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Abstract. Using techniques introduced by D. Mayer, we prove an extension of

the classical Gauss{Kuzmin theorem about the distribution of continued fractions,

which in particular allows one to take into account some congruence properties of

successive convergents. This result has an application to the Mixmaster Universe

model in general relativity. We then study some averages involving modular sym-

bols and show that Dirichlet series related to modular forms of weight 2 can be

obtained by integrating certain functions on real axis de�ned in terms of continued

fractions. We argue that the quotient PGL(2;Z) nP1(R) should be considered as

non{commutative modular curve, and show that the modular complex can be seen

as a sequence of K0{groups of the related crossed{product C�{algebras.

x0. Introduction and summary

In this paper we study the interrelation between several topics: a generalization

of the classical Gauss problem on the distribution of continued fractions, certain

averages of modular symbols, the properties of geodesics on modular curves, the

Mixmaster Universe model in general relativity, and the non{commutative geometry

of the quotient PGL(2;Z) nP1(R).

Our main motivation is a picture of a tower of \non{commutative modular

curves", parameterizing two{dimensional non{commutative tori. This ties in with

the project of studying Stark's conjectures for real quadratic extensions of Q via a

theory of real multiplication on non{commutative elliptic curves [Man6].

The traditional algebro{geometric compacti�cation of a modular curve XG0
=

G0nH, for G0 � PSL(2;Z) a �nite index subgroup and H the upper half plane, is

given by the set of cusps G0nP1(Q). Our main philosophy is that this should be

replaced by the quotient G0nP1(R) considered as a non{commutative space. This

point of view �ts into the context of recent work [CoDS], [Man4], [Soi].

We support this philosophy by results of two types. First, we show that certain

exact sequences of [Mer], related to the modular complex introduced in [Man1],

which gives a combinatorial de�nition of the homology of modular curves, can be

identi�ed with the Pimsner exact sequence for K{theory of our non{commutative

modular curves. Second, we demonstrate that cusps forms of weight two for congru-

ence subgroups (or rather their Mellin transforms) can be obtained by integrating

along the real axis certain \automorphic series" de�ned in terms of continued frac-

tions and modular symbols (cf. identity (0.16)).
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In a di�erent but related perspective, we also show that the classical de�nition

of modular symbols can be generalized to \limiting modular symbols" which take

into account geodesics on the upper half plane which end at irrational points. We

show that quadratic irrationalities give rise to limiting cycles while, for generic

irrational points, there is a vanishing result in suitable averaged sense. This result

depends on the properties of a generalization of the Ruelle transfer operator (or

Gauss{Kuzmin operator) for the shift on the continued fraction expansion, and its

spectral properties. In the case of the group �0(2) these properties have applications

to the Mixmaster Universe model in general relativity.

0.1. Continued fractions. We start by �xing the notation which will be used

throughout the paper. Considering �rst k1; : : : ; kn as independent variables, put

for n � 1

[k1; : : : ; kn] :=
1

k1 +
1

k2+:::
1
kn

=
Pn(k1; : : : ; kn)

Qn(k1; : : : ; kn)
(0:1)

where Pn; Qn are polynomials with integral coeÆcients which can be calculated

inductively from the relations

Qn+1(k1; : : : ; kn; kn+1) = kn+1Qn(k1; : : : ; kn) +Qn�1(k1; : : : ; kn�1);

Pn(k1; : : : ; kn) = Qn�1(k2; : : : ; kn) (0:2)

It is convenient also to put formally Q�1 = 0; Q0 = 1 which is compatible with

(0.2), (0.1).

From (0.2) one readily sees that

[k1; : : : ; kn�1; kn + xn] =

Pn�1(k1; : : : ; kn�1)xn + Pn(k1; : : : ; kn)

Qn�1(k1; : : : ; kn�1)xn +Qn(k1; : : : ; kn)
=

�
Pn�1 Pn
Qn�1 Qn

�
(xn) (0:3)

where we use the standard matrix notation for fractional linear transformations

de�ning the action of GL(2) on P1:

z 7! az + b

cz + d
=

�
a b

c d

�
(z)

If � 2 (0; 1) is an irrational number, there is a unique sequence of integers

kn(�) � 1 such that � is the limit of [ k1(�); : : : ; kn(�) ] as n ! 1. Moreover,

there is a unique sequence xn(�) 2 (0; 1) such that

� = [ k1(�); : : : ; kn�1(�); kn(�) + xn(�) ]
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for each n � 1. Rational numbers in (0; 1] can be accommodated by allowing �nite

sequences of ki � 1 complemented by zeroes, and similarly for xn(�).

We can specialize (0.3) at the point � and get by induction

� =

�
0 1

1 k1(�)

�
: : :

�
0 1

1 kn(�)

�
(xn(�)): (0:4)

Put

pn(�) := Pn(k1(�); : : : ; kn(�)); qn(�) := Qn(k1(�); : : : ; kn(�))

so that pn(�)=qn(�) is the sequence of convergents to �. Denote also

gn(�) :=

�
pn�1(�) pn(�)

qn�1(�) qn(�)

�

For further use, we reproduce a description of the total set of matrices gn(�).

Put

Redn =

��
0 1

1 k1

�
: : :

�
0 1

1 kn

�
j k1; : : : ; kn � 1; ki 2 Z

�
; (0:5)

and Red := [n�1 Redn � GL(2;Z):

In the terminology of [LewZa1], Redn consists of reduced matrices of length n.

The following properties of Red are proved in that paper:

(i) A matrix in GL(2;Z) is reduced i� it has non{negative entries which are

non{decreasing downwards and to the right.

(ii) The length l(g) of a reduced matrix g and its representation in the form (0.5)

are uniquely de�ned.

(iii) Reduced matrices are hyperbolic and have two distinct �xed points on the real

axis. Every conjugacy class g of hyperbolic matrices in GL(2;Z) contains reduced

representatives. They all have the same length l(g), and there are exactly l(g)=k(g)

of them where k(g) is the maximal integer such that g = hk(g) for some h.

0.1.1. Generalized Gauss problem. Consider a subgroup of �nite index

G � GL(2;Z) and the coset space P = GL(2;Z)=G with the left transitive action

of GL(2;Z) on it:

t 7!
�
a b

c d

�
(t)

For any x 2 [0; 1]; t 2 P; n � 0 put

mn(x; t) := measure of the set f� 2 (0; 1) jxn(�) � x; gn(�)
�1(t0) = tg (0:6)
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where t0 is the base point of P, the coset of G. Notice that xn(�) = gn(�)
�1(�)

so that mn is essentially the pullback of the Lebesgue measure on (0; 1)� P with

respect to the operator gn(�) acting upon � and t simultaneously. Notice also that

gn(�)
�1 is another notation for the n{th power of the shift operator

T : (�; t) 7!
�
1

�
�
�
1

�

�
;

��[1=�] 1

1 0

�
(t)

�

The �rst result of this paper is the following generalization of the Gauss{Kuzmin{

L�evy formula:

0.1.2. Theorem. Assume that Red (t) = P for each t 2 P (transitivity con-

dition), with Red (t) := fgtjg 2 Red � GL(2;Z)g. Then the limit m(x; t) =

limn!1mn(x; t) exists and equals

m(x; t) =
1

jPj log 2 log (1 + x): (0:7)

A proof is given in x1 below. It starts with a straightforward generalization of

the Gauss{Kuzmin inductive expression of mn+1 through mn. To write it down,

consider �rst the following sets: for y 2 (0; 1); s 2 P put

Mn(y; s) := f� 2 (0; 1) jxn(�) � y; gn(�)
�1t0 = sg:

Then we have, using (0.4) and neglecting the rationals which have measure zero:

Mn+1(x; t) =

1a
k=1

�
Mn

�
1

k
;

�
0 1

1 k

�
(t)

�
�Mn

�
1

x+ k
;

�
0 1

1 k

�
(t)

��
:

Therefore,

mn+1(x; t) =

1X
k=1

�
mn

�
1

k
;

�
0 1

1 k

�
(t)

�
�mn

�
1

x+ k
;

�
0 1

1 k

�
(t)

��
: (0:8)

Derivating (0.8) in x, we get the following equation for the densities, which intro-

duces an important operator L, the generalized Gauss{Kuzmin operator:

m0
n+1(x; t) = (Lm0

n)(x; t) :=

1X
k=1

1

(x+ k)2
m0
n

�
1

x+ k
;

�
0 1

1 k

�
(t)

�
: (0:9)

In the classical case, when jPj = 1, at least four ways to deduce (0.7) from (0.9)

are known: two \elementary" deductions going back to R. Kuzmin and P. L�evy
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respectively (see e.g. [Sch]), and two functional analytic methods, based upon the

spectral analysis of the operator L formally de�ned by (0.9): see [Ba], [BaYu] and

[May1].

Clearly, the limiting measure must be an eigenfunction of L corresponding to the

eigenvalue 1, and both analytic proofs show the convergence of Lnm0
0 to this limiting

measure by establishing that 1 is the multiplicity one eigenvalue with maximal

modulus for the extension of L to an appropriate function space. K. Babenko

realizes L as a self{adjoint operator in a Hilbert space, whereas D. Mayer works in

the context of nuclear and trace class operators in Banach spaces.

Of these four proofs, we were able to generalize to our context only Mayer's

method. Babenko's representation seems to be inadequate for proving convergence.

However, it might still be useful for numerical calculations, and we present it in

x1.3.
The operator L and its deformation Ls ((1.1) below) were introduced and studied

also in a recent paper [ChMay], of which we became aware only after the �rst draft

of this paper was written.

0.2. Modular curves and geodesics. Our study of the generalized Gauss

measure (0.7) was motivated by the relationship between continued fractions and

one{dimensional homology of modular curves. We will start by recalling the basic

features of this relationship in the form given in [Man1]; see also [Mer] for additional

information.

Let G0 be a subgroup of �nite index in the fractional linear group PSL(2;Z) =

SL(2;Z)=(�1): It determines the noncompact modular curve G0 nH (where H is

the upper complex half{plane). This curve admits a smooth compacti�cation by

a �nite number of cusps which are in a natural bijection with the set G0 nP1(Q):

Let XG0
(or more precisely, XG0

(C)) denote this compacti�cation, ' the respective

covering map.

For any two points �; � 2 H := H [P1(Q) we can de�ne a real homology class

(\modular symbol") f�; �gG0
2 H1(XG0

;R) by integrating the lifts of di�erentials

! of the �rst kind on XG0
along the geodesic path connecting � to �:

Z
f�;�g

! :=

Z �

�

'�(!): (0:10)

Modular symbols satisfy the basic additivity and invariance properties:

f�; �gG0
+ f�; 
gG0

= f�; 
gG0
;

8g 2 G0; fg�; g�gG0
= f�; �gG0

: (0:11)
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The integrals (0.10) can be related to �nite, stably periodic, or general in�nite

continued fractions, depending on the arithmetical nature of the ends �; �. We will

brie
y treat these three cases separately.

(i) Finite continued fractions. Assume �rst that �; � are cusps. It is known

that in this case the modular symbol represents a rational homology class (Manin{

Drinfeld's theorem).

