Zeta functions hear the shape of Riemann surfaces

Gunther Cornelissen and Matilde Marcolli

2007

Compact Riemann surface X

$$
X=\Gamma \backslash\left(\mathbb{P}^{1}(\mathbb{C})-\wedge_{\Gamma}\right)
$$

Schottky uniformization
$\Gamma \subset \mathrm{PSL}_{2}(\mathbb{C})$ discrete purely loxodromic $\Gamma \simeq \mathbb{Z}^{* g}$
$\Lambda_{\Gamma} \subset \mathbb{P}^{1}(\mathbb{C})$ limit set
Γ-action on limit set \wedge_{Γ}

Group completion and limit set $Y_{g}=$ Cayley graph of F_{g} Group completion $\bar{F}_{g}:=\bar{Y}_{g} \backslash Y_{g}$

$$
\iota_{\rho}: \bar{F}_{g} \rightarrow \wedge \quad \lim _{i} w_{i} \mapsto \lim _{i} \rho\left(w_{i}\right)\left(x_{0}\right)
$$

given point $x_{0} \in \mathbb{P}^{1}(\mathbb{C})$ and embedding $\rho: F_{g} \hookrightarrow \mathrm{PGL}(2, \mathbb{C})$
reduced word w in the generators of $F_{g}, i(w)$ and $t(w)$ initial and terminal letters

$$
\begin{gathered}
w \subseteq v \text { if }\left(\exists w_{0}\right)\left(v=w \cdot w_{0}\right) \text { with } t(w) \neq i\left(w_{0}\right)^{-1} \\
\vec{w}_{\rho}:=\left\{\iota_{\rho}(v): v \in \bar{F}_{g} \text { and } w \subseteq v\right\}
\end{gathered}
$$

Commutative algebra $A=C(\wedge)$
$A_{\infty} \subset A$ dense involutive subalgebra spanned by characteristic functions $\chi_{\vec{w}}{ }_{\rho}$

$$
A_{\infty}=C(\wedge, \mathbb{Z}) \otimes \mathbb{C}
$$

Patterson-Sullivan measure

Scaling by the Hausdorff dimension δ_{H} of \wedge_{Γ}

$$
\left(\gamma^{*} d \mu\right)(x)=\left|\gamma^{\prime}(x)\right|^{\delta_{H}} d \mu(x), \quad \forall \gamma \in \Gamma
$$

State $\tau: A_{\infty} \rightarrow \mathbb{C}$

$$
\tau\left(\chi_{\vec{w}_{\rho}}\right):=\int_{\Lambda} \chi_{\vec{w}_{\rho}} \mathrm{d} \mu_{\Lambda}=\mu_{\Lambda}\left(\vec{w}_{\rho}\right)
$$

$\tau(1)=1=\mu_{\wedge}(\wedge)$ and $\tau\left(a^{*} a\right) \geq 0$

GNS representation: inner product

$$
\langle a \mid b\rangle:=\tau\left(b^{*} a\right)
$$

Spectral triples (Connes)

$\mathcal{S}=(A, H, D): \quad C^{*}$-algebra A represented in $\mathcal{B}(H)$
Hilbert space H
$A_{\infty} \subset A$ dense involutive subalgebra
self-adjiont operator D on H with compact resolvent

$$
[D, a] \in \mathcal{B}(H) \quad \forall a \in A_{\infty}
$$

Finite summability (p-summable)

$$
\operatorname{Tr}\left(|D|^{-s}\right)<\infty \quad \forall s \geq p
$$

Example: Riemannian spin manifolds

$$
\mathcal{S}=\left(C^{\infty}(X) \subset C(X), L^{2}(X, S), \not \not_{X}\right)
$$

Zeta functions of spectral triples: $a \in A_{\infty}$

$$
\zeta_{a, \mathcal{S}}(s)=\operatorname{Tr}\left(a|D|^{s}\right)
$$

$\Re(s) \ll 0$

Can you hear the shape of a drum?
$\operatorname{Tr}\left(\left|\not \partial_{X}\right|^{s}\right)$ not enough: isospectral manifolds What about $\operatorname{Tr}\left(f\left|\not \partial_{X}\right|^{s}\right)$?

