb of x $\Rightarrow g_{A}-m_{x} \log |z|$ loc real analytic.
- Normalization: g_{A} satisfies $\int_{X} g_{A} d \mu=0$.

Geometric description of the F_{α} ?

Manin, "3-dimensional hyperbolic geometry as ∞-adic Arakelov geometry", Invent.Math. 104 (1991)

- Enrich metric structure on $X_{/ \mathbb{C}}$ with a choice of Schottky uniformization:

Schottky group: $\Gamma \subset \operatorname{PSL}(2, \mathbb{C})$: discrete, free group of rank $g \geq 1$ purely loxodromic elements
$\mathbb{P}^{1}(\mathbb{C}) \supset \Lambda_{\Gamma}=\underline{\text { limit set }}$ of Γ : accumulation pts. of Γ-orbits (Cantor set for $g \geq 2$)
$\Omega_{\Gamma}:=\mathbb{P}^{1}(\mathbb{C}) \backslash \Lambda_{\Gamma}$ connected, non-simply connected Γ-invariant domain of discontinuity of Γ

$$
X_{\mathbb{C}}=\Omega_{\Gamma} / \Gamma
$$

$\mathfrak{X}_{\Gamma}=\mathbb{H}^{3} / \Gamma$ hyperbolic handlebody $X_{\mathbb{C}}=\partial \mathfrak{X}_{\Gamma}$

- Green function on $X_{/ \mathbb{C}}$ with Schottky uniformization:

$$
\begin{aligned}
& \qquad g((a)-(b),(c)-(d))= \\
& \sum_{h \in \Gamma} \log |\langle a, b, h c, h d\rangle|-\sum_{\ell=1}^{g} X_{\ell}(a, b) \sum_{h \in S\left(g_{\ell}\right)} \log \left|\left\langle z^{+}(h), z^{-}(h), c, d\right\rangle\right| \\
& S(\gamma) \text { conjugacy class of } \gamma \text { in } \Gamma \\
& \langle a, b, c, d\rangle=\text { cross ratio }
\end{aligned}
$$

In terms of geodesics in the handlebody \mathfrak{X}_{Γ} :

$$
\begin{gathered}
-\sum_{h \in \Gamma} \operatorname{ordist}(a *\{h c, h d\}, b *\{h c, h d\}) \\
+\sum_{\ell=1}^{g} X_{\ell}(a, b) \sum_{h \in S\left(g_{\ell}\right)} \operatorname{ordist}\left(z^{+}(h) *\{c, d\}, z^{-}(h) *\{c, d\}\right) .
\end{gathered}
$$

Coefficients $X_{\ell}(a, b)$ also in terms of geodesics
Geometric idea: Bounded geodesics in \mathfrak{X}_{Γ} give the dual graph of the fiber F_{α}

Physical interpretation: Holography principle: gravity on bulk space (Euclidean AdS black holes), field theory (boson/fermion) on the boundary

Example: Bañados-Teitelboim-Zanelli black hole

Genus one case: $\mathbb{H}^{3} /\left(q^{\mathbb{Z}}\right)$ m $X_{q}(\mathbb{C})=\mathbb{C}^{*} /\left(q^{\mathbb{Z}}\right)$ (Jacobi uniformization) $q:(z, y) \mapsto(q z,|q| y)$
$q=\exp \left(\frac{2 \pi\left(i\left|r_{-}\right|-r_{+}\right)}{\ell}\right) \quad r_{ \pm}^{2}=\frac{1}{2}\left(M \ell \pm \sqrt{M^{2} \ell^{2}+J}\right)$
mass and angular momentum of black hole, $-1 / \ell^{2}=$ cosmological constant.

Operator product expansion of path integral on the elliptic curve $X_{q}(\mathbb{C})=$ Arakelov Green function (AlvarezGaume,Moore,Vafa Comm.Math.Phys. 1061 (1986))

$$
g(z, 1)=\log \left(|q|^{B_{2}(\log |z| / \log |q|) / 2}|1-z| \prod_{n=1}^{\infty}\left|1-q^{n} z\right|\left|1-q^{n} z^{-1}\right|\right)
$$

in terms of geodesics (gravity on bulk space):
$=-\frac{1}{2} \ell\left(\gamma_{0}\right) B_{2}\left(\frac{\ell_{\gamma_{0}}(\bar{z}, \overline{1})}{l\left(\gamma_{0}\right)}\right)+\sum_{n \geq 0} \ell_{\gamma_{1}}\left(\overline{0}, \bar{z}_{n}\right)+\sum_{n \geq 1} \ell_{\gamma_{1}}\left(\overline{0}, \tilde{z}_{n}\right)$.

