Zeta functions hear the shape of Riemann surfaces

Gunther Cornelissen and Matilde Marcolli

2007

Compact Riemann surface X

$$X = \Gamma \backslash (\mathbb{P}^1(\mathbb{C}) - \Lambda_{\Gamma})$$

Schottky uniformization

 $\Gamma\subset PSL_2(\mathbb{C})$ discrete purely loxodromic $\Gamma\simeq \mathbb{Z}^{*g}$ $\Lambda_\Gamma\subset \mathbb{P}^1(\mathbb{C})$ limit set

 Γ -action on limit set Λ_{Γ}

Group completion and limit set

 $Y_g = \text{Cayley graph of } F_g \text{ Group completion}$ $\bar{F}_g := \bar{Y}_g \setminus Y_g$

$$\iota_{\rho}: \bar{F}_g \to \Lambda \qquad \lim_i w_i \mapsto \lim_i \rho(w_i)(x_0)$$

given point $x_0 \in \mathbb{P}^1(\mathbb{C})$ and embedding $\rho: F_g \hookrightarrow \mathsf{PGL}(2,\mathbb{C})$

reduced word w in the generators of F_g , i(w) and t(w) initial and terminal letters

$$w \subseteq v$$
 if $(\exists w_0)(v = w \cdot w_0)$ with $t(w) \neq i(w_0)^{-1}$

$$\overrightarrow{w}_{\rho} := \{ \iota_{\rho}(v) : v \in \overline{F}_g \text{ and } w \subseteq v \}$$

Commutative algebra $A = C(\Lambda)$

 $A_{\infty}\subset A$ dense involutive subalgebra spanned by characteristic functions $\chi_{\overrightarrow{w}_{\rho}}$

$$A_{\infty} = C(\Lambda, \mathbb{Z}) \otimes \mathbb{C}$$

Patterson-Sullivan measure

Scaling by the Hausdorff dimension δ_H of Λ_Γ

$$(\gamma^* d\mu)(x) = |\gamma'(x)|^{\delta_H} d\mu(x), \quad \forall \gamma \in \Gamma$$

State $\tau: A_{\infty} \to \mathbb{C}$

$$\tau(\chi_{\overrightarrow{w}_{\rho}}) := \int_{\Lambda} \chi_{\overrightarrow{w}_{\rho}} d\mu_{\Lambda} = \mu_{\Lambda}(\overrightarrow{w}_{\rho}).$$

$$\tau(1) = 1 = \mu_{\Lambda}(\Lambda)$$
 and $\tau(a^*a) \geq 0$

GNS representation: inner product

$$\langle a|b\rangle := \tau(b^*a)$$

Spectral triples (Connes)

 $\mathcal{S} = (A, H, D)$: C^* -algebra A represented in $\mathcal{B}(H)$

Hilbert space H

 $A_{\infty} \subset A$ dense involutive subalgebra self-adjiont operator D on H with compact resolvent

$$[D, a] \in \mathcal{B}(H) \quad \forall a \in A_{\infty}$$

Finite summability (p-summable)

$$\operatorname{Tr}(|D|^{-s}) < \infty \quad \forall s \ge p$$

Example: Riemannian spin manifolds

$$S = (C^{\infty}(X) \subset C(X), L^2(X, S), \emptyset_X)$$

Zeta functions of spectral triples: $a \in A_{\infty}$

$$\zeta_{a,\mathcal{S}}(s) = \operatorname{Tr}(a|D|^s)$$

$$\Re(s) \ll 0$$

Can you hear the shape of a drum?

 $\operatorname{Tr}(|\partial_X|^s)$ not enough: isospectral manifolds What about $\operatorname{Tr}(f|\partial_X|^s)$?