Goal: Construct a (commutative) spectral triple encoding the action of Γ on \wedge such that the family $\zeta_{a, \mathcal{S}}(s)$ determines the (anti)conformal class of the Riemann surface

Commutative spectral triple on $\wedge=\wedge_{\Gamma}$
$\mathcal{S}_{X}=(A, H, D)$
$A=C(\wedge)$ with $A_{\infty}=C(\wedge, \mathbb{Z}) \otimes \mathbb{C}$
$H=$ GNS representation for τ

Filtration: $A_{\infty}=\lim A_{n}$ (reduced words length $\leq n$)

Dirac operator

$$
D:=\lambda_{0} P_{0}+\sum_{n \geq 1} \lambda_{n}\left(P_{n}-P_{n-1}\right)
$$

$\lambda_{n}=\left(\operatorname{dim} A_{n}\right)^{3}$
$Q_{n}:=P_{n}-P_{n-1}$ projection onto graded pieces: $H_{n} \ominus H_{n-1}$ words of exact length n

For $a \in A_{n}$ and $m \geq n, a$ preserves A_{m}

$$
[D, a]=\sum_{i=0}^{n} \lambda_{i}\left[Q_{i}, a\right]
$$

finite sum: bounded

$$
\begin{gathered}
\operatorname{tr}\left(\left(1+D^{2}\right)^{-1 / 2}\right)=1+\sum_{n=1}^{\infty}\left(1+\lambda_{n}^{2}\right)^{-1 / 2}\left(\operatorname{dim} H_{n}-\operatorname{dim} H_{n-1}\right) \\
\leq 1+\sum_{n=1}^{\infty}\left(1+\lambda_{n}^{2}\right)^{-1 / 2} \operatorname{dim} A_{n} \\
\leq 1+\sum_{n=1}^{\infty}\left(\operatorname{dim} A_{n}\right)^{-2} \leq 1+\sum_{n=1}^{\infty}(n+1)^{-2} \leq 2
\end{gathered}
$$

with $\operatorname{dim} A_{n} \geq n+1 \Rightarrow$ 1-summable

Note: existence of a 1-summable triple and existence of a quasi-circle

Ends of words:

$$
\overrightarrow{w_{1}} \cap \overrightarrow{w_{2}}=\overrightarrow{\max \left\{w_{1}, w_{2}\right\}}
$$

$\max \{w, v\}$ largest if comparable in \subseteq or \emptyset

Basis for $H_{n}: \chi_{w}$ for $|w|=n$

$$
\left\langle\chi_{w} \mid \chi_{v}\right\rangle=\mu(\overrightarrow{\max \{v, w\}})
$$

relation $\chi_{\vec{u}}=\sum_{\substack{|w|=n \\ u \subset w}} \chi_{\vec{w}}$

$$
\operatorname{dim} A_{n}=\operatorname{dim} H_{n}=2 g(2 g-1)^{n-1}
$$

Orthonormalization: start with $\left|\Psi_{e}\right\rangle=\chi_{\wedge}$ and

$$
\left|\Psi_{w}\right\rangle:=\frac{1}{\sqrt{\mu_{X}(\vec{w})}} \chi_{\vec{w}} \quad(|w|=1)
$$

w length one $w \neq w_{0}$ chosen, then $\left\{\left|\Psi_{w}\right\rangle\right\}_{w \in I_{1}}$ with $I_{1}:=$ $S \cup\{e\}$ on basis for H_{1}
Inductively $I_{n+1}=I_{n} \cup \bigcup_{|w|=n} V_{w}$ with $|w|=n$ and V_{w} set of $2 g-2$ letters $\neq t(w)^{-1}$
$\Rightarrow\left\{\chi_{\vec{w}}\right\}_{w \in I_{n+1}-I_{n}}$ basis of $H_{n+1} \ominus H_{n}$

Zeta functions $\zeta_{a, \mathcal{S}_{X}}(s)$

$$
\left.\begin{array}{c}
\operatorname{tr}\left(a D^{s}\right)=1+\sum_{w}\left\langle\Psi_{w} \mid a \sum_{n \geq 1} \lambda_{n}^{s}\left(P_{n}-P_{n-1}\right) \Psi_{w}\right\rangle \\
=1+\sum_{n \geq 1} \lambda_{n}^{s} c_{n}(a)
\end{array}\right\}
$$

Lemma: Given X_{1}, X_{2} compact Riemann surfaces $g \geq 2$

$$
\zeta_{1, \mathcal{S}_{X_{1}}}(s)=\zeta_{1, \mathcal{S}_{X_{2}}}(s)
$$

$\Rightarrow g_{1}=g_{2}$ and

$$
A_{1} \cong A_{2}
$$

C^{*}-algebra isomorphism from homeomorphism $\Phi: \wedge_{1} \rightarrow \Lambda_{2}$