$$
\bar{x}=x *\{0, \infty\} ; \bar{z}_{n}=q^{n} z *\{1, \infty\}, \tilde{z}_{n}=q^{n} z^{-1} *\{1, \infty\}
$$

15-2

Arithmetic of the fibers F_{α} (Serre)

$X_{/ \kappa}=$ smooth, proper curve over $\kappa=\mathbb{C}, \mathbb{R}, H_{B}^{*}:=$ $H_{\text {Betti }}^{*}\left(X_{/ \kappa}, \mathbb{C}\right)$, Hodge structure

$$
H_{B}^{*}=\underset{p, q}{\oplus} H^{p, q}
$$

$$
\left.\begin{array}{c}
s \in \mathbb{C}, \quad L_{\kappa}\left(H_{B}^{*}, s\right):= \\
= \begin{cases}\prod_{p, q} \Gamma_{\mathbb{C}}(s-\min (p, q))^{h^{p, q}} & \kappa=\mathbb{C} \\
\prod_{p<q} \Gamma_{\mathbb{C}}(s-p)^{h^{p, q}} \prod_{p} \Gamma_{\mathbb{R}}(s-p)^{p^{p+}} \Gamma_{\mathbb{R}}(s-p+1)^{h^{p-}} & \kappa=\mathbb{R}\end{cases} \\
h^{p, q}:=\operatorname{dim}_{\mathbb{C}} H^{p, q} h^{p, \pm}:=\operatorname{dim}\left(\pm(-1)^{p}\right. \text {-eigenspace) of } \\
\text { de-Rham conj. on } H^{p, p}
\end{array}\right\} \begin{gathered}
\Gamma_{\mathbb{C}}(s):=(2 \pi)^{-s} \Gamma(s), \quad \Gamma_{\mathbb{R}}(s):=2^{-1 / 2} \pi^{-s / 2} \Gamma(s / 2) \\
\text { (Gamma function) }\left\ulcorner(s):=\int_{0}^{+\infty} e^{-t} t^{s} \frac{d t}{t} .\right.
\end{gathered}
$$

Conclusion The archimedean factor is constructed using a cohomological theory on $X_{/ \kappa}$

Complex with monodromy

Consani, "Double complexes and Euler L-factors", Compositio Math. 111 (1998)
$X_{/ \kappa}$ smooth projective algebraic curve over $\kappa=\mathbb{C}, \mathbb{R}$
$\exists\left(K^{\cdot}, d\right)$ double complex of real differentiable Tate-twisted forms on $X_{/ \kappa}$ with $N=$ local monodromy at ∞ (also real Frobenius \bar{F}_{∞} for $\kappa=\mathbb{R}$)

For $\kappa=\mathbb{C}, \mathbb{H}^{*}\left(K^{\cdot}, d\right)^{N=0}$ decomposes as $(p \in$ \mathbb{Z}):

$$
\begin{aligned}
& \left(\mathbb{H}^{0}\right)^{N=0}=\underset{p \leq 0}{\oplus} H^{0}\left(X_{/ \mathbb{C}}, \mathbb{R}(p)\right) \\
& \left(\mathbb{H}^{1}\right)^{N=0}=\underset{p \leq 0}{\oplus} H^{1}\left(X_{/ \mathbb{C}}, \mathbb{R}(p)\right) \\
& \left(\mathbb{H}^{2}\right)^{N=0}=\underset{p \leq 1}{\oplus} H^{2}\left(X_{/ \mathbb{C}}, \mathbb{R}(p)\right)
\end{aligned}
$$

(For $\kappa=\mathbb{R}$: take \bar{F}_{∞}-invariants)

Regularized determinant

linear operator $\phi_{q}: \mathbb{H}^{q}\left(K^{\prime}, d\right)^{N=0} \rightarrow \mathbb{H}^{q}\left(K^{\prime}, d\right)^{N=0}$

$$
\left.\phi_{q}\right|_{g r_{p}^{w} \mathbb{H}^{w}\left(K^{\prime}, d\right)^{N=0}}=\text { multipl. by weight } p
$$