By additivity, it suÆces to look at the integrals of the form
R �
0
; � 2 Q. Let

gk :=

�
pk�1(�) pk(�)

qk�1(�) qk(�)

�
; k = 1; : : : ; n; � =

pn(�)

qn(�)
:

Then, again by additivity, we have

Z �

0

'�(!) =

nX
k=1

Z pk(�)=qk(�)

pk�1(�)=qk�1(�)

'�(!) = �
nX

k=1

Z
fgk(0);gk(i1)g

!: (0:12)

Finally, in view of (0.11), the k{th integral in (0.12) depends only on the class of

gk in G0 n PSL(2;Z):
Thus, (0.12) establishes a connection between the distribution of modular sym-

bols f�; �gG0
and the distribution of pairs of consecutive convergents to � and �

in P0 := G0 n PSL(2;Z):
Notice that there is a slight discrepancy with 0.1.1 where we dealt instead with

G � GL(2;Z) and GL(2;Z)=G: In order to reduce the current problem to the

former one, we can �rst replace G0 by its lift to SL(2;Z) and then denote by G the

subgroup generated by this lift and

��1 0

0 1

�
. We will have a natural identi�cation

P0 = G n GL(2;Z), and this set in turn identi�es with P in 0.1.1 under the map

g 7! g�1 which is implicit in (0.6).

If � and/or � in (0.10) is real irrational, the integral diverges at this end. In this

case, it is natural to study its asymptotic behavior. We will de�ne the \limiting

modular symbol" by the following expression whenever it makes sense:

ff�; �ggG0
:= lim

1

T (x; y)
fx; ygG0

2 H1(XG0
;R): (0:13)

Here x; y 2 H are two points on the geodesic joining � to �, x is arbitrary but �xed,

T (x; y) is the geodesic distance between them, and the limit is taken as y tends

to �. In x2 we will prove that if the limit does exist, it depends neither on x nor

on �, hence the �rst argument is replaced by �, whereas the double curly brackets

remind about the limit. We will discuss the relation of this symbol to continued

fractions in two situations.
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(ii) Stably periodic continued fractions. Among geodesics with two irrational

ends there is an important subclass consisting of geodesics that connect two �xed

points of a hyperbolic element in G0. More precisely, any hyperbolic g 2 G0 has

two �xed points ��, repelling and attracting, on the real line. Let ��g be the

respective eigenvalues, 0 < �+
g < 1: The oriented geodesic in H connecting ��g

to �+g is g{invariant, and the action of g induces on it the shift by the geodesic

distance �(g) := log��g .

For any point x on this geodesic, the image of its segment [x; gx] is a parame-

terized closed loop on XG0
missing the cusps. (The supporting set{theoretic loop

is ran over exactly k(g) times where k(g) is the maximal k such that g is a k{th

power in G0). The homology class of this loop is f0; g(0)g. When we integrate from

a �xed x to gnx, we run over the parameterized loop n times, the geodesic length

of the path is n�(g), and its homology class is n f0; g(0)g. Therefore the limiting

modular symbol (0.13) exists and equals

ff�; �+g gg =
f0; g(0)g
�(g)

: (0:14)

The most important generating function for closed geodesics is the Selberg zeta

function. However, it encodes only the lengths of closed geodesics in the hyperbolic

metric. The usual modular symbol in the numerator of (0.14) depends only on the

class of g modulo [G0; G0] and is additive in g (see [Man1], Prop. 1.4). Perhaps,

one can construct a generating function for (0.14) as a combination of Selberg's

zetas with abelian characters.

The usual Selberg's zetas were studied in [May1], and then in [LewZa1] for GL

and SL separately. It turned out that they could be represented as Fredholm

determinants det (1� Ls) and det (1� L2
s) respectively. Literally the same is true

in our generalized setting, when subgroups G or G0 are introduced. This is proved

in [ChMay], and we supply a brief discussion of this in x3.
As we have brie
y explained, the distribution of continued fractions and modular

symbols at cusps is encoded in the eigenvalues of L1, 1 being the dominant value

producing the distribution (0.7).

From the identity det (1 � Ls) = Z(s) it follows that the zeroes of Z(s) are

exactly those values for which the deformed operator Ls has eigenvalue 1.

J. Lewis and D. Zagier produced also an in{depth study of the respective eigen-

functions for the full modular groups GL(2;Z) and SL(2;Z):

(iii) General in�nite continued fractions. For this case, we will prove in x2 two

results. Namely, we will establish that with an additional assumption the limiting

modular symbol (0.13) exists only in a weak sense and and is zero.
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0.2.1. Theorem. Assume that Red(t) = P0 for each t 2 P0. Then (0.13)

weakly converges to zero.

For the precise description of the sense in which this convergence holds, see x2.3
and in particular, (2.21). Our prof is based upon Theorem 0.1.2.

This vanishing can be compared with a well known interpretation of the Selberg

trace formula for compact surfaces: quantum mechanical averages for the geo-

desic 
ow can be calculated as if this 
ow were classically concentrated on closed

geodesics.

The transitivity assumption for Red will be checked in x2 in the case G0 = �0(N):

We show that the case N = 2 has a nice little application to the study of the

t = 0 singularity of the Bianchi IX model in general relativity.

The next result of x2 concerns a series of averaging formulas of a di�erent kind.
Drawing on a lemma of P. L�evy, we will explain in x2 how to calculate averages

(over [0; 1]) of some functions of � de�ned by the sums over all pairs of consecu-

tive convergents of �. Here we will state an interesting particular case, providing

averages of weighted modular symbols.

Fix a prime number N > 0 and put G0 = �0(N). We will assume that the genus

of XG0
= X0(N) is � 1, otherwise our identities become trivial. Consider a �0(N){

invariant di�erential '�(!) on H which is a cusp eigenform for all Hecke operators

and denote by L
(N)
! (s) (resp. �(N)(s)) its Mellin transform (resp. Riemann's zeta)

with omitted Euler N{factor. More precisely, the coeÆcients of L
(N)
! (s) are Hecke

eigenvalues of '�(!)=dz.

0.2.2. Theorem. We have for Re t > 0:

Z 1

0

d�

1X
n=0

qn+1(�) + qn(�)

qn+1(�)1+t

Z
f0;qn(�)=qn+1(�)g

! =

"
�(1 + t)

�(2 + t)
� L

(N)
! (2 + t)

�(N)(2 + t)2

# Z i1

0

'�(!): (0:16)

Our calculation of averages of modular symbols like (0.16) and various gener-

alizations in x2.1{2.2 point a way towards understanding what function theory on

non{commutative modular curves may be used in order to recover the theory of

modular forms on the upper half plane. In fact, (0.16) represents Mellin transforms

of weight two cusp forms in terms of the quantities that can be de�ned entirely in

terms of the boundary of the moduli space, and not the traditional integrals along

geodesics: in fact, the integral in the left hand side of (0.16) is taken along the real

axis.
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For us this boundary is P1(R), and not P1(Q) as in the traditional algebro{

geometric compacti�cation, and it is exactly the consideration of this boundary

that leads us into the land of non{commutative geometry: since modular sym-

bols, Hecke operators and continuous fractions all can be expressed in terms of the

(noncommutative) geometry of the boundary, so our L{series as well can. (The

appearance of ! can be avoided since we could consider only eigenvalues of Hecke

operators acting on the modular complex.)

0.3. Relations with non{commutative geometry. As is well{known, the

quotient PGL(2;Z)nP1(R) can be identi�ed with the space of classes of continued

fractions modulo the equivalence relation \kn+n0(�) = kn+n1(�) for some n0; n1
and all n". Classical results on various averages like

limn!1 n�1
nX
i=1

f(ki(�))

state that these averages are almost everywhere constant functions on this space.

On the other hand, this space and its �nite coverings corresponding to subgroups

G � PGL(2;Z) constitute the boundary of the analytic moduli stack of elliptic

curves whose irrational points are invisible in algebraic geometry (only cusps admit

classical algebraic interpretation). According to the emerging general philosophy,

this boundary is a bridge to the world of non{commutative geometry. In particular,

the geometric objects parameterized by this boundary, which are two{dimensional

non{commutative tori modulo Morita equivalence, can be treated as limiting elliptic

curves. For some explanations, see [CoDS], [Soi], [Man4].

Accordingly, the boundary itself should be considered as (a tower of) \non{

commutative modular curves" in Connes' spirit. The modular complex introduced

in [Man1] and further studied in [Mer], [Gon] and other papers, provides a com-

binatorial de�nition of the homology of the modular tower. In x4 we show that

essentially the same complex calculates K{theory of the crossed{products describ-

ing the non{commutative boundary modular tower.

This viewpoint presents in the new light also the identity (0.16) and its gener-

alizations considered in x2.1{2.2. Namely, it demonstrates that at least a part of

the theory of modular forms in the upper half plane can be recast as the study of

averages of certain functions de�ned on the boundary R as sums of the type (2.1).

Their behavior with respect to fractional linear transformations is not modular in

the traditional sense, but their expression via pairs of successive denominators can

be seen as remnants of modularity.

For another family of similar phenomena, see [Za] and [LawZa].

It is interesting to remark in this context that the Gauss{Kuzmin operator Ls
vaguely looks like a \Hecke operator at the arithmetical in�nity", and has some

properties that might be expected of such an operator.
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As a �nal remark, in [Man2] it was shown that after a choice of Schottky uni-

formization, the Arakelov geometry of a complex curve X at arithmetical in�nity

can be described in terms of the hyperbolic geometry of geodesics not on X itself,

but rather in the hyperbolic handlebody having X as the boundary at in�nity.

It would be interesting to clarify the statistical aspects of the closed and in�nite

geodesics in the same vein as above and to relate them to Arakelov geometry. We

hope to return to this question later.
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x1. Gauss{Kuzmin operator

1.1. Operator Ls. Consider the operator Ls acting on functions of two vari-

ables (x; t) and formally given by

(Lsf)(x; t) :=

1X
k=1

1

(x+ k)2s
f

�
1

x+ k
;

�
0 1

1 k

�
(t)

�
: (1:1)

The variable x here varies in a subset of C stable with respect to all maps x 7!
(x + k)�1; k = 1; 2; : : : . In our context this subset will always contain [0; 1]. The

variable t belongs to a �nite GL(2;Z){set P endowed with a base point t0. The

parameter s here is real and > 1=2. We are mostly interested in the case s = 1. In

x3 we will allow s to take complex values. Finally, f will vary in a linear space of

functions stable with respect to Ls and containing the function m0
0(x; t) = Æt;t0 (cf.

0.1.1).

For the proof of Theorem 0.1.2, we want to create a functional analytic context in

which the machinery of Krasnoselskii's theorem as stated in [May1], 7.25, becomes

applicable. To this end we make the following choices, slightly generalizing Mayer.

(They were also made in [ChMay]).

(i) De�nition domain. It will be D�P where D := fz 2 C j jz � 1j < 3=2g: We

will call the subsets D�ftg sheets. Notice that each map z 7! (z+k)�1 transforms

D strictly into itself.