Goal: Construct a (commutative) spectral triple encoding the action of Γ on Λ such that the family $\zeta_{a,\mathcal{S}}(s)$ determines the (anti)conformal class of the Riemann surface

Commutative spectral triple on $\Lambda = \Lambda_{\Gamma}$

$$S_X = (A, H, D)$$

$$A = C(\Lambda)$$
 with $A_{\infty} = C(\Lambda, \mathbb{Z}) \otimes \mathbb{C}$
 $H = \text{GNS representation for } \tau$

Filtration: $A_{\infty} = \varinjlim A_n$ (reduced words length $\leq n$)

Dirac operator

$$D := \lambda_0 P_0 + \sum_{n>1} \lambda_n (P_n - P_{n-1}),$$

$$\lambda_n = (\dim A_n)^3$$

 $Q_n := P_n - P_{n-1}$ projection onto graded pieces: $H_n \ominus H_{n-1}$ words of exact length n

For $a \in A_n$ and $m \ge n$, a preserves A_m

$$[D, a] = \sum_{i=0}^{n} \lambda_i [Q_i, a]$$

finite sum: bounded

$$\operatorname{tr}((1+D^2)^{-1/2}) = 1 + \sum_{n=1}^{\infty} (1+\lambda_n^2)^{-1/2} (\dim H_n - \dim H_{n-1})$$

$$\leq 1 + \sum_{n=1}^{\infty} (1 + \lambda_n^2)^{-1/2} \dim A_n$$

$$\leq 1 + \sum_{n=1}^{\infty} (\dim A_n)^{-2} \leq 1 + \sum_{n=1}^{\infty} (n+1)^{-2} \leq 2$$

with dim $A_n \ge n + 1 \implies 1$ -summable

Note: existence of a 1-summable triple and existence of a quasi-circle

Ends of words:

$$\overrightarrow{w_1} \cap \overrightarrow{w_2} = \overrightarrow{\max\{w_1, w_2\}}$$

 $\max\{w,v\}$ largest if comparable in \subseteq or \emptyset

Basis for H_n : χ_w for |w| = n

$$\langle \chi_w | \chi_v \rangle = \mu(\overrightarrow{\mathsf{max}\{v,w\}})$$

relation $\chi_{\overrightarrow{u}} = \sum_{\substack{|w|=n \ u \subset w}} \chi_{\overrightarrow{w}}$

$$\dim A_n = \dim H_n = 2g(2g-1)^{n-1}$$

Orthonormalization: start with $|\Psi_e\rangle=\chi_{\Lambda}$ and

$$|\Psi_w
angle := rac{1}{\sqrt{\mu_X(\overrightarrow{w})}} \chi_{\overrightarrow{w}} \hspace{0.5cm} (|w|=1)$$

w length one $w \neq w_0$ chosen, then $\{|\Psi_w\rangle\}_{w \in I_1}$ with $I_1 := S \cup \{e\}$ on basis for H_1

Inductively $I_{n+1}=I_n\cup\bigcup_{|w|=n}V_w$ with |w|=n and V_w set of 2g-2 letters $\neq t(w)^{-1}$

$$\Rightarrow \{\chi_{\overrightarrow{w}}\}_{w \in I_{n+1} - I_n}$$
 basis of $H_{n+1} \ominus H_n$

Zeta functions $\zeta_{a,\mathcal{S}_X}(s)$

$$\operatorname{tr}(aD^s) = 1 + \sum_{w} \langle \Psi_w | a \sum_{n \ge 1} \lambda_n^s (P_n - P_{n-1}) \Psi_w \rangle$$

$$=1+\sum_{n\geq 1}\lambda_n^s\,c_n(a)$$

$$c_n(a) = \sum_{w \in I_n - I_{n-1}} \langle \Psi_w | a \Psi_w \rangle$$

Lemma: Given X_1 , X_2 compact Riemann surfaces $g \ge 2$

$$\zeta_{1,\mathcal{S}_{X_1}}(s) = \zeta_{1,\mathcal{S}_{X_2}}(s)$$

 $\Rightarrow g_1 = g_2$ and

$$A_1 \cong A_2$$

 C^* -algebra isomorphism from homeomorphism $\Phi: \Lambda_1 \to \Lambda_2$

Explicitly:

$$\zeta_{1,S_X}(s) = 1 + \frac{2g-2}{2g-1} \cdot \frac{(2g)^{3s+1}}{1 - (2g-1)^{3s+1}}$$