Archimedean factor:

$$
L_{\kappa}\left(H_{B}^{q}, s\right)=\operatorname{det}\left(\left.\frac{1}{2 \pi}\left(s-\phi_{q}\right) \right\rvert\,\left(\mathbb{H}^{q}\right)^{N=0}\right)^{-1}
$$

Recall: $T=$ self-adjoint operator with pure point spectrum ($m_{\lambda}=$ multipl. of λ)

$$
\begin{aligned}
\operatorname{det}_{\infty}(s-T) & :=\exp \left(-\frac{d}{d z} \zeta_{T}(s, z)_{\mid z=0}\right) \\
\zeta_{T}(s, z) & =\sum_{\lambda \in \operatorname{Spec}(T)} m_{\lambda}(s-\lambda)^{-z}
\end{aligned}
$$

cf. Deninger, "On the 「-factors attached to motives", Invent.Math. 104 (1991)
$\mathbb{H}^{*}\left(K^{\prime}, d\right)^{N=0} \subset \mathbb{H}^{*}($ Cone (N) ', $d): \phi$ restriction of a 'weight' operator $\Phi: \mathbb{H}^{*}\left(\operatorname{Cone}(N)^{\prime}, d\right) \rightarrow \mathbb{H}^{*}\left(\operatorname{Cone}(N)^{\prime}, d\right)$

Conclusion: $\mathbb{H}^{*}\left(\operatorname{Cone}(N)^{*}, d\right)$ carries arithmetical information on the closed fiber at ∞

Polarized Hodge-Lefschetz modules

$$
\left(\mathbb{H}^{*}\left(K^{\cdot}, d\right), N, \ell,<\cdot, \cdot>\right)
$$

Loc. monodromy at ∞ : $N(\eta)=(2 \pi \sqrt{-1})^{-1} \eta$
(Tate twist, index shift)
Lefschetz: $\ell(\eta)=(2 \pi \sqrt{-1}) \eta \wedge \omega$
($\omega=$ Kähler form)

$$
\text { Polarization: } \psi: K^{\cdot} \cdot \bullet K^{\cdot \cdot} \rightarrow \mathbb{R}(1)
$$

Equivalently: representation

$$
\begin{gathered}
\sigma: \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R}) \rightarrow \operatorname{Aut}\left(K^{\cdot \cdot}\right) \\
x \in K^{i, j}, \\
\sigma\left\{\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right),\left(\begin{array}{cc}
b & 0 \\
0 & b^{-1}
\end{array}\right)\right\}(x)=a^{i} b^{j} x \\
d \sigma\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), 0\right\}=N, \quad d \sigma\left\{0,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}=l
\end{gathered}
$$

Symm. pos. def. bilinear form:

$$
\langle x, y\rangle=\psi(x, \sigma(w, w) y) \quad w=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Bers simultaneus uniformization

$X_{/ \mathbb{C}}=\Omega_{\Gamma} / \Gamma$ compact, smooth Riemann surface of genus $g \geq 2$ uniformized by
$\Gamma \subset \operatorname{PSL}(2, \mathbb{C})$ Schottky group of rank g

- Quasi-circle (Bowen) 「-invariant Jordan curve $C \subset \mathbb{P}^{1}(\mathbb{C})$
(limit set $\Lambda_{\Gamma} \subset C, \mathbb{P}^{1}(\mathbb{C}) \backslash C=\Omega_{1} \cup \Omega_{2}$)

$$
\hat{C}=\pi_{\Gamma}\left(C \cap \Omega_{\Gamma}\right) \subset X_{\mathbb{C}},
$$

$$
\exists \alpha_{i}: \Omega_{i} \stackrel{\simeq}{\Rightarrow} U_{i}, \quad U_{1} \cup U_{2}=\mathbb{P}^{1}(\mathbb{C}) \backslash \mathbb{P}^{1}(\mathbb{R})
$$

$\alpha_{i}=$ conformal maps, $U_{i} \simeq \mathbb{H}^{2}=$ upper half plane

- $G_{i}:=\left\{\alpha_{i} \gamma \alpha_{i}^{-1}: \gamma \in \tilde{\Gamma}\right\} \simeq \Gamma\left(G_{i} \subset \operatorname{PSL}(2, \mathbb{R})\right.$

Fuchsian Schottky grps.)

