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Compact Riemann surface X

X = M\(P(C) — Ar)

Schottky uniformization
T C PSL>(C) discrete purely loxodromic N ~ Z*9
Ar C P1(C) limit set

[-action on limit set A



Group completion and limit set
Y, = Cayley graph of F; Group completion
L Fg— AN limw; — lim p(w;)(zg)
(/ 7

given point zg € P1(C) and embedding
p: Fy— PGL(2,C)

reduced word w in the generators of F,, i(w) and t(w)
initial and terminal letters

w C v if (Fwo)(v = w - wp) with t(w) % i(wg)?

Wy = {tp(v) : veF;and w C v}

Commutative algebra A = C(A)

A C A dense involutive subalgebra spanned
by characteristic functions X@,



Patterson—Sullivan measure

Scaling by the Hausdorff dimension dg of Ar

(Y¥dp)(x) = |y (2)|°H du(z), Yy eT
State 7: Ao — C
Oxw,) = [ Xz, dun = BA(T ).
N\
7(1) =1 = pua(A) and 7(a*a) > 0

GNS representation: inner product

(a]|b) := 7(b*a)



Spectral triples (Connes)

S = (A ,H,D): C*-algebra A represented in
B(H)

Hilbert space H

Ao C A dense involutive subalgebra
self-adjiont operator D on H with compact re-
solvent

[D,a]l € B(H) Vaeé€ Ax

Finite summability (p-summable)

Tr(|D|"°) <00 Vs>p

Example: Riemannian spin manifolds

S = (C*®(X) c C(X),L%(X,S),dx)



Zeta functions of spectral triples: a € A

Ca,5(s) = Tr(a|D|?)
R(s) << O

Can you hear the shape of a drum?

Tr(|@x|®) not enough: isospectral manifolds
What about Tr(f|@x]|%)?

Goal: Construct a (commutative) spectral triple
encoding the action of ' on A such that the
family (, s(s) determines the (anti)conformal
class of the Riemann surface



Commutative spectral triple on A = Ar
Sx =(A,H,D)

A=C(N) with Aooc = C(N,Z) @ C
H = GNS representation for =

Filtration: Ay = Ii_r)n Ay (reduced words length < n)

Dirac operator

D :=XoPo+ > M(Pyn—Py_1),
n>1
An = (dim Ay)3
n .= P,—P,_1 projection onto graded pieces: H,&5H,_1

words of exact length n



For a € A, and m > n, a preserves A,,

n
[Daa] — Z AZ[QZaa]
i=0
finite sum: bounded

tr((1+D?)"Y?) = 1+Z(1+>\§)—1/2(dim H,—dim H,_1)

n=1

<14 (14+x2)7V2dim4,

n=1

<14+) ([@dmA)2<14) (n+1)72<2

n=1 n=1

with dimA, >n+1 = 1-summable

Note: existence of a 1l-summable triple and
existence of a quasi-circle



Ends of words:

w1 Nwp = max{w, wa}

max{w, v} largest if comparable in C or ()

Basis for Hy: xw for |w| =n

(Xw|Xxv) = u(maX{v,w}i)

relation xz = > jwj=n Xw@

uCw

dim A, = dim H, = 2g(2g — 1)*1

Orthonormalization: start with |W.) = xA and

L (ul=1)

Vix (@) "

w length one w # wp chosen, then {|Wy) }wer, With 17 =
S U {e} on basis for H;
Inductively I,41 = I, U |J Vi with |w| =n and V,, set

jw|=n

of 2g — 2 letters # t(w)~?
= {xwwer, 4,1, basis of H,4; & Hp

(W) 1=




Zeta functions ¢, s (s)

tr(aD®) =14 ) (Wyla Y X\ (Pn— Pp_1)WVa)
w n>1

=14 ) X cn(a)

n>1
cn(a) = Zweln—ln_1<ww|aww>



Lemma: Given X1, Xo compact Riemann sur-
faces g > 2

(1,55, (8) = (1,84, (5)
= g1 = go and
A = Ao

C*-algebra isomorphism from homeomorphism
D /\1 — /\2

N
b
Fo ., @
Ao
Explicitly:
2g — 2 (2g)3st1
C1,5,(8) =1+

2g—1 1—(2g—1)3s+1
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Computing (3 s(s):