(ii) Functional spaces. We shall consider the complex Banach space BC :=

VC(D�P) consisting of functions holomorphic on each sheet and continuous on its

boundary. We shall also consider the real Banach space B := V (D�P) of functions
holomorphic on each sheet and continuous on its boundary, real at the real points

of each sheet. Both spaces are endowed with the supremum norm. These spaces

obviously contain Æt;t0 and are stable with respect to Ls for real s > 1=2: The space

BC is also stable with respect to Ls with Re s > 1=2:

(iii) Positive cone. Denote by K � B the cone consisting of functions taking

non{negative values at real points of each sheet. We have K \ �K = 0 (K is

proper) because a nonzero analytic function cannot vanish on an interval. We also

have B = K �K (K is reproducing) because f = (f + r)� r, and if r is large and

positive, f + r; r 2 K: Finally, functions positive at all real points of all sheets form

the interior of K.

We write f � g if f � g 2 K:

(iv) Ls is K{positive. This means that Ls(K) � K which is obvious.

1.1.1. Lemma. Assume that P contains no proper invariant subsets with re-

spect to the operators Red (see (0.5)).
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Then for each nonzero f 2 K there exist two real positive constants a; b and an

integer p � 1 such that a � Lpsf � b:

Proof. The upper bound is trivial. Assume that for some f and all p the lower

bound is zero. This means that for each p � 1, Lpsf vanishes at some point (xp; tp)

with xp real in the closure of D: Since in (1.1) all summands are non{negative at

real points, when f 2 K, we see that f must vanish at all points contained in the

set [p�1Redp(xp; tp).
From our assumption it follows that for some q and any t 2 P, Redq(t) = P.

By downward induction we deduce �rst that for any p, Lpsf has real zeroes on all

sheets. Then, again by downward induction, one sees that for each t there exists

a sequence of integers qn ! 1 and real points yn in D such that f(x; t) vanishes

at all x 2 [nRedqn(yn). But the intersection of the latter set with [0; 1] is dense

in [0; 1]. A nonvanishing holomorphic function cannot have as many zeroes. This

contradiction proves our assertion.

1.1.2. Lemma. Ls : BC ! BC is a nuclear operator of order zero, in particular

compact and trace class for Re s > 1=2:

Proof. The reasoning is the same as in [May1], and we only sketch it. Denote

the k{th summand in (1.1) by (�s;kf)(x; t). Each �s;k is nuclear, and
P

k k�s;kk
converges for Re s > 1=2. In fact, the spectrum of �s;k can be easily calculated.

Let zk be the unique �xed point of 
k :=

�
0 1

1 k

�
in D, and �

(k)
i the spectrum

of the permutation induced by this matrix on P. Then the spectrum of �s;k is

f(�1)n(zk + k)�2(s+n)�
(k)
i g, n � 0:

1.2. Proof of the generalized Gauss{Kuzmin Theorem. We have now

checked all the conditions for the applicability of the Theorem 7.25 of [May1]; see

also [KraLS] for more details.

Using this theorem, we conclude that there exists exactly one eigenfunction of

norm one fs of Ls in the interior of K and its eigenvalue �0;s is positive and simple.

All other eigenvalues have strictly lesser modulus. For any f 2 B and � > 0, we

have

Lns f = const�n0;s fs + O(c(�)(q + �)n�n0;s) (1:2)

as n!1, where q = q(Ls) < 1 is the spectral margin of Ls.

In the case s = 1 we know a positive eigenfunction: this is Gauss' density
1

x+ 1
,

independent of t. The normalization constant is straightforward.

This argument completes the proof of the generalized Gauss{Kuzmin theorem.

We will, however, provide some more details about the deduction of (1.2), because

this technique can be useful also in the treatment of lower eigenvalues.
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The basic result that ensures the existence of eigenfunctions in certain invariant

cones is the following ([KraLS], Theorem 9.2):

If K is a cone in a real Banach space B satisfying K �K = B and L is a

compact operator with LK � K, and with positive spectral radius r(L), then r(L)

is an eigenvalue of L with a corresponding eigenfunction in K.

We also recall some results which enable us to establish that the top eigenvalue

of an operator with an invariant cone is simple, and when the rest of the spectrum

is of strictly smaller absolute value.

Following [May1], we say that an operator L is u{bounded, with respect to a

function u 2 K, if for any f 2 K there exists some n > 0 and a; b > 0 such that

au � Lnf � bu

(Since we allow a power of L, this is a weaker de�nition of u{boundedness than the

one on p. 110 of [KraLS], cf. their remark on p. 111.)

Lemma 1.1.1 shows that Ls is u{bounded with respect to the constant function

u(x; t) = 1. The lower bound guarantees the positivity of the spectral radius r(Ls)

and hence the applicability of the Theorem 9.2 of [KraLS]. This fact follows from

Lemma 9.2 of [KraLS].

We then have the following result ([KraLS], Theorem 11.1). Assume that the

cone K is reproducing and the K{positive operator L is u{bounded. Assume

moreover that L has an eigenvalue �0 > 0 with an eigenvector f 2 K. Then

the eigenvalue �0 is simple. A proof of this fact can be obtained using Lemma 11.1

of [KraLS]. This is actually a simple result of linear algebra which uses only the

fact that f is an interior point of the cone (nowhere vanishing), and that iterates

of the operator L map boundary points of the cone di�erent from f0g to interior

points of the cone.

Furthermore, Theorem 11.4 of [KraLS] shows that with the same hypothesis as

in the previous result, every eigenvalue � of L di�erent from �0 satis�es j�j < �0.

This result follows from the observation that if the operator L is u{bounded then

it is also f{bounded, where again f is the eigenfunction in K with eigenvalue �0.

Then, if h is an eigenfunction with eigenvalue � the estimate

��(�0 � �)f � �h � �(�0 � �)f

for some � > 0 follows easily, where � > 0 is the smallest positive number such that

��f � h � �f is satis�ed. This gives j�j � �0 � �.

Since in our case we know that the operator Ls is compact, the previous result

implies that all the other eigenvalues � (hence all the points in the spectrum of Ls)

satisfy the estimate j�j < q�0, for some q < 1.
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Finally, we have a result on the convergence of iterates, cf. Theorem 15.4 of

[KraLS].

The cone K in our case contains some ball of positive radius. In this case,

Theorem 9.11 on p. 97 of [KraLS] ensures that the adjoint operator L� acting on

the dual Banach space B0 has an eigenfunctional f� in the adjoint cone K� of

linear K{positive functionals, with eigenvalue � � r(L) where r(L) is the spectral

radius of L. In our case Ls has an eigenvalue �0 = r(Ls) and a corresponding

eigenfunction f which is an interior point of the cone K. Thus, if L�f� = �f�, for

a non-trivial f� 2 K�, and if moreover f�(f) > 0, then � = �0, because

�0f
�(f) = f�(�0f) = f�(Lf) = (L�f�)(f) = �f�(f):

Assume that the operator L has a simple eigenvalue equal to the spectral radius,

�0 = r(L), and the remaining part of the spectrum lies in the disk j�j < q r(L) for

some q < 1. Let f 2 K be the eigenfunction of the eigenvalue �0. Let f� be an

eigenfunctional for L� in K�, with eigenvalue �0 as above, satisfying f�(f) = 1.

Then the sequence of iterates

fn+1 = Lfn

converges to the eigenfunction f in the following sense.

De�ne the operators Uh := f�(h)f , and U?h := h� f�(h)f . We have

lim
n

kU?fnk
kUfnk = 0

and the rate of convergence is estimated by

kU?fnk
kUfnk � c(�)(q + �)n

kU?f1k
kUf1k ;

for arbitrarily small � > 0. In other words, the iterates converge as fast as a

geometric progression with ratio arbitrarily close to the spectral margin q = q(L),

cf. x15.2 of [KraLS], and in particular Theorem 15.3, where a more re�ned estimate

of the coeÆcient c(�) is also given.

Sometimes similar techniques may be applied to the study of the second eigen-

value, by supplying a suitable real Banach space with an invariant cone for the

operator h 7! Lsh� �0;sf
�(h)f , cf. [May1].

As an example, we will now show that the condition of Lemma 1.1.1 holds for the

congruence subgroup �0(N): For N = 2, the generalized Gauss{Kuzmin Theorem

has a nice application to the dynamical system arising in the general relativity, the

so called \Mixmaster Universe".
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1.2.1. Proposition. Let G be the subgroup generated by the lift of �0(N) and

the sign change. Then Red3(t) = P for any t.

Proof. In fact, elements of P can be thought of as points of the projective line

over Z=N , that is, formal quotients of residues modN that can be represented by

pairwise prime integers ([Man1]). Moreover, this encoding can be chosen compatible

with the usual action of GL(2) upon P1.

Let us break these points into three groups:

(I) fu=1 j (u;N) = 1g:
(II) fdu=1 j d=N; d > 1; (u;N) = 1g:
(III) f1=dug j d=N; d > 1; (u;N) = 1.

Let us say that s can be obtained from t in one step, if s 2 Red1(t), that is,

s = (t+ k)�1 for some k: The following statements are straightforward, and taken

together, prove our claim.

From any single element of I[ II we can obtain in one step all elements of the

set I[ III.
From any single element of III one can obtain in one step an element of II, by

adding zero and inverting. Hence from the total III one can obtain the total II in

one step.

1.2.2. Application to the Mixmaster Universe. \Mixmaster Universe" is

de�ned as the space of solutions of the vacuum Einstein equations admitting SO(3)

symmetry of the space{like hypersurfaces (Bianchi IX model, see [Bo]) whose metric

acquires a singularity as near t! +0. The metric in appropriate coordinates takes

the following form:

ds2 = dt2 � a(t)2dx2 � b(t)2dy2 � c(t)2dz2:

The coeÆcients a(t); b(t); c(t) are called scale factors.

A family of such metrics satisfying Einstein equations is given by Kasner solu-

tions:

a(t) = tp1 ; b(t) = tp2 ; c(t) = tp3 ;
X

pi =
X

p2i = 1:

Around 1970, V. Belinskii, I. M. Khalatnikov, E. M. Lifshitz and I. M. Lifshitz dis-

covered that most of the trajectories in Mixmaster Universe exhibit a chaotic behav-

ior as t ! +0 : see [BeKhLi] and subsequent ampli�cations in [BoN], [KhLiKSS],

[Bar], [May2]. Roughly speaking, the behaviour of a typical trajectory followed

backwards in time (to the \Big Bang") is described in these papers in the following

way.
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Introduce the local logarithmic time 
 along this trajectory: d
 := � dt

abc
: Then


! +1 approximately as �log t as t! +0, and we have:

(i) The time evolution can be divided into \Kasner eras" [
n;
n+1], n � 1:

(ii) Within each era, the evolution of a; b; c is approximately described by Kas-

ner's formula, with variable pi's which depend on an additional parameter u. If we

arrange pi in the increasing order, p1 < p2 < p3; we have

p1 = � u

1 + u+ u2
; p2 =

1 + u

1 + u+ u2
; p3 =

u(1 + u)

1 + u+ u2
:

(see [KhLiKSS], formula (2.1).) The evolution starts with a certain value un > 1,

and proceeds as u diminishes with growing 
 until u becomes less than 1. After

a brief transitional period a new Kasner era starts, with the remarkable transition

formula for the parameter un+1 suggesting that continued fractions can be used to

model the situation:

un+1 =
1

un � [un]
:

(iii) The arrangement of exponents pi(u) of the scaling coeÆcients a; b; c in the

increasing order induces generally a non{identical permutation of these coeÆcients.