- $X_{/ \mathbb{C}}=X_{1} \cup_{\partial X_{1}=\hat{C}=\partial X_{2}} X_{2}, X_{i}=U_{i} / G_{i}$ $X_{i}=$ Riemann surfaces with boundary \hat{C}

For real structure $\hat{C}=X(\mathbb{R})$

Arithmetic spectral triple

From Lefschetz module $\Rightarrow\left(\mathbb{H}^{*}(\operatorname{Cone}(N)),\langle\cdot, \cdot\rangle\right)$ pre-Hilbert space, with action of (right) $\operatorname{SL}(2, \mathbb{R})$ by bounded operators

Input Schottky uniformization: (real) C^{*}-algebra $A_{\tilde{\Gamma}}$ acting on $\mathcal{H}=\left(\mathbb{H}^{*}(\operatorname{Cone}(N)),\langle\cdot, \cdot\rangle\right)$ completion in $B(\mathcal{H})$ of group ring $\mathbb{R}[\tilde{\Gamma}]$ ($\tilde{\Gamma} \subset S L(2, \mathbb{R})$; when unitary action $\left.A_{\tilde{\Gamma}}=C^{*}(\tilde{\Gamma})\right)$

$$
\left(A_{\tilde{\Gamma}}, \mathbb{H}^{*}(\operatorname{Cone}(N)), \Phi\right) \text { is a spectral triple }
$$

In the family of zeta-functions for the spectral triple $\zeta_{a, D}(s, z)$ choose

$$
a:=\sigma_{2}(-\mathrm{id}) \in \mathcal{A}_{\tilde{\Gamma}} \quad P_{-}(\Phi):=\Phi_{\mid \mathbb{H}^{\prime}(K ; d)^{n}=0}
$$

Obtain:

$$
\begin{gathered}
\exp \left(-\left.\frac{d}{d z} \zeta_{a, \frac{P_{-}(\phi)}{2 \pi}}\left(\frac{s}{2 \pi}, z\right)\right|_{z=0}\right)^{-1} \\
=\frac{L_{\mathbb{C}}\left(H_{B}^{1}, s\right)}{L_{\mathbb{C}}\left(H_{B}^{0}, s\right) L_{\mathbb{C}}\left(H_{B}^{2}, s\right)}
\end{gathered}
$$

Model of the dual graph Geodesics in \mathfrak{X}_{Γ} :

- Closed geodesics: $\forall \gamma \in \Gamma, \exists\left\{z^{ \pm}(\gamma)\right\} \in \mathbb{P}^{1}(\mathbb{C})$ fixed points; geodesic in $\mathbb{H}^{3} \cup \mathbb{P}^{1}(\mathbb{C})$ connecting $\left\{z^{ \pm}(\gamma)\right\}$, for $\gamma \in \Gamma \Rightarrow$ closed geodesic in \mathfrak{X}_{Γ}
- Bounded geodesics: images in \mathfrak{X}_{Γ} of geodesics in $\mathbb{H}^{3} \cup \mathbb{P}^{1}(\mathbb{C})$ having both ends on \wedge_{Γ}

Coding of geodesics: Generators $\left\{g_{i}\right\}_{i=1}^{g}$ of $\Gamma\left(g_{i+g}=g_{i}^{-1}\right)$
Subshift of finite type: (\mathcal{S}, T)

$$
\begin{gathered}
\mathcal{S}=\left\{\ldots a_{-m} \ldots a_{-1} a_{0} a_{1} \ldots a_{\ell} \ldots\right. \\
\left.a_{i} \in\left\{g_{i}\right\}_{i=1}^{2 g}, a_{i+1} \neq a_{i}, \forall i \in \mathbb{Z}\right\} \\
T\left(\ldots a_{-m} \ldots a_{-1} a_{0} a_{1} \ldots a_{\ell} \ldots\right)= \\
\ldots a_{-m+1} \ldots a_{0} a_{1} a_{2} \ldots a_{\ell+1} \ldots
\end{gathered}
$$