An = (dim Ay)3 = (29)3(2g — 1)373

cn(l) = Z (Ww|Ww)

|u4€In_ n—1

= Y 1=129(2¢-1)""?2g—2)
|u4€In_ n—1

(1,5() =14 > Aen(1) =

n>1

14 (29)38+1 29 — Z (29 )(3s—|—1)(n—1)
n>1

The condition CLSXl(s) = §1,5X2(s) gives

291 -2 292~ 1 (1T _ 1 (291 — 1)3+!
291 — 1 295 — 2 \go 1 —(2gp — 1)3s+1

for N(s) << 0. For s — —oo, rhs — 1 and
lIhs— O unless g1 = go
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Can then compare Ca,gxl(s) and Ca’SXQ(S) for
same a € A1 = Ao (under above identification)

Lemma: Ca’gxl(s) = Ca,SXQ(S) gives

> (en1(a) = cn2(a)) Ay =0

n>0
for R(s) << 0 gives Dirichlet series

Z ENNS —
N>0

for R(s) << 0 with ¢y = ¢, 1(a) — cp2(a) if
N = )\ for some n, and ¢y = 0 otherwise

= ¢y = 0 for all N

Cn,1 (a) = Cn,2 (a)
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Lemma: (inductively)
For a = x+ and w length |w| =n <|n|

(WylaWy) = H(W) "R

x depends on measures u(@) words length |v| < |7

Note: ¢p-1(a) # 0 for a = x5 with [n| = m since 3 w
supp W, intersects 7 and

cm—1(a) = Z (WylaW,,) >0

we[ﬂzfl_Ime

hence x = 0
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Reconstruction of PS measure

Prop: Ca’gxl(s) = ga,SXQ(s) gives
Nl(ﬁpl) — NQ(WPQ)
for all n € Fy, p; : Fy — I'; C PGL(2,C)
n|=0= 7y, =N\ fori=12
em—1,i(x75,) = w7 p) - K

cm-1,1(x77,,) = em-12(x77,,

inductively: x; = k (shorter lengths) =

N(W,Ol) — N(ﬁ)pz)
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Theorem Ca’gxl(s) = Ca,SXQ(S) for all a € Ax
= X1 and X» conformally or anti-conformally
equivalent Riemann surfaces

Same genus from a = 1 hence p; : Fg — [; C
PGL(2,C) and isomorphism

azpzopfl : I_lil_g
= ® : A1 — Ao homeomorphism
a-equivariant: (v - z) = a(y)P(x)

Measure preserving: us o ®* = puq1 (from Prop)

Ho(Xo(w,)) = po(xw, ) = m(xz,
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Ergodic rigidity (Chengbo Yue)

[1, > geometrically finite subgroups of simple
connected adjoint Lie groups G1 and G» real
rank one

[1 Zariski dense in G4

a:.l 71— [> bea type-preserving isomorphism
= 4 a-equivariant homeomorphism

é: Ay, — Ar,

If ¢ preserves Patterson—Sullivan measure then
a extends to continuous homomorphism

a:.G1— Go
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G1 = G> = PGL(2,C) simple and connected
adjoint real-rank-one Lie group

[; Schottky groups, geometrically finite

Lemma Schottky group g > 2 Zariski dense in
PGL(2,C)

[ Zariski closure
(assume connected, else pass to fin index subgroup Mg

id component with connected closure)
If I connected of dimension < 2 = solvable

solvable group cannot contain free group rank
g =2

then diml = 3 = since PGL(2) connected
= PGL(2)
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Since Fy no parabolic points = equivariant bound-
ary homeomorphism & unique and type-preserving
(Tukia)

= o . N1 — N\o extends to continuous group
automorphism a € Aut(PGL(2,0))

Aut(PGL(2,k)), field k£ (Schreier and van der Waerden)
outer automorphisms from field automorphisms of k

= d isomorphism ['{ — 5

—1
Y1 — 9719

for g e PGL(2,C) and o € Aut(C/R)
M1 and I'g conjugate in PGL(2,C)

X1 and XJ§ isomorphic Riemann surfaces

(X1 and X, conformally or anti-conformally equivalent)
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