Explicitly:

$$
\zeta_{1, \mathcal{S}_{X}}(s)=1+\frac{2 g-2}{2 g-1} \cdot \frac{(2 g)^{3 s+1}}{1-(2 g-1)^{3 s+1}}
$$

Computing $\zeta_{1, \mathcal{S}}(s)$:

$$
\begin{gathered}
\lambda_{n}=\left(\operatorname{dim} A_{n}\right)^{3}=(2 g)^{3}(2 g-1)^{3 n-3} \\
c_{n}(1)=\sum_{|w| \in I_{n}-I_{n-1}}\left\langle\Psi_{w} \mid \Psi_{w}\right\rangle \\
=\sum_{|w| \in I_{n}-I_{n-1}} 1=2 g(2 g-1)^{n-2}(2 g-2) \\
\zeta_{1, \mathcal{S}}(s)=1+\sum_{n \geq 1} \lambda_{n}^{s} c_{n}(1)= \\
1+(2 g)^{3 s+1} \frac{2 g-2}{2 g-1} \sum_{n \geq 1}(2 g-1)^{(3 s+1)(n-1)}
\end{gathered}
$$

The condition $\zeta_{1, \mathcal{S}_{X_{1}}}(s)=\zeta_{1, \mathcal{S}_{X_{2}}}(s)$ gives
$\frac{2 g_{1}-2}{2 g_{1}-1} \cdot \frac{2 g_{2}-1}{2 g_{2}-2} \cdot\left(\frac{g_{1}}{g_{2}}\right)^{3 s+1}=\frac{1-\left(2 g_{1}-1\right)^{3 s+1}}{1-\left(2 g_{2}-1\right)^{3 s+1}}$
for $\Re(s) \ll 0$. For $s \rightarrow-\infty$, rhs $\rightarrow 1$ and Ihs $\rightarrow 0$ unless $g_{1}=g_{2}$

Can then compare $\zeta_{a, \mathcal{S}_{X_{1}}}(s)$ and $\zeta_{a, \mathcal{S}_{X_{2}}}(s)$ for same $a \in A_{1} \cong A_{2}$ (under above identification)

Lemma: $\zeta_{a, \mathcal{S}_{X_{1}}}(s)=\zeta_{a, \mathcal{S}_{X_{2}}}(s)$ gives

$$
\sum_{n \geq 0}\left(c_{n, 1}(a)-c_{n, 2}(a)\right) \lambda_{n}^{s} \equiv 0
$$

for $\Re(s) \ll 0$ gives Dirichlet series

$$
\sum_{N \geq 0} \tilde{c}_{N} N^{s} \equiv 0
$$

for $\Re(s) \ll 0$ with $\tilde{c}_{N}=c_{n, 1}(a)-c_{n, 2}(a)$ if $N=\lambda_{n}$ for some n, and $\tilde{c}_{N}=0$ otherwise

$$
\begin{aligned}
& \Rightarrow \tilde{c}_{N}=0 \text { for all } N \\
& \qquad c_{n, 1}(a)=c_{n, 2}(a)
\end{aligned}
$$

Lemma: (inductively)

For $a=\chi_{\vec{\eta}}$ and w length $|w|=n<|\eta|$

$$
\left\langle\Psi_{w} \mid a \Psi_{w}\right\rangle=\mu(\vec{\eta}) \cdot \kappa
$$

κ depends on measures $\mu(\vec{v})$ words length $|v|<|\eta|$
Note: $c_{m-1}(a) \neq 0$ for $a=\chi_{\vec{\eta}}$ with $|\eta|=m$ since $\exists w$ supp Ψ_{w} intersects $\vec{\eta}$ and

$$
c_{m-1}(a)=\sum_{w \in I_{m-1}-I_{m-2}}\left\langle\Psi_{w} \mid a \Psi_{w}\right\rangle \geq 0
$$

hence $\kappa \neq 0$

Reconstruction of PS measure

Prop: $\zeta_{a, \mathcal{S}_{X_{1}}}(s)=\zeta_{a, \mathcal{S}_{X_{2}}}(s)$ gives

$$
\mu_{1}\left(\vec{\eta}_{\rho_{1}}\right)=\mu_{2}\left(\vec{\eta}_{\rho_{2}}\right)
$$

for all $\eta \in F_{g}, \rho_{i}: F_{g} \rightarrow \Gamma_{i} \subset \operatorname{PGL}(2, \mathbb{C})$

$$
|\eta|=0 \Rightarrow \vec{\eta}_{\rho_{i}}=\wedge_{i} \text { for } i=1,2
$$

$$
c_{m-1, i}\left(\chi_{\vec{\eta}_{\rho}}\right)=\mu\left(\vec{\eta}_{\rho_{i}}\right) \cdot \kappa_{i}
$$

$$
c_{m-1,1}\left(\chi_{\vec{\eta}_{\rho_{1}}}\right)=c_{m-1,2}\left(\chi_{\vec{\eta}_{\rho_{2}}}\right)
$$

inductively: $\kappa_{i}=\kappa$ (shorter lengths) \Rightarrow

$$
\mu\left(\vec{\eta}_{\rho_{1}}\right)=\mu\left(\vec{\eta}_{\rho_{2}}\right)
$$