Mapping Torus (suspension flow)

$$
\mathcal{S}_{T}:=\mathcal{S} \times[0,1] /(x, 0) \sim(T x, 1)
$$

generalized solenoid
$H^{1}\left(\mathcal{S}_{T}\right)$ has a filtration $F_{n}\left(\operatorname{dim} F_{n}=2 g(2 g-1)^{n-1}(2 g-\right.$
2) +1)
$H_{1}\left(\mathcal{S}_{T}\right)$ has a filtration $\mathcal{K}_{n}\left(\operatorname{dim} \mathcal{K}_{n}=(2 g-1)^{n}+1\right.$, n even, $(2 g-1)^{n}+(2 g-1), n$ odd)

- dynamical cohomology: $H_{d y n}^{1}:=\oplus_{p \leq 0} g r_{2 p}^{\ulcorner } H_{d y n}^{1}$

$$
g r_{2 p}^{\ulcorner } H_{d y n}^{1}:=\left(F_{-p} / F_{-p-1}\right) \otimes_{\mathbb{R}} \mathbb{R}(p)
$$

- graded subspace $\mathcal{V}:=\oplus_{p \leq 0} g r_{2 p}^{\ulcorner } \mathcal{V}$

$$
\begin{aligned}
g r_{2 p}^{\Gamma} \mathcal{V} & =\operatorname{span}\left\{(2 \pi \sqrt{-1})^{p} \chi_{-p+1, k}\right\} \\
\chi_{n, k} & :=\left[\chi_{\mathcal{S}^{+}\left(w_{n, k}\right)}\right] \in\left(F_{n-1} / F_{n-2}\right)
\end{aligned}
$$

- dynamical homology: $H_{1}^{d y n}:=\oplus_{p \geq 1} g r_{2 p} H_{1}^{d y n}$

$$
g r_{2 p}^{\Gamma} H_{1}^{d y n}:=\mathcal{K}_{p-1} \otimes \mathbb{R}(p)
$$

- graded subspace $\mathcal{W}=\oplus_{p \geq 1} g r_{2 p}^{\ulcorner } \mathcal{W}$

$$
g r_{2 p}^{\ulcorner } \mathcal{W}=\operatorname{span}\{(2 \pi \sqrt{-1})^{p} \underbrace{g_{k} g_{k} \ldots g_{k}}_{p-\text { times }}\}
$$

- Involution \bar{F}_{∞} induced by change of orientation

Archimedean vs. dynamical cohomology

There are \bar{F}_{∞}-equivariant isomorphisms U and \tilde{U} : the diagram commutes $(p \leq 0)$

$$
\begin{aligned}
& g r_{2 p}^{\mathrm{W}} H^{1}\left(\tilde{X}^{*}\right)^{N=0} \xrightarrow{\delta_{1}} g r_{2(-p+2)}^{\mathrm{W}} H^{2}\left(X^{*}\right) \\
& g r_{2 p}^{\stackrel{\mid U}{\Gamma}} \xrightarrow{\mathcal{D}} g r_{2(-p+1)}^{\Gamma} \stackrel{W}{\mid} \mathcal{U}
\end{aligned}
$$

$\delta_{1}=$ arithmetic duality isom (between Ker and Coker of monodromy N)
$\mathcal{D}=$ isom from homology/cohomology pairing on \mathcal{S}_{T}

Note: $\operatorname{Ker}(N)$ and $\operatorname{Coker}(N)$ of arithmetic construction exchanged with $\operatorname{Coker}(1-T)$ and $\operatorname{Ker}(1-T)$ of dynamical construction: intrinsic duality in U.

Conclusion: Geometric model for Archimedean cohomology.

A non-commutative space

$A=$ matrix giving the admissibility condition for sequences in $\mathcal{S}\left(A_{i j}=1\right.$ for $|i-j| \neq g ;=0$ otherwise)

Cuntz-Krieger algebra: \mathcal{O}_{A} generated by $S_{i}, i=$ $1, \ldots, 2 g$ partial isometries ($S=S S^{*} S$) with relations:

$$
\sum_{j} S_{j} S_{j}^{*}=1 \quad S_{i}^{*} S_{i}=\sum_{j} A_{i j} S_{j} S_{j}^{*}
$$

Dynamics of action of Γ on \wedge_{Γ}

$$
\mathcal{O}_{A} \cong C\left(\wedge_{\Gamma}\right) \rtimes \Gamma
$$

Other description as crossed product (up to stabilization): $\mathcal{O}_{A} \simeq \mathcal{F}_{A} \rtimes_{T} \mathbb{Z}$ with $\mathcal{F}_{A}=$ AF-algebra