Moreover, during each era several such permutations (Kasner cycles) occur: as

u diminishes by 1, the old permutation is multiplied by (12)(3) (see [KhLiKSS],

formula (2.3).) When the era �nishes, the permutation (1)(23) occurs (this is

[KhLiKSS], formula (2.2).)

This means that during one era, the largest exponent decreases monotonically,

and governs the same scale factor, a; b; or c which we will call the leading one. Two

other exponents oscillate between the remaining pair of scaling coeÆcients. The

number of oscillations is about kn := [un]: Denote xn = un � kn:

Summarizing, we see that in this degree of approximation, the individual evolu-

tion of a typical trajectory is determined by a number � 2 (0; 1) whose continued

fraction [k1; k2; k3; : : : ] determines the number of oscillations in each successive Kas-

ner era. Of course, � is de�ned only up to a shift, because the initial point of the

backward evolution can be chosen arbitrarily. Hence the relevant measure is the

Gauss one.

If we want to keep track of the sequence of the leading scale factors as well, we

should introduce a set P: We claim that in this case it corresponds to the lift of

the group �0(2): In fact, consider the action of GL(2;Z) upon P1(F2) = f1; 0;1g:
Then the fractional linear transformation u 7! 1=u corresponding to the transition

to the new era, introduces the permutation (1)(23) of f1; 0;1g;whereas the passage
to a new cycle within one era is described by the transformation u 7! u� 1 which

produces the permutation (12)(3).
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Hence the generalized Gauss{Kuzmin theorem leads in this case to the conclusion

that during evolution along a typical trajectory (i.e. on the set of � of measure 1)

each scale factor becomes the leading one in about one third of Kasner eras.

(iv) We have not yet connected the proper time 
 with the variable u. This is not

directly relevant to our discussion, but we will do it for completeness, and because

this connection can be beautifully rephrased in terms of \double{sided continued

fractions", see [May2], formula (8), [Bar], formulas (43){(45), and formula (4.32)

below.

We start with a formula relating the end{points of 
n and 
n+1 of the n{th era

with the initial value un inside this era. Namely, introduce one more parameter

Æn > 0 characterizing the relative length of the era:


n+1 = (1 + Ænkn(un + 1=xn)) 
n:

If we put then �n = (1� Æn)=Æn, we have the following recursion relation:

�n+1xn =
1

kn + �nxn�1
:

This means that in terms of the variables (xn; yn := �n+1xn) the transition to

the next era is described by invertible double{sided shift operator

~T : (x; y) 7!
�
1

x
�
�
1

x

�
;

1

y + [1=x]

�
;

which is studied in [May2] and [KhLiKSS].

Having thus completed our discretized description of the evolution along an in-

dividual trajectory, we have to warn the reader that it refers, strictly speaking,

to another dynamical system which is de�ned on the boundary of a certain com-

pacti�cation of the phase space of the Mixmaster Universe. This boundary whose

construction involves a nontrivial real blow ups at the t = 0 subspace was �rst

constructed in [BoN]; see details in [Bo]. The boundary is an attractor, it sup-

ports an array of �xed points and separatrices, and the jumps between separatrices

which result from subtle instabilities account for jumps between Kasner's regimes.

In what sense this picture approximates the actual trajectories, is not quite trivial

question: cf. the last three paragraphs of the section 2 of [KhLiKSS], where it is

explained that among these trajectories there can exist \anomalous" cases when

the description in terms of Kasner eras does not make sense, but that they are, in

a sense, in�nitely rare.

1.3. The integral kernel operator. In this subsection, we consider the

formal operator (1.1) in another functional space, and show that it admits there a

representation with integral kernel, generalizing that of [Ba], [BaYu].



18

We will have to assume additionally that the GL(2;Z){set P (see 1.1) is such

that the action

t 7!
�
0 1

1 k

�
(t)

depends only on kmodN for an appropriate integer N . This assumption is satis�ed

for instance when G is a congruence subgroup. In the following, we �x such N .

With this assumption, (1.1) can be written as

(Lsf)(z; t) =

0X
p=�N+1

X
k: k�1; k�p (N)

1

(k + z)2s
f

�
1

k + z
;

�
0 1

1 p

�
(t)

�
(1:3)

Our new functional space H will consist of functions f(z; t) holomorphic on the

sheets fRe z > �1=2g � t.

We �rst recall a useful identity which is the essential ingredient in the arguments

of [Ba], [BaYu], [May1], namely

X
k�1

1

(k + z)2s
exp

� ��
k + z

�
= ��s+1=2

Z 1

0

�s�1=2e��(z+1=2)
J2s�1(2

p
��)

2 sinh(�=2)
d�: (1:4)

(This is the formula (111) of [May1] rewritten in a way that looks more similar to

the corresponding formula in [Ba], [BaYu].)

For our purpose, it is useful to consider also the following corollary of (1.4).

1.3.1. Lemma. Let p 2 f�N + 1; : : : ; 0g. We have

X
k: k�1; k�p (N)

1

(k + z)2s
exp

�
� �

k + z

�
=

N2s�2��s+1=2
Z 1

0

�s�1=2 exp (�� (z + p+N=2))
J2s�1(2

p
��)

2 sinh (N�=2)
d�: (1:5)

Proof. We have

X
l�1

1

(p+ lN + z)2
exp

�
� �

p+ lN + z

�
=

1

N2

X
l�1

1

(l + (z + p)=N)2
exp

�
� �=N

l + (z + p)=N
:

�
:

Plugging (1.4) in and redenoting N� as the new �, we get (1.5).
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It is convenient to write the functions f(z; t) in the form

f(z; t) =

jPj�1X
j=0

fj(z)Æj(t);

with respect to a basis of delta functions. We have

Æj

��
0 1

1 p

�
(t)

�
=
X
l

Ajl(p) Æl(t);

where A(p) is the matrix representing the permutation of the sheets.

With this notation, we can write Ls in the form

(Lsf)(z; t) =

jPj�1X
j=0

0X
p=�N+1

X
k: k�1; k�p (N)

fj

�
1

k + z

�
1

(k + z)2s
Æj(

�
0 1

1 p

�
(t)) =

jPj�1X
j;l=0

0X
p=�N+1

X
k: k�1; k�p (N)

fj

�
1

k + z

�
1

(k + z)2s
Ajl(p)Æl(t):

We now introduce the following operators. Let L denote the Fourier{Laplace

transform

(Lg)(z; t) :=
Z 1

0

e��zg(�; t)d�:

We also de�ne the multiplication operator

(Tg)(�; t) := e��=2g(�; t);

as in [Ba], [BaYu], and

(Sg)(�; t) := S(�) g(�; t);

with

S(�) =
(1� e�N�)1=2

��1=2+s
:

The operator LT is an isometric isomorphism between the space L2((0;1) � P)

and H endowed with the norm

kfk2 := 1

2�

jPj�1X
j=0

Z 1

�1

jfj(0 + iy)j2dy:
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De�ne the matrix function

�jl(�) := e�(N�1)�=2
0X

p=�N+1

e��pAjl(p): (1:6)

We can and will choose its square root with complex valued real analytic entries

�
1=2

jl (�):

�jl(�) =

jPj�1X
k=0

�
1=2

jk (�)�
1=2

kl (�);

for all � 2 (0;1). We de�ne

�̂jl(�) := e�(N�1)�=4�
1=2
jl (�): (1:7)

The results of the following Lemma and Proposition represent the analog in our

setting of the main result of [Ba], see also 7.4.2 of [May1].

1.3.2. Lemma. For a function f(z; t) =
P

j fj(z) Æj(t) such that

fj = LTS�1hj ;

we can write the operator Ls in the form

(Lsf)(z; t) =

jPj�1X
l=0

(

jPj�1X
j=0

Z 1

0

e��zS(�)�1�jl(�)e
��=2e�N�=4�

Z 1

0

~�(�; �)eN�=4e��=2hj(�)d�d�) Æl(t) (1:8)

with a function ~�(�; �) satisfying ~�(�; �) = ~�(�; �).

Proof. Assume that the functions fj(z), for j = 0; : : : ; jPj � 1, are in the range

of the operator LT , namely

fj = LTgj;
for some function gj in L2(0;1). This means that we can write

fj(z) =

Z 1

0

e��ze��=2gj(�)d�:

We now apply (1.5) and obtain

= N2s�2

Z 1

0

��s+1=2
Z 1

0

�s�1=2e��(z+p+N=2)
J2s�1(2

p
��)

2 sinh(N�=2)
e��=2gj(�)d�d�:
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With our previous de�nition of �(�) as in (1.6) we can write

X
p

X
k: k�1; k�p (N)

fj

�
1

k + z

�
1

(k + z)2s
Ajl(p) =

N2s�2

Z 1

0

e��z
Z 1

0

(
�

�
)1=2�s

J2s�1(2
p
��)

2 sinh(N�=2)
e�(�+�)=2�jl(�)gj(�)d�d�:

Now, for gj(�) = S(�)�1hj(�), this can be rewritten as

Z 1

0

e��zS(�)�1�jl(�)

Z 1

0

N2s�2J2s�1(2
p
��)p

2 sinh(N�=2)1=2
e�(�+�)=2e�N�=4 gj(�)

�1=2�s
d� d� =

Z 1

0

e��zS(�)�1�jl(�)

Z 1

0

~�(�; �)e�(�+�)=2e�N�=4eN�=4hj(�)d� d�;

where we have set

~�(�; �) :=
N2s�2J2s�1(2

p
��)

2 sinh(N�=2)1=2 sinh(N�=2)1=2
:

Now the �nal step.

1.3.3. Proposition. On the range of R := LTS�1�̂, the operator Ls satis�es

R�1LsR =M;

where M is the integral kernel operator

(M�)(�; t) =

jPj�1X
i=0

Z 1

0

jPj�1X
j=0

Mij(�; �)�j(�)d� Æi(t);

with �(�; t) =
P

j �j(�)Æj(t). The integral kernel is of the form

Mij(�; �) = �(�; �)
X
r

�̂jr(�)�̂ri(�);

where the function

�(�; �) = e(N=4�1=2)(�+�)~�(�; �)
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still satis�es �(�; �) = �(�; �), but the integral kernel is in general not symmetric.