Computing $\zeta_{1,\mathcal{S}}(s)$:

$$\lambda_n = (\dim A_n)^3 = (2g)^3 (2g - 1)^{3n - 3}$$

$$c_n(1) = \sum_{|w| \in I_n - I_{n - 1}} \langle \Psi_w | \Psi_w \rangle$$

$$= \sum_{|w| \in I_n - I_{n - 1}} 1 = 2g(2g - 1)^{n - 2} (2g - 2)$$

$$\zeta_{1, \mathcal{S}}(s) = 1 + \sum_{n \ge 1} \lambda_n^s c_n(1) =$$

$$1 + (2g)^{3s + 1} \frac{2g - 2}{2g - 1} \sum_{n \ge 1} (2g - 1)^{(3s + 1)(n - 1)}$$

The condition $\zeta_{1,\mathcal{S}_{X_1}}(s) = \zeta_{1,\mathcal{S}_{X_2}}(s)$ gives

$$\frac{2g_1-2}{2g_1-1} \cdot \frac{2g_2-1}{2g_2-2} \cdot \left(\frac{g_1}{g_2}\right)^{3s+1} = \frac{1-(2g_1-1)^{3s+1}}{1-(2g_2-1)^{3s+1}}$$
 for $\Re(s) << 0$. For $s \to -\infty$, rhs $\to 1$ and lhs $\to 0$ unless $g_1=g_2$

Can then compare $\zeta_{a,\mathcal{S}_{X_1}}(s)$ and $\zeta_{a,\mathcal{S}_{X_2}}(s)$ for same $a\in A_1\cong A_2$ (under above identification)

Lemma: $\zeta_{a,\mathcal{S}_{X_1}}(s) = \zeta_{a,\mathcal{S}_{X_2}}(s)$ gives

$$\sum_{n>0} \left(c_{n,1}(a) - c_{n,2}(a) \right) \lambda_n^s \equiv 0$$

for $\Re(s) << 0$ gives Dirichlet series

$$\sum_{N>0}\tilde{c}_NN^s\equiv 0$$

for $\Re(s)<<0$ with $\tilde{c}_N=c_{n,1}(a)-c_{n,2}(a)$ if $N=\lambda_n$ for some n, and $\tilde{c}_N=0$ otherwise

 $\Rightarrow \tilde{c}_N = 0$ for all N

$$c_{n,1}(a) = c_{n,2}(a)$$

Lemma: (inductively)

For $a=\chi_{\overrightarrow{\eta}}$ and w length $|w|=n<|\eta|$

$$\langle \Psi_w | a \Psi_w \rangle = \mu(\overrightarrow{\eta}) \cdot \kappa$$

 κ depends on measures $\mu(\overrightarrow{\,v})$ words length $|v|<|\eta|$

Note: $c_{m-1}(a) \neq 0$ for $a = \chi_{\overrightarrow{\eta}}$ with $|\eta| = m$ since $\exists w$ supp Ψ_w intersects $\overrightarrow{\eta}$ and

$$c_{m-1}(a) = \sum_{w \in I_{m-1} - I_{m-2}} \langle \Psi_w | a \Psi_w \rangle \ge 0$$

hence $\kappa \neq 0$

Reconstruction of PS measure

Prop:
$$\zeta_{a,\mathcal{S}_{X_1}}(s) = \zeta_{a,\mathcal{S}_{X_2}}(s)$$
 gives

$$\mu_1(\overrightarrow{\eta}_{\rho_1}) = \mu_2(\overrightarrow{\eta}_{\rho_2})$$

for all $\eta \in F_g$, $\rho_i : F_g \to \Gamma_i \subset \mathsf{PGL}(2,\mathbb{C})$

$$|\eta| = 0 \Rightarrow \overrightarrow{\eta}_{\rho_i} = \Lambda_i \text{ for } i = 1, 2$$

$$c_{m-1,i}(\chi_{\overrightarrow{\eta}_{\rho}}) = \mu(\overrightarrow{\eta}_{\rho_i}) \cdot \kappa_i$$