Action: of \mathcal{O}_{A} on $H^{1}\left(\mathcal{S}_{T}\right) \Rightarrow$ induced action on $H_{d y n}^{1}$

Morita equivalent NC-spaces

- Action of $\mathcal{O}_{A} \cong \mathrm{C}\left(\wedge_{\Gamma}\right) \rtimes \Gamma$ on $H_{d y n}^{1}$ extends to action of the algebra

$$
\left(C\left(\wedge_{\Gamma}\right) \otimes C_{0}\left(\mathbb{H}^{3}\right)\right) \rtimes \Gamma
$$

- On the homology $H_{1}^{d y n}$ action of $\mathrm{C}\left(\wedge_{\Gamma}\right)$ that extends to action of

$$
C_{0}\left(\mathfrak{X}_{\Gamma}, \mathcal{E}\right)
$$

sections of bundle $\mathcal{E}=\left(C\left(\wedge_{\Gamma}\right) \times \mathbb{H}^{3}\right) / \Gamma \rightarrow \mathfrak{X}_{\Gamma}$

Morita equivalence:

$$
\left(C\left(\wedge_{\Gamma}\right) \otimes C_{0}\left(\mathbb{H}^{3}\right)\right) \rtimes \Gamma \simeq C_{0}\left(\mathfrak{X}_{\Gamma}, \mathcal{E}\right)
$$

same non-commutative space

Dynamical spectral triple

Dynamical homology and cohomology fit in a spectral triple $(\mathcal{A}, \mathcal{H}, \tilde{D})$:

- $\mathcal{A}=\left(C\left(\wedge_{\Gamma}\right) \otimes C_{0}\left(\mathbb{H}^{3}\right)\right) \rtimes \Gamma$
("Reduction mod $\infty^{\prime \text { ") }}$
- $\mathcal{H}=\mathcal{H}_{\text {dyn }}^{1} \oplus \mathcal{M} \otimes_{\mathrm{C}_{0}\left(\mathfrak{X}_{\Gamma}, \mathcal{E}\right)} \mathcal{H}_{1}^{\text {dyn }}$
- $\mathrm{C}_{0}\left(\mathfrak{X}_{\Gamma}, \mathcal{E}\right)$ sections of $\mathcal{E}=\left(\mathrm{C}\left(\wedge_{\Gamma}\right) \times \mathbb{H}^{3}\right) / \Gamma \rightarrow \mathfrak{X}_{\Gamma}$
- \mathcal{M} bimodule implementing the Morita equivalence $\left(C\left(\wedge_{\Gamma}\right) \otimes C_{0}\left(\mathbb{H}^{3}\right)\right) \rtimes \Gamma \simeq \mathrm{C}_{0}\left(\mathfrak{X}_{\Gamma}, \mathcal{E}\right)$
- D multiplication by the weight

$$
\left.D\right|_{g r_{2} r_{r} H_{d m m}^{1}}=\left.p \cdot \quad D\right|_{g r_{2} r_{1}^{r} t_{2}^{t m}} ^{t_{2}}=p .
$$

- $\left.\tilde{D}\right|_{\mathcal{H}_{d y n}^{1}}=D$ and $\left.\tilde{D}\right|_{\mathcal{M} \otimes \mathcal{H}_{1}^{d y n}}=1 \otimes D$

Archimedean factors from dynamics

Consider the zeta function

$$
\zeta_{\pi_{\nu}, F_{x}=u, D}(s, z):=\sum_{\lambda \in \operatorname{Spec}(D)} \operatorname{Tr}\left(\pi_{\nu, \bar{F}_{x}=i d} \Pi(\lambda, D)\right)(s-\lambda)^{-z}
$$

$\pi_{\mathcal{V}, \bar{F}_{\infty}=i d}=$ orthogonal projection on +1 eigenspace of \bar{F}_{∞} in \mathcal{V}