Proof. For a function

f(z; t) =

jPj�1X
j=0

fj(z)Æj(t) =

jPj�1X
j=0

Z 1

0

e��ze��=2S(�)�1
jPj�1X
i=0

�̂ij(�)�i(�)d� Æj(t);

we have

(Lsf)(z; t) =

jPj�1X
l=0

(Lsf)l(z)Æl(t);

with (Lsf)l(z) of the form

jPj�1X
j=0

Z 1

0

e��z�jl(�)e
��=2S(�)�1

Z 1

0

e�N�=4~�(�; �)eN�=4e��=2
jPj�1X
i=0

�̂ij(�)�i(�)d�d�:

We can write this equivalently as

jPj�1X
k;i=0

Z 1

0

e��z�̂kl(�)e
��=2S(�)�1

Z 1

0

Mik(�; �)�i(�)d�d�;

where we de�ne

Mki(�; �) := e(N=4�1=2)(�+�)~�(�; �)

jPj�1X
j=0

�̂ij(�)�̂jk(�):

Thus, we have obtained

Ls LTS�1�̂ � = LTS�1�̂M �:

1.4. Remarks about the l{adic case. Let l be a prime number, Zl (resp.

Ql) the ring of l{adic integers (resp. the �eld of all l{adic numbers). Put also

Z l :=
n n
lr
jn; r 2 Z; r � 0

o
\ (0; l) � Q; Zl := Z l n f1; 2; : : : ; l� 1g: (1:9)

Every irrational � 2 Ql has a unique representation in the form

� =
a�r

lr
+ � � �+ a�1

l
+ a0 + a1l + � � �+ asl

s + : : : ; ai 2 f0; 1; : : : ; l� 1g:
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The l{adic norm of this � is j�jl = lr if a�r 6= 0: We then put

[�]l :=
a�r

lr
+ � � �+ a�1

l
+ a0 2 Z l: (1:10)

In more invariant terms, [�]l is the unique element in Z l such that j�� [�]lj < 1:

Repeating the usual reasoning, one sees that each irrational l-adic � with j�jl < 1

determines a unique sequence of kn(�) 2 Zl and xn(�) 2 lZl n f0g such that

� = [ k1(�); : : : ; kn�1(�); kn(�) + xn(�) ] (1:11)

for each n � 1. We get thus the formalism of the theory of continued fractions

in the l{adic setting, in which R;Z; [0; 1) are replaced respectively by Ql;Zl; lZl.
Notice that the successive convergents are still rational numbers, but the incomplete

quotients kn(�) generally are not integral.

It will be convenient to restrict ourselves to irrational � in Q�
l nZ�l : In this case

all kn(�) will belong to Zl.
The shift operator is given by T : � 7! ��1 � [��1]l, and it transforms Q�

l n Z�l
into itself.

The de�nition of a (deformed) transfer operator, however, presents interesting

new problems. We can consider two basic options.

(A) We can try to de�ne the formal transfer operator by the classical formula

(Lsf)(x) :=
X
k2Zl

1

(x+ k)2s
f

�
1

x+ k

�
(1:12)

in which Z is replaced by Zl:
We could have included a second argument t, but did not do it in order to focus

on the peculiarity of (1.12) apparent already in this straightforward version of the

classical setting. Namely, we should not imagine f as a function taking real or

complex values. In fact, otherwise
1

(x+ k)2s
will be de�ned only at rational points

x and will not tend to zero as k runs over Zl since from the archimedean viewpoint,

Zl is a dense set inside [0; l) so that (1.12) will tend to diverge, unless f is highly

discontinuous and tends to zero when the denominator of the argument tends to

in�nity. But this last property will be lost after an application of Ls.

However, Zl is discrete and unbounded in the l{adic sense, so that (1.12) still

makes sense as an operator in various l{adic function spaces. For example, one

can consider the space of analytic functions on lZl represented by convergent seriesP
n�0 anx

n.
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This remark, and parallels with the theories of l{adic uniformization and Drinfeld

modules, suggest the following problems.

(i) Find a natural Banach space of l{adic functions in which (1.12) would de�ne

a compact operator.

Since compact operators are nuclear in the l{adic theory, this would allow us to

de�ne l{adic Selberg's zeta values at integral points 2s > 0 as det (1� L2s).

(ii) De�ne the set of l{adic reduced matrices by the same prescription as (0.5),

but this time with ki running over Zl.
Can one �nd a characterization of this set similar to that given in [LewZa1] and

reproduced in 0.1? Assuming we know an l{adic zeta, can one �nd an Euler product

for it similar to (3.1) below?

(iii) Again assuming a positive answer to the �rst question, is there an eigen-

function with eigenvalue 1 of L1? Can one �nd its measure{theoretic interpretation

in terms of Mazur's theory of l{adic integration? (See e. g. [Man5], x8 and 9).

At this point, we may notice that the passage from T to L1 in the classical case

implicitly involves integration with respect to the additively invariant measure,

since these operators are adjoint via the obvious bilinear form determined by this

integration, cf. formula (2.19) below.

It is well known that this invariant measure becomes inadequate for integrating

l{adic valued functions, for the simple reason that the smaller is, say, an l{adic

ball, the larger is its invariant measure l{adically.

Instead, the l{adic integration invented by B. Mazur for treating l{adic L{

functions, utilizes �nitely additive functions on open/closed subsets of, say, Zl
which take values in bounded subsets of �nite{dimensional l{adic spaces. Such

measures produce linear functionals on the spaces of functions satisfying the Lip-

schitz condition. See [Man5], x8 and x9, where a more general class of measures of

moderate growth is introduced and studied as well.

Hence another option, perhaps more natural than the formal prescription (1.12)

is:

(B) De�ne and study the transfer operators on various spaces of l{adic measures,

as well as appropriate modi�cations of the questions (i){(iii).
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x2. Calculation of certain averages

2.1. P. L�evy's lemma. Let f be a complex valued function de�ned on pairs of

coprime integers (q; q0) such that q � q0 � 1 and f(q; q0) = O(q�") for some " > 0:

Put for � 2 (0; 1]

l(f; �) =

1X
n=1

f(qn(�); qn�1(�)): (2:1)

2.1.1. Proposition (P. L�evy, 1929). We haveZ 1

0

l(f; �)d� =
X

0 f(q; q0)

q(q + q0)
: (2:2)

Sums and integrals in (2.1), (2.2) converge absolutely and uniformly.

A notational convention: prime at the summation sign as in (2.2) refers to the

domain q � q0 � 1, (q; q0) = 1.

Proof. This Proposition is an immediate consequence of the following statement.

For any q � q0 � 1 with (q; q0) = 1 there exists a unique n � 0 such that one

can �nd � 2 (0; 1] with qn(�) = q; qn�1(�) = q0: Moreover, all such � form a

semi-interval of length
1

q(q + q0)
.

In fact, assume that such an � and n exist, and let pn(�)=qn(�); pn�1(�)=qn�1(�)

be the respective convergents to �, then we have

pn�1(�) qn(�)� pn(�) qn�1(�) = (�1)n:
Together with the conditions pk(�) � qk(�) this allows us to reconstruct n uniquely

by induction and shows that all � with this property �ll the semi-interval

pn�1(�)z + pn(�)

qn�1(�)z + qn(�)
; z 2 (0; 1]:

(cf. (0.3)). Conversely, for any (q; q0) we can start with complementing this line by

p � q; p0 � q0 to a reduced (2; 2){matrix with determinant �1, and then produce

the continued fraction for p=q with neighboring convergents p=q, p0=q0: This proves

the lemma.

It is often convenient to have the summation domain in (2.2) extended to all

q � q0 � 1: One can do this by �rst extending f to this domain in the following

way: choose a function � :N! Z and a number t and put

F (q; q0) := �(d) d�t f(q; q0); d := g: c: d: (q; q0): (2:3)
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Then X
0 f(q; q0)

q(q + q0)
= �(�; t)�1

X
q�q0�1

F (q; q0)

q(q + q0)
; (2:4)

where �(�; t) :=
P

d�1 �(d) d
�t: (This remark is also contained in [L].)

We will now combine this with the results of [Man1] in order to prove Theorem

0.2.2.

2.2. Averaging weighted modular symbols. In this subsection we keep

the notation explained before the statement of the Theorem 0.2.2. In particular,

modular symbols refer to the group �0(N): We start with the identity (20) in

[Man1]: X
d=m

dX
b=1

Z
f0;b=dg

! = (�(m)� cm)

Z i1

0

'�(!): (2:5)

Here (m;N) = 1; ��(!)=dz is a cusp form for �0(N) with eigenvalue cm with

respect to the Hecke operator Tm, �(m) is the sum of the divisors of m:

Multiply this identity by m�2�t and sum over all m prime to N :

X
m: (m;N)=1

1

m2+t

X
d=m

dX
b=1

Z
f0;b=dg

! =

2
4 X
m: (m;N)=1

�(m)

m2+t
� L(N)

! (2 + t)

3
5 Z i1

0

'�(!):

(2:6)

Any symbol f0; q0
q
g; (q; q0) = 1; occurs in the guise f0; b

d
g for some d=m only when

q divides m, and then exactly �(mq�1) times where � is the number of divisors.

Hence the integration path in the left hand of (2.6) can be rewritten in the following

way: X
m: (m;N)=1

X
q=m

�(mq�1)

m2+t

X
q0�q; (q;q0)=1

f0; q
0

q
g =

X
n: (n;N)=1

�(n)

n2+t

X
q: (q;N)=1

P
q0�q; (q;q0)=1f0; q

0

q
g

q2+t
=

�(N)(2 + t)2

2
4 X
q: (q;N)=1

1

q2+t

X
q0�q; (q;q0)=1

f0; q
0

q
g
3
5 : (2:7)

Moreover, the �rst series inside the square brackets in (2.6) equals

�(N)(1 + t) �(N)(2 + t):
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Hence (2.6) divided by �(N)(2 + t)2 can be rewritten as

X
q: (q;N)=1

1

q2+t

X
q0�q; (q;q0)=1

Z
f0; q

0

q
g

! =

"
�(N)(1 + t)

�(N)(2 + t)
� L

(N)
! (2 + t)

�(N)(2 + t)2

# Z i1

0

'�(!): (2:8)

The left hand side of (2.8) can be represented as the right hand side of (2.2) with

the function f(q; q0) which vanishes for q=N and otherwise equals

f(q; q0) =
q + q0

q1+t
f0; q

0

q
g: (2:9)

Let us de�ne a new function ~f(q; q0) by the same formula (2.9) for all relatively

prime (q; q0): Since N is prime, we have f0; q0
q
g = f0; i1g for N=q: Therefore,

writing (2.2) for this ~f , and integrating '�(!), we get on the left hand side the

same expression as on the left hand side of (0.13). The right hand side becomes

the sum of the right hand side of (2.8) and

1X
d=1

�(Nd)

(Nd)2+t

Z i1

0

'�(!) =

�
�(1 + t)

�(2 + t)
� �(N)(1 + t)

�(N)(2 + t)

� Z i1

0

'�(!) (2:10)

where � is the Euler function. This sum equals the right hand side of (0.16). This

completes the proof.

2.2.1. Comments and variations. The distribution of modular symbols

was studied by D. Goldfeld ([Gol1], [Gol2]) who has found interesting connections

between the conjectural asymptotic behavior of certain sums involving such symbols

and other number{theoretical problems, e. g. the abc{conjecture. One of Goldfeld's

conjectures reads: X
c2M2+d2�X

c�0 (N)

f0; b
d
gN � R(iM)X

as X ! 1, where the sum is taken over matrices in �0(N), R(iM) :=
R i1
iM

, and

both sides are considered as functionals on the space of �0(N) cusp forms of weight

two.

D. Goldfeld and C. O'Sullivan introduced a class of Eisenstein series twisted by

modular symbols and established their analytic properties. The simplest series of
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this kind can be represented as the right hand side of (2.2) if one chooses for f the

following function (depending on z; s as parameters):

f(q; q0)

q(q + q0)
:= �(q) f0; q

0

q
gN

X
g2A

q;q0

Im (gz)s

where Aq;q0 is the set of matrices in �0(N) with the second column (q0; q)t.