$$c_{m-1,1}(\chi_{\overrightarrow{\eta}_{\rho_1}}) = c_{m-1,2}(\chi_{\overrightarrow{\eta}_{\rho_2}})$$

inductively: $\kappa_i = \kappa$ (shorter lengths) \Rightarrow

$$\mu(\overrightarrow{\eta}_{\rho_1}) = \mu(\overrightarrow{\eta}_{\rho_2})$$

Theorem $\zeta_{a,\mathcal{S}_{X_1}}(s) = \zeta_{a,\mathcal{S}_{X_2}}(s)$ for all $a \in A_{\infty}$ $\Rightarrow X_1$ and X_2 conformally or anti-conformally equivalent Riemann surfaces

Same genus from a=1 hence $\rho_i:F_g\to \Gamma_i\subset PGL(2,\mathbb{C})$ and isomorphism

$$\alpha = \rho_2 \circ \rho_1^{-1} : \Gamma_1 \stackrel{\simeq}{\to} \Gamma_2$$

 \Rightarrow $\Phi: \Lambda_1 \rightarrow \Lambda_2$ homeomorphism

$$\alpha$$
-equivariant: $\Phi(\gamma \cdot x) = \alpha(\gamma)\Phi(x)$

Measure preserving:
$$\mu_2 \circ \Phi^* = \mu_1$$
 (from Prop)
$$\mu_2(\chi_{\Phi(\overrightarrow{w}_{g_1})}) = \mu_2(\chi_{\overrightarrow{w}_{g_2}}) = \mu_1(\chi_{\overrightarrow{w}_{g_1}})$$

Ergodic rigidity (Chengbo Yue)

 Γ_1 , Γ_2 geometrically finite subgroups of simple connected adjoint Lie groups G_1 and G_2 real rank one

 Γ_1 Zariski dense in G_1

 $\alpha: \Gamma_1 \to \Gamma_2$ be a type-preserving isomorphism

 $\Rightarrow \exists \alpha$ -equivariant homeomorphism

$$\phi: \Lambda_{\Gamma_1} \to \Lambda_{\Gamma_2}$$

If ϕ preserves Patterson–Sullivan measure then α extends to continuous homomorphism

$$\alpha:G_1\to G_2$$

 $G_1 = G_2 = \mathsf{PGL}(2,\mathbb{C})$ simple and connected adjoint real-rank-one Lie group

 Γ_i Schottky groups, geometrically finite

Lemma Schottky group $g \geq 2$ Zariski dense in $\operatorname{PGL}(2,\mathbb{C})$

Î Zariski closure

(assume connected, else pass to fin index subgroup $\Gamma \cap \widehat{\Gamma}_0$ id component with connected closure)

If $\hat{\Gamma}$ connected of dimension $\leq 2 \Rightarrow$ solvable

solvable group cannot contain free group rank $g \ge 2$

then dim
$$\hat{\Gamma}=3\Rightarrow$$
 since PGL(2) connected
$$\hat{\Gamma}=\text{PGL}(2)$$

Since F_g no parabolic points \Rightarrow equivariant boundary homeomorphism Φ unique and type-preserving (Tukia)

 $\Rightarrow \alpha : \Lambda_1 \to \Lambda_2$ extends to continuous group automorphism $\alpha \in Aut(PGL(2,\mathbb{C}))$

Aut(PGL(2, k)), field k (Schreier and van der Waerden) outer automorphisms from field automorphisms of k

 $\Rightarrow \exists$ isomorphism $\Gamma_1 \rightarrow \Gamma_2$

$$\gamma_1 \mapsto g \gamma_1^{\sigma} g^{-1}$$

for $g \in \mathsf{PGL}(2,\mathbb{C})$ and $\sigma \in \mathsf{Aut}(\mathbb{C}/\mathbb{R})$

 Γ_1 and Γ_2^{σ} conjugate in PGL(2, \mathbb{C})

 X_1 and X_2^{σ} isomorphic Riemann surfaces $(X_1 \text{ and } X_2 \text{ conformally or anti-conformally equivalent})$