The regularized determinant

$$
\begin{gathered}
\exp \left(-\left.\frac{d}{d z} \zeta_{\pi_{\mathcal{V}, \bar{F}_{\infty}=i d}, \frac{D}{2 \pi}}\left(\frac{s}{2 \pi}, z\right)\right|_{z=0}\right)^{-1} \\
=L_{\mathbb{R}}\left(H^{1}\left(X_{/ \mathbb{R}}, \mathbb{R}\right), s\right)
\end{gathered}
$$

algebra role:

$$
\sqcap_{N} \pi_{\mathcal{V}, \bar{F}_{\infty}=i d} \Pi_{N}=\sum_{i=1}^{g} S_{i}^{N} S_{i}^{* N}
$$

Non-archimedean places

Mumford curves $K=$ finite extension of $\mathbb{Q}_{p} ; \Delta_{K}$ Bruhat-Tits building $\partial \Delta_{K}=\mathbb{P}^{1}(K) ; \Gamma \subset P G L(2, K) \mathrm{p}$ adic Schottky group

$X_{\Gamma}=\Omega_{\Gamma} / \Gamma$ Schottky-Mumford curve

$\Delta_{\Gamma}^{\prime} / \Gamma$ dual graph of closed fiber $\left(\Delta_{\Gamma}^{\prime}=\right.$ tree of free group Γ extended to subtree of Δ_{K}; closed fiber of min model over $O_{K} \subset K$ ring of integers: totally split degenerate)

For any Γ-invariant $\Delta \subset \Delta_{K}: \mathcal{W}(\Delta / \Gamma)=$ doubly infinite walks
subshift of finite type and mapping torus $\mathcal{W}(\Delta / \Gamma)_{T}$
\Rightarrow dynamical cohomology $H_{d y n}^{1}(\Delta / \Gamma)$

Spectral triple

Algebra: C^{*}-algebra of graph $C^{*}(\Delta / \Gamma)$ (generalization of Cuntz-Krieger algebras)
$E=$ graph, $\mathrm{C}^{*}(E)$ generated by $\left\{P_{v}\right\}_{v \in E^{0}}$ orthogonal projections and $\left\{S_{w}\right\}_{w \in E_{+}^{2}}$ partial isometries with

$$
S_{w}^{*} S_{w}=P_{r(w)} \quad P_{v}=\sum_{w: s(w)=v} S_{w} S_{w}^{*}
$$

Action of $C^{*}(\Delta / \Gamma)$ on dynamical cohomology $H_{d y n}^{1}(\Delta / \Gamma)$ (as in archimedean case)

$$
\left(\mathrm{C}^{*}(\Delta / \Gamma), H_{d y n}^{1}(\Delta / \Gamma) \oplus H_{d y n}^{1}(\Delta / \Gamma), D\right)
$$

spectral triple ($D=$ multipl by weight and $\frac{2 \pi}{\log q}$)

Local factor $(\lambda=$ eigenvalues of Frobenius)

$$
L\left(H^{1}\left(X_{\Gamma}\right), s\right)=\prod_{\lambda}\left(1-\lambda q^{-s}\right)^{-\operatorname{dim} H^{1}(X)^{\lambda}}
$$

Mumford curves: $L\left(H^{1}(X), s\right)=\left(1-q^{-s}\right)^{-g}$

From zetas of spectral triple:

$$
\begin{aligned}
& \operatorname{det}_{\infty, a, i D}(s)=\exp \left(-\zeta_{a, i D,+}^{\prime}(s, 0)\right) \exp \left(-\zeta_{a, i D,-}^{\prime}(s, 0)\right) \\
& \zeta_{a, i D,-}(s, z):=\sum_{\lambda \in \operatorname{Spec}(i D) \cap i(-\infty, 0)} \operatorname{Tr}\left(a \Pi_{\lambda}\right)(s+\lambda)^{-z} \\
& \zeta_{a, i D,+}(s, z):=\sum_{\lambda \in \operatorname{Spec}(i D) \cap i[0, \infty)} \operatorname{Tr}\left(a \Pi_{\lambda}\right)(s+\lambda)^{-z}
\end{aligned}
$$

$$
\operatorname{det}_{\infty, \pi(\mathcal{V}), i D}(s)=L\left(H^{1}\left(X_{\Gamma}\right), s\right)^{-1}
$$

$$
\Pi_{N} \pi(\mathcal{V}) \Pi_{N}=\sum_{i} S_{w_{i}}^{N} S_{w_{i}}^{* N}
$$

$w_{i}=$ words repres. generators of Γ
Generalizations for non-split degenerate cases