Here is another class of quite simple functions f that might produce interesting

specializations of (2.2):

f(q; q0)

q(q + q0)
:=

�1(q)�2(q
0)

qs1q0s2
:

They lead to some identities involving double logarithms at roots of unity at the

right hand side of (2.2). As Goncharov has shown in [Gon], relations between these

numbers can be described in terms of the modular complex for �1(N). This stresses

the relevance of the modular symbols in the study of the distribution of continued

fractions.

Our last example is a function that was introduced in [AlZa]:

f(q; q0)

q(q + q0)
:= x

P
kj(q=q

0)�1 q log2 q:

2.3. Proof of the Theorem 0.2.1. We now return to the notation and

conventions explained in the paragraph around formula (0.13). In particular, � is

real irrational. We start with proving that whenever the limit (0.13) exists, it does

not depend on � (independence on x 2 H with �xed � is obvious).

We will compare the behavior of (0.13) for two geodesics �1;�2 ending at �. It

suÆces to consider the case when �1 starts from i1, whereas �2 starts from some

real � < �.

Denote by pn(�)=qn(�) = pn=qn the convergents to �. If n is large enough

and has the appropriate parity, the respective convergents will have the following

positions on the real line:

�+ �

2
<

pn�1

qn�1
< � <

pn

qn
: (2:11)

Besides, we always have ����pn�1qn�1
� �

���� >
����pnqn � �

���� : (2:12)
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Let [a; b] generally denote the geodesic joining a to b. De�ne two sequences of points

in H by

zn := �1 \
�
pn�1

qn�1
;
pn

qn

�
; �n := �2 \

�
pn�1

qn�1
;
pn

qn

�
: (2:13)

From (2.11){(2.13) it follows that

1

2qnqn+1
< Im zn <

1

2qn�1qn
;

and if moreover n is large enough,

�

2qn+2qn+1
< � Im zn+1 < Im �n � 1

2qn�1qn

where � is some �xed constant between 0 and 1. The easiest way to convince oneself

of this is to look at a picture containing all the relevant geodesics.

zn

zn+1

ζn

pn+1
qn+1

p
n-1

q n-1

pn q
n

ζn+1

α β

The geodesic distance from any �xed x1 2 �1 to z 2 �1 equals �log Im z +O(1)

as z ! �. The similar distance from a �xed x2 2 �2 to � 2 �2 to � equals

�log Im � + O(1) as � ! �.

Taking into account our inequalities and the additivity of modular symbols, we

obtain
1

T (x1; zn)
fx1; zng = 1

T (x2; �n) + O(1)
[fx2; �ng+ O(1)]: (2:15)
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From this and (2.14) it follows that both limits exist or otherwise simultaneously,

and have a common value whenever they both exist.

Moreover, according to the Khintchin{L�evy theorem we have for almost all �

log qn = Cn(1 + o(1)); C =
�2

12 log 2
(2:16)

as n!1. Hence for almost all � we can replace the limit (0.13) by

limn!1

1

2Cn
fi1; zng = limn!1

1

2Cn

nX
i=1

�
pi�1(�)

qi�1(�)
;
pi(�)

qi(�)

�
: (2:17)

Temporarily �xing n, we will consider the sum of modular symbols on the right

hand side of (2.17) as a function of �, and then prove that the resulting sequence of

functions weakly converges to zero in the L2{sense. For this, we need the following

lemma.

2.3.1. Lemma. Let P0 be a �nite left GL(2;Z){set such that Red�1(t) = P0

for each t 2 P0: Let ' : P0 ! H be a function with values in an R{vector space,

t0 2 P0: Then we have

limn!1

1

n

nX
i=1

'(gi(x)
�1 t0) =

1

jP0j
X
s2P0

'(s); (2:18)

where the limit is taken in the sense of weak convergence in L2([0; 1]�P0), and

gk(x) =

�
pk�1(x) pk(x)

qk�1(x) qk(x)

�
:

Proof. Consider the shift

T (x; t) =

�
1

x
�
�
1

x

�
;

��[1=x] 1

1 0

�
(t)

�

We denote by � the measure on [0; 1]�P0 given by the standard Lebesgue measure

on [0; 1] and the counting measure on P0.

The Gauss{Kuzmin operator L = L1 that we discussed in x1 is the adjoint of this
shift T , in the sense that, for any function h 2 L1([0; 1]� P0; �) and any f 2 BC
we have Z

[0;1]�P0

f � Lhd� =

Z
[0;1]�P0

(f Æ T )h d�: (2:19)
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The eigenfunctional of of L� denoted f� 2 K� in x1.2 can be taken as

h 7!
Z
[0;1]�P0

h(x; t)d�(x; t):

From 1.2 it follows that for any h 2 BC we have strong convergence

lim
n!1

1

n

nX
k=1

(Lkh)(x; t) =
1

jP0j log 2
1

1 + x

Z
[0;1]�P0

h d�: (2:20)

According to (2.19), this is equivalent to the convergence

Z
[0;1]�P0

1

n

nX
k=1

f(T k(x; t))h(x; t)d�(x; t)!

1

jP0j log 2

 Z
[0;1]�P0

f(x; t)

1 + x
d�(x; t)

! Z
[0;1]�P0

h d�;

for any f 2 BC and any test function h 2 BC. If we consider a function f(x; t) =

'(t), independent of x 2 [0; 1], we obtain that for any t

1

n

nX
k=1

'(gk(x)
�1t)! 1

jP0j
X
s2P0

'(s)

weakly in L2, because among the test functions we have all polynomials.

This is equivalent to (2.18) for C{valued functions and therefore also for vector{

valued ones.

We can now conclude the proof of the Theorem 0.2.1. If our modular curve is

G0 n H, we put P0 = PSL(2;Z)=G0 and consider P0 as a left GL(2;Z){set as

explained in the Introduction.

Since modular symbols are left G0{invariant, we can �nd a function ' and t0 2
P0 such that

'(gk(�)
�1 t0) = fgk(�)(0); gk(�)(i1)g =

�
pk�1(�)

qk�1(�)
;
pk(�)

qk(�)

�
:

It follows from (2.18) that the weak limit (2.17) is

1

2C jP0j
X
k

fhk(0); hk(i1)g
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where hk now run over a complete set of representatives of P0. But this last sum

vanishes. In fact, let

� =

�
0 �1
1 0

�
:

Then fhk�g as well is a complete system of representatives, and

f�(0); �(i1)g = �f0; i1g:

Let us stress that the pointwise behavior of (2.17) might be wildly oscillating. We

proved only that for any measurable set E we have

limn!1

1

n

Z
E

nX
i=1

�
pi�1(�)

qi�1(�)
;
pi(�)

qi(�)

�
d� = 0: (2:21)
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x3. Selberg's zeta function
3.1. Notation. In this section we explain the de�nition of Selberg's zeta for

subgroups of �nite index G � GL(2;Z) and G0 � SL(2;Z), their representation as

Fredholm determinant, and relations to geodesics on modular curves. We closely

follow [LewZa1], pp. 3{6, whose version requires only minor modi�cations. For a

much more comprehensive treatment, see [ChMay].

As in [LewZa1], for g 2 GL(2;Z) put

D(g) = Tr (g)2 � 4 det (g); N(g) =

�
Tr (g) +D(g)1=2

2

�2

;

and call g hyperbolic if Tr (g) and D(g) are positive. A hyperbolic matrix is prim-

itive if it is not a nontrivial power of an element of GL(2;Z). For a hyperbolic g

set

�s(g) =
N(g)�s

1� det (g)N(g)�1
:

As above, put P := GL(2;Z)=G and denote by �P the natural representation of

GL(2;Z) in the space of functions on P. Finally, put

ZG(s) :=
Y

g2Prim

1Y
m=0

det
�
1� det (g)mN(g)�s�m �P(g)

�
(3:1)

where Prim is a set of representatives of all GL(2;Z){conjugacy classes of primitive

hyperbolic elements of GL(2;Z).

For G0 � SL(2;Z); we de�ne ZG0
(s) in the same way, replacing Prim by Prim0,

a set of representatives of all SL(2;Z){conjugacy classes of primitive hyperbolic

elements of SL(2;Z), and P by P0.

3.2. Theorem. We have

ZG(s) = det (1� Ls); ZG0
(s) = det (1� L2

s) (3:2)

where Ls is given by (1.1) and considered as a nuclear operator in the space BC.

We give only a sketch of formal calculations for ZG(s). Using notation as in the

proof of Lemma 1.1.2, we have

�log det (1� Ls) =

1X
l=1

TrLls
l

= Tr

0
@ 1X

l=1

1

l

 
1X
n=1

�s;n

!l
1
A =
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Tr

0
@ X
g2Red

1

l(g)
�s(g)

1
A =

X
g2Hyp

1

k(g)
�s(g) �g: (3:3)

Here we de�ne the operator �s(g) for a reduced matrix g as in (0.5) as the product of

the respective �s;ki, and l(g) means its length. Hyp denotes a set of representatives

of all conjugacy classes of hyperbolic matrices, and k(g) the maximal integer such

that g = hk(g): The last piece of notation is

�g := Tr (�P(g)) = card ft 2 P j g(t) = tg: (3:4)

The appearance of �g is explained by the fact that our �s(g) acts as the tensor

product of the similar operator �s(g) for the case G = GL(2;Z) and of �P; and our

trace is the product of the respective traces.

Using the properties (i){(iii) of Red summarized at the end of 0.1, we can keep

rewriting (3.3):

X
g2Hyp

1

k(g)
�s(g) �g =

X
g2Prim

1X
k=1

1

k

N(g)�ks �gk

1� det (g)kN(g)�k
: (3:5)

On the other hand, from (3.1) we �nd:

�logZG(s) =
X

g2Prim

1X
m=0

Tr

1X
k=1

1

k
det (g)mkN(g)�(s+m)k �P(g

k) =

X
g2Prim

1X
k=1

1

k

N(g)�ks �gk

1� det (g)kN(g)�k
(3:6)

This �nishes the formal argument which di�ers from that of [LewZa1], x1, only
by the presence of �g. The subsequent check of convergence in [LewZa1] and the

argument of x3 concerning SL generalize in the same straightforward way.

Finally, in order to interpret (3.6) in the language of closed geodesics, it remains

only to notice that if G � GL(2;Z) is the lift of G0 � PSL(2;Z) as in the In-

troduction, then G0 nH can be naturally identi�ed with GL(2;Z) n (H �P), and

any closed geodesic on the respective modular curve is covered by the geodesics

[��g ; �
+
g ] lying on those sheets which are left invariant by the respective hyperbolic

matrix g 2 G; in agreement with (3.4).
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x4. Non{commutative geometry and the modular complex

4.1. Non{commutative modular curves. As discussed in the Introduction,

we want to regard the boundary P1(R) with the action of PSL(2;Z) as a moduli

space of \non{commutative elliptic curves", where the quotient PSL(2;Z)nP1(R)

is itself a non{commutative space. According to the general philosophy underlying

non{commutative geometry, this is done by replacing the quotient with the crossed

product of an algebra of functions on P1(R) by the action of the group PSL(2;Z).