Theorem $\zeta_{a, \mathcal{S}_{X_{1}}}(s)=\zeta_{a, \mathcal{S}_{X_{2}}}(s)$ for all $a \in A_{\infty}$ $\Rightarrow X_{1}$ and X_{2} conformally or anti-conformally equivalent Riemann surfaces

Same genus from $a=1$ hence $\rho_{i}: F_{g} \rightarrow \Gamma_{i} \subset$ $\operatorname{PGL}(2, \mathbb{C})$ and isomorphism

$$
\alpha=\rho_{2} \circ \rho_{1}^{-1}: \Gamma_{1} \xlongequal{\cong} \Gamma_{2}
$$

$\Rightarrow \Phi: \Lambda_{1} \rightarrow \Lambda_{2}$ homeomorphism
α-equivariant: $\Phi(\gamma \cdot x)=\alpha(\gamma) \Phi(x)$
Measure preserving: $\mu_{2} \circ \Phi^{*}=\mu_{1}$ (from Prop)

$$
\mu_{2}\left(\chi_{\Phi\left(\vec{w}_{p_{1}}\right)}\right)=\mu_{2}\left(\chi_{\vec{w}_{r_{2}}}\right)=\mu_{1}\left(\chi_{\vec{w}_{f_{1}}}\right)
$$

Ergodic rigidity (Chengbo Yue)
Γ_{1}, Γ_{2} geometrically finite subgroups of simple connected adjoint Lie groups G_{1} and G_{2} real rank one
Γ_{1} Zariski dense in G_{1}
$\alpha: \Gamma_{1} \rightarrow \Gamma_{2}$ be a type-preserving isomorphism
$\Rightarrow \exists \alpha$-equivariant homeomorphism

$$
\phi: \wedge_{\Gamma_{1}} \rightarrow \wedge_{\Gamma_{2}}
$$

If ϕ preserves Patterson-Sullivan measure then α extends to continuous homomorphism

$$
\alpha: G_{1} \rightarrow G_{2}
$$

$G_{1}=G_{2}=\operatorname{PGL}(2, \mathbb{C})$ simple and connected adjoint real-rank-one Lie group
Γ_{i} Schottky groups, geometrically finite

Lemma Schottky group $g \geq 2$ Zariski dense in PGL(2, © $)$
$\hat{\Gamma}$ Zariski closure
(assume connected, else pass to fin index subgroup $\Gamma \cap \hat{\Gamma}_{0}$ id component with connected closure)

If $\hat{\Gamma}$ connected of dimension $\leq 2 \Rightarrow$ solvable
solvable group cannot contain free group rank $g \geq 2$
then $\operatorname{dim} \hat{\Gamma}=3 \Rightarrow$ since PGL(2) connected

$$
\hat{\Gamma}=P G L(2)
$$

Since F_{g} no parabolic points \Rightarrow equivariant boundary homeomorphism Φ unique and type-preserving (Tukia)
$\Rightarrow \alpha: \Lambda_{1} \rightarrow \Lambda_{2}$ extends to continuous group automorphism $\alpha \in \operatorname{Aut}(\operatorname{PGL}(2, \mathbb{C}))$

Aut(PGL(2,k)), field k (Schreier and van der Waerden) outer automorphisms from field automorphisms of k
$\Rightarrow \exists$ isomorphism $\Gamma_{1} \rightarrow \Gamma_{2}$

$$
\gamma_{1} \mapsto g \gamma_{1}^{\sigma} g^{-1}
$$

for $g \in \mathrm{PGL}(2, \mathbb{C})$ and $\sigma \in \operatorname{Aut}(\mathbb{C} / \mathbb{R})$
Γ_{1} and Γ_{2}^{σ} conjugate in $\operatorname{PGL}(2, \mathbb{C})$
X_{1} and X_{2}^{σ} isomorphic Riemann surfaces
(X_{1} and X_{2} conformally or anti-conformally equivalent)