More generally, we can consider the quotientsGnP1(R) as non{commutative spaces,

where G is a �nite index subgroup of PSL(2;Z). The classical quotient

Gn(H [P1(Q));

with H the upper half plane, is the modular curve GnH together with its algebro{

geometric compacti�cation by the set of cusps GnP1(Q). The quotient of the full

P1(R) can be regarded as that part of the analytic boundary which is invisible to the

algebro{geometric compacti�cation, and can be considered as a \non{commutative

modular curve" when replaced by the crossed product. We can either consider the

crossed product

C(P1(R))oG (4:1)

or, if P denotes the coset space P = PSL(2;Z)=G, we can consider the (reduced)

crossed product C�{algebra

C(P1(R)�P)o PSL(2;Z): (4:2)

The C�{algebras (4.1) and (4.2) are strongly Morita equivalent.

For a discussion of some properties of crossed product C�{algebras arising from

the action of Fuchsian groups on their limit set, see e.g. [An{De], [LaSp], [Spi].

We argued in the Introduction that the modular complex introduced in [Man1]

and further studied in [Mer] provides a de�nition of cohomology of our boundary

space compatible with passage to the limit. In this section we show that, in fact,

the modular complex can be related to some standard homological constructions of

non{commutative geometry for the non{commutative spaces (4.1) or (4.2).

4.2. Notation. In the following we denote by X̂ = P1(R) � P, with P the

coset space P = PSL(2;Z)=G. Moreover, we have PSL(2;Z) = Z=2 � Z=3, where
we denote by

� : x 7! �1=x (4:3)

the generator of Z=2 acting on P1(R) and by

� : x 7! �1=(x� 1) (4:4)
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the generator of Z=3. This action is conjugate to the action on the unit circle by

rotation by � or 2�=3, respectively. Let XG = XG(C) denote the modular curve

XG = GnH;

with

H = H [P1(Q):

We denote by ~I and ~R the elliptic points, namely the orbits ~I = PSL(2;Z) � i
and ~R = PSL(2;Z) � �. We denote by I and R the image in XG of the elliptic

points

I = Gn~I (4:5)

R = Gn ~R; (4:6)

with � = e�i=3. Finally, for x and y in H we denote by hx; yi the oriented geodesic

arc connecting them.

4.3. Modular complex. We consider the following complex:

0{cells: the cusps GnP1(Q), and the elliptic points I and R.

1{cells: the oriented half{edges oriented from the parabolic to the elliptic point:

Gnfhg(i1); gii; g 2 PSL(2;Z)g
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and the edges

Gnfhg(i); g(�)i; g 2 PSL(2;Z)g:
2{cells: The images of E = fi; �; 1 + i; i1g,

GnfPSL(2;Z) �Eg:

These cells correspond to the image under the projection � : H ! XG of all the

cells that appear in the �gure, including the vertices on the boundary at in�nity of

the hyperbolic disk.

The boundary operators for this complex are given by

@ : C2 ! C1

gE 7! ghi; �i+ gh�; 1 + ii+ gh1 + i; i1i+ ghi1; ii (4:7)

and

@ : C1 ! C0

ghi1; ii 7! g(i)� g(i1) (4:8)

ghi; �i 7! g(�)� g(i): (4:9)

The arguments of [Man1] show that this complex computes the homology of XG,

H1(XG) �= Ker(@ : C1 ! C0)

Im(@ : C2 ! C1)
: (4:10)

4.3.1. Modular complex for relative homology. There are versions of

the modular complex considered in [Mer], computing relative homology of XG with

respect to cusps and elliptic points. Here we consider two cases, which di�er slightly

from those considered in [Mer]. In the modular complex described before, we have

Z[cusps] = C0=Z[R [ I]. The quotient complex

0! C2
@�! C1

~@�! Z[cusps]! 0; (4:11)

where ~@ is the quotient of the boundary operator of the original modular complex,

computes the relative homology H1(XG; R [ I). The cycles are given by Z[P],

that is, combinations of elements ghi; �i, g ranging over representatives of P, and

by the elements �aghg(i1); g(i)i satisfying P agg(i1) = 0. In fact, these can be

represented as relative cycles in (XG; R [ I).

The subcomplex

0! Z[P]
@�! Z[R [ I]! 0; (4:12)
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with Z[P] generated by the elements ghi; �i, computes the homology H1(XG �
cusps), and the homology

H1(XG � cusps; R [ I) �= Z[P] (4:13)

is generated by the relative cycles ghi; �i.
For convenience of notation, we introduce the same notation used in [Mer] for

the relative homology groups

HB
A := H1(XG � A;B;Z):

These groups are related by the pairing

HB
A �HA

B ! Z: (4:14)

In particular, we consider the groups H
cusps
R[I , HR[I

cusps, H
cusps, and Hcusps.

We consider an analog of Merel's exact sequences in this setting, given by the

long exact sequence of relative homology

0! Hcusps ! HR[I
cusps

(~�R;~�I)�����! H0(R)�H0(I)! Z! 0; (4:15)

with Hcusps and HR[I
cusps as above, and with

H0(I) �= Z[PI ]; PI = h�inP = Gn~I (4:16)

H0(R) �= Z[PR]; PR = h�inP = Gn ~R; (4:17)

that is,

0! Hcusps ! Z[P]! Z[PR]� Z[PI ]! Z! 0:

We want to compare modular symbols and the non{commutative topology of the

boundary GnP1(R), in a way that is compatible with group restrictions G0 � G.

In the case of HR[I
cusps and H

cusps
R[I the pairing (4.14) gives the identi�cation of

Z[P] and ZjPj, obtained by identifying the elements of P with the corresponding

delta functions. Thus, we can rewrite the sequence (4.15) as

0! Hcusps ! ZjPj
(�R;�I)�����! ZjPI j � ZjPRj ! Z! 0; (4:18)

with

H
cusps
R[I

�= ZjPj (4:19):



39

The map (~�R; ~�I) of the relative homology sequence (4.15) maps s 7! ([s]R; [s]I),

where s 2 P corresponds to the generator ghi; �i, for g 2 PSL(2;Z) the chosen

representative of s 2 P, and [s]R 2 PR = Gn ~R and [s]I 2 PI = Gn~I are the G{

orbits of g(�) and g(i), respectively. The map (�R; �I) is given by Æs 7! Æ[s]R�Æ[s]I .

4.3.2. Algebraic version. We recall the algebraic formulation of the modular

complex computing Hcusps = H1(XG; cusps), following [Man1] x1.8 (a).
We consider the set of generators Æs with s 2 P, given by the modular symbols

fg(0); g(i1)gG, with g in the chosen set of representatives of the cosets P. The

relations given by the 2{cells can be described as follows. Consider the subgroup C

of ZjPj with generators Æs and relations Æs�Æ�s or Æs if s = �s. Then the homology

group Hcusps can be identi�ed with the quotient of C by the subgroup generated

by Æs � Æ�s � Æ�2s, or Æs if s = �s. This follows from the arguments of [Man1] x1.8
(a).

In order to relate this description to the sequence (4.18), consider �rst the ho-

mology group (4.13), HR[I
cusps = Z[P]. This is generated by the images in XG of the

geodesic segments g
0 := ghi; �i, with g ranging over the chosen representatives of

the coset space P.

Following [Mer], we can identify the dual basis Æs of H
cusps
R[I = ZjPj with the

images in XG of the paths g�0, where for a chosen point z0 with 0 < Re(z0) < 1=2

and jz0j > 1 the path �0 is given by the geodesic arcs connecting 1 to z0, z0 to

�z0, and �z0 to 0. These satisfy

[g
0] � [g�0] = 1

[g
0] � [h�0] = 0;

for gG 6= hG, under the intersection pairing (4.14).

The identi�cation of Hcusps, given in terms of generators and relations as above,

with Ker(�R; �I) in the sequence (4.18) is obtained by the identi�cation

fg(0); g(i1)gG 7! g�0;

so that the relations imposed on the generators Æs by the vanishing under �I cor-

repond precisely to the relations Æs � Æ�s (or Æs if s = �s) and the vanishing under

�R gives the other set of relations Æs � Æ�s � Æ�2s (or Æs if s = �s).

We shall use this algebraic formulation in the following, when we relate the group

Hcusps to the non{commutative topology of GnP1(R).

4.4. Pimsner exact sequence. We consider the reduced crossed product C�{

algebra (4.2). We recall the setting of Pimsner [Pim] (cf. [LaSp] for the case of

C(P1(R))o PSL(2;Z)). With the notation introduced above, we consider

� = PSL(2;Z) = Z=2 � Z=3
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acting on a tree T with set of edges T 1 = � and set of vertices T 0 given by the cosets

�=�0 and �=�1, where �0 = Z=2 and �1 = Z=3. This tree T can be realized as a

graph in the 2-dimensional hyperbolic space H, where the vertices are the elliptic

points � � i and � � � and the edges are the geodesic segments � � hi; �i, represented
by bold lines in the �gure, giving rise to the subcomplex (4.12) of the modular

complex.

Associated to this action on a tree, there is a six term exact sequence [Pim]:

K0(C(X̂))
� //

K0(C(X̂)o �0)�K0(C(X̂)o �1)
~� //

K0(C(X̂)o �)

��
K1(C(X̂)o �)

OO

K1(C(X̂)o �0)�K1(C(X̂)o �1)~�

oo
K1(C(X̂))

�
oo

(4:20)

We prove the following result that relates the six term exact sequence (4.20) to

the modular complex.

4.4.1. Theorem. There exists a natural isomorphism of the four terms exact

sequence

0! Ker(�) ,! K1(C(X̂))
��! K1(C(X̂)o �0)�K1(C(X̂)o �1)! Im( ~�)! 0

and the exact sequence (4.18),

0! Hcusps ! H
cusps
R[I ! ZjPI j � ZjPRj ! Z! 0:

These isomorphisms are compatible with the restriction of the group G0 � G. More-

over, the identi�cation Ker(�) �= Hcusps is given via the algebraic formulation of

x4.3.2.
Proof. First recall that we have natural identi�cations

K0(C(P
1(R))) �= Z K1(C(P

1(R))) �= Z;

given, respectively, by the rank of projections and by the winding number of the

determinant of elements in GLn(C(S
1)).

Moreover, for the �nite groups �j , there are canonical isomorphisms,

K0
�j
(X̂) �= K0(C(X̂)o �j)

given by

[E] 7! [�(E)];
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with E a G{vector bundles and �(E) its space of continuous sections. This gives

natural identi�cations

Ki(C(X̂)) �= ZjPj Ki(C(X̂)o Z=2) �= ZjPI j Ki(C(X̂)o Z=3) �= ZjPRj: (4:21)

Thus, we obtain from (4.20) and (4.21)

ZjPj
� // ZjPI j � ZjPRj

~� // K0(C(X̂)o �)

��
K1(C(X̂)o �)

OO

ZjPI j � ZjPRj
~�

oo ZjPj
�

oo

(4:22)

The maps in this sequence are de�ned as in [Pim] x1, and they depend on a

choice of fundamental domain for the action of � on the tree T , which, in our case,

is given by the edge hi; �i in T and the vertices fi; �g.
We can split the six term exact sequence (4.22) as

0! Ker(�) ,! ZjPj
��! ZjPI j � ZjPRj ! Im(~�)! 0 (4:23)

and

0! Ker(�) ,! ZjPj
��! ZjPI j � ZjPRj ! Im( ~�)! 0: (4:24)

With the notation of [Pim] x4, the morphism � (or �) in the Pimsner exact

sequence is induced by the maps

�y : C(X̂)! C(X̂)o �t(y) �y(a) = 
�1yt (a)

and

��y : C(X̂)! C(X̂)o �o(y) ��y(a) = 
�1yo (a):

Here we denote by y the edge hi; �i in the chosen fundamental domain for the action

of � on the tree T , and o(y) = i, and t(y) = � its source and terminus. The groups

�o(y) = Z=2 and �t(y) = Z=3 are the stabilizers of these points. Also, here yo and

yt denote the edges of T with t(yt); o(yo) 2 fi; �g, and 
yt and 
yo are the elements

of � that satisfy 
yty
t = y and 
yoy

o = y, as in [Pim] x1. The element 
yt acts on

C(X̂) as the element � and 
yo acts as the element �.

Thus, the morphism

� : K1(C(X̂))! K1(C(X̂)o Z=2)�K1(C(X̂)o Z=3)
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is precisely the map that sends the generator Æs, identi�ed with the homotopy

class of determinant functions of elements in GLn(C(X̂)) with winding number

one around the circle S1 � fsg and zero around the circles S1 � ftg for t 6= s, to

the element Æ[s]I � Æ[s]R .

We can identify of the maps � in (4.24) and (�I ; �R) of (4.18).

This means that there is a natural identi�cation

Ker(�) �= Hcusps (4:25)

obtained via the algebraic formulation of x4.3.2. In fact, the kernel of � in (4.24) can

be identi�ed with the subgroup of ZjPj of elements
P

asÆs satisfying the relations

as + a�s = 0 (or as = 0 if s = �s) and as + a�s + a�2s = 0 (or as = 0 if s = �s).

The identi�cation (4.25) is compatible with restrictions. In fact, suppose given

another �nite index subgroup G0 of PSL(2;Z), with G0 � G. This gives a branched

cover XG0

��! XG, and a surjection P0
��! P, with P0 = PSL(2;Z)=G0, and a

corresponding map C(X̂)! C(X̂ 0) given by composition with �. Since the action

of � or � on P0 and P commutes with �, the maps �y and ��y are also compatible

with restrictions to G0 � G, and the induced morphism ZjPj
���! ZjP

0

j with

ZjPj

��

��

// ZjPI j � ZjPRj

��

��
ZjP

0

j // ZjP
0

I
j � ZjP

0

R
j

is given by Æs 7! �t2��1(s)Æt, where Æs is the homotopy class of determinant

functions of elements in GLn(C(X̂)) with winding number one around the circle

S1 � fsg, in

K1(C(X̂))

��

� // K1(C(X̂)o Z=2)�K1(C(X̂)o Z=3)

��
K1(C(X̂

0))
� // K1(C(X̂

0)o Z=2)�K1(C(X̂
0)o Z=3)

Thus, the identi�cation (4.25) is compatible with restrictions G0 � G, and the

induced map �� : Hcusps ! Hcusps0 in

0 //
H

cusps

��

��

//
Z

jPj

��

��

� //
Z

jPI j
� Z

jPRj //

��

��

Z
//

��

0

0 //
H

cusps0 //
Z

jP0j
�0 //

Z
jP0

I
j
� Z

jP0
R

j //
Z

// 0
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has the following description in terms of modular symbols:

fg(0); g(i1)gG 7! �t2��1(s)fg0(0); g0(i1)gG0 ;

with gG = s 2 P and g0G0 = t 2 P0. This map is the dual, under the intersection

pairing (4.14), to the map �� : Hcusps0 ! Hcusps de�ned by ghi; �i 7! g0hi; �i with
g0G0 = t 2 P0 and gG = �(t) 2 P.

The sequence (4.23) di�ers from (4.24) by the presence of a torsion term T in

Im(~�). The map �, which is the map induced on K0 by the action of � and �

on X̂, still satis�es Ker(�) �= Hcusps, but with di�erent multiplicities, since the

morphism for the case X̂ = P1(R) is given by

K0(C(P
1(R)))

(2;3)���! K0(C(P
1(R))o Z=2)�K0(C(P

1(R))o Z=3):

The torsion term T in Im(~�) depends on the elliptic elements of G. Namely, we

have

Im(~�) = Z� T �= Z2=Z(`; 1)� T (n1; : : : nk);

where the group G has signature (g;n1; : : : ; nk; q), with g the genus and q the

number of cusps of XG. Here T (n1; : : : nk) is the term computed in [An{De], and

` = l:c:m:(n1; : : : nk).

Thus, from (4.23) and (4.24) we obtain identi�cations

K1(C(X̂)o �) �= Hcusps � Z; (4:26)

K0(C(X̂)o �) �= Hcusps � Z� T ; (4:27)

following the identi�cations of Ker(�), Im( ~�), Ker(�), and Im(~�) in (4.23) and

(4.24).

4.5. Cyclic homology. Another way of relating the modular complex and

homological constructions of non{commutative geometry is via cyclic homology.

We consider the algebraic crossed product of the algebra of smooth functions on

X̂ = P1(R)�P by the group � = PSL(2;Z),

B := C1(X̂)o �:

The Z=2{graded periodic cyclic cohomology PHC�(B) is de�nes as the direct limit
over S : HCn�1(B) ! HCn+1(B), where S is the morphism in Connes' exact
sequence relating Hochschild and cyclic cohomology, [Co] III.1.
. It is proved in
[Nis] that there is a six terms exact sequence, analogous to the Pimsner sequence in
K{theory, for the the periodic cyclic cohomology (or dually for the periodic cyclic
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homology) of the algebraic crossed product by a group acting on a tree. With the

notation A := C1(X̂) we have

PHC0(A)
� // PHC0(Ao �0)� PHC0(Ao �1)

~� // PHC0(Ao �)

��
PHC1(A o �)

OO

PHC1(Ao �0)� PHC1(Ao �1)
~�

oo PHC1(A)
�

oo

(4:28)

Again we can split this six{term exact sequence as

0! Ker(�)! PHC1(A)
�
�! PHC1(Ao Z=2)� PHC1(Ao Z=3)! Im( ~�)! 0

and

0! Ker(�)! PHC0(A)
�
�! PHC0(Ao Z=2)� PHC0(A oZ=3)! Im(~�)! 0:

Argument analogous to the case of K{theory show that we have an identi�cation

of these sequences with

0! Hcusps ! kjPj ! kjPI j � kjPRj ! k! 0;

where we consider homology with coeÆcients in a �eld k = R or C, and a corre-

sponding identi�cation

PHC0(B) �= PHC1(B) �= Hcusps � k (4:29)

The relation between the modular complex and the periodic cyclic homology of

B can be derived also via the approach of [BN].

4.5.1. Groupoids and cyclic homology. We introduce the groupoid G� for

the action of � on X̂. This is a Hausdor� locally compact �etale groupoid where the

morphisms are

G� = X̂ � �;

the objects are G0� = X̂, and the source and target maps o; t : G� ! G0� are given

by

o((x; s); 
) = (x; s) t((x; s); 
) = 
(x; s);

with composition

((x; s); 
)(
(x; s); 
0) = ((x; s); 
0
):

The C�{algebra C1c (G�) of this groupoid is just the crossed product.
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It is proved in [BN] that the periodic cyclic homology PHC�(C
1
c (G�)) is ob-

tained as a sum of components associated to the torsion conjugacy classes in �.

With the notation of [BN] Corollary 5.9, these components are given by

eO

PHCn(C

1
c (G�)) = Hn+N+2Z(X̂


 �� E�); (4:30)

where X̂
 is the �xed point set of 
 acting on X̂, N = dim X̂
, and X̂
 �� E� is

the homotopy quotient.

In our case, the only component that contributes in (4.30) is the one correspond-

ing to the identity, and, since we consider homology with coeÆcients in the �eld k,

we can replace the homotopy quotient by �n(X̂�H), with H the hyperbolic plane.

Using the cell decomposition for P�H given by the modular complex, compatible

with the action of �, it is possible to de�ne a cell complex computing the homology

of the quotient �n(X̂ �H), which recovers the identi�cation (4.29) via (4.30).

4.6. Non{commutative geometry and the shift operator. There is an-

other possible way of constructing a \non{commutative space" representing the

action of a �nite index subgroup G � PGL(2;Z) on the projective line at in�nity

P1(R), using the shift operator T acting on [0; 1]�P,

T : (x; t) 7!
�
1

x
�
�
1

x

�
;

��[1=x] 1

1 0

�
(t)

�
; (4:31);

as introduced in x0.1.1. In fact, the set X = [0; 1]�Pmeets every orbit of the action

of � on X̂ = P1(R)�P, and two points (x; s) and (y; u) in X are equivalent under

the action of � i� there exist positive integers m;n such that Tm(x; s) = Tn(y; u).

Thus, it makes sense to consider the action of T on X as a way of de�ning a non{

commutative analog of the quotient X̂=�. The shift T is locally invertible, and it

determines a singly generated pseudogroup in the sense of [Ren], and it de�nes on

X = [0; 1]�P an essentially free singly generated dynamical system, in the sense of

De�nitions 2.3 and 2.5 of [Ren]. There is an associated semidirect product groupoid

with arrows

G(X;T ) = f((x; t);m� n; (y; s))jTm(x; t) = Tn(y; s)g

and objects

G(X;T )0 = X �= f((x; t); 0; (x; t)g � G(X;T ):
The source and range maps and the multiplication are given by

p((x; t);m� n; (y; s)) = (x; t) q((x; t);m� n; (y; s)) = (y; s)

((x; t);m� n; (y; s)) � ((x0; t0);m0 � n0; (y0; s0)) = ((x; t);m+m0 � (n+ n0); (y0; s0)):
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This is a Hausdor� locally compact �etale groupoid, with the topology generated by

the basis of open sets

G(T )U;V = f((x; t);m� n; (y; s))j (x; t) 2 U; (y; t) 2 V; Tm(x; t) = Tn(y; s)g;

with U and V open sets where Tm and Tn respectively are invertible. It is possible

to construct a corresponding C�{algebra C�(G(X;T )), which we may also regard

as a non{commutative version of the \boundary" X̂=�.

It is also interesting to consider the double{sided shift operator

~T : [0; 1]� [0; 1]�P! [0; 1]� [0; 1]�P

~T : (x; y; t) 7!
 
1

x
�
�
1

x

�
;

1

y +
�
1
x

� ;��[1=x] 1

1 0

�
(t)

!
; (4:32):

The shift (4.32) is related to the Poincar�e return map of the geodesic 
ow on

the modular curve XG, and the one{sided shift (4.31) is the restriction to the

expanding directions (cf. [ChMay] x3.3). The double{sided shift (4.32) is invertible

and it de�nes by composition an automorphism of the algebra C(Ŷ ), with Ŷ =

[0; 1]� [0; 1]�P. The crossed product C(Ŷ )o ~T Z gives a natural way of replacing

the set of equivalence classes under the action of T by a non{commutative space.

The invariants of the non{commutative geometry of C(Ŷ )o ~T Z should therefore

contain some information on the geodesic 
ow on the compacti�ed modular curve

XG. For instance the Pimsner{Voiculescu exact sequence

0! K1(C(Ŷ )o ~T Z)! K0(C(Ŷ ))
I� ~T����! K0(C(Ŷ ))! K0(C(Ŷ )o ~T Z)! 0

should be related to the properties of the action of Red on the coset space P, hence

to mixing properties of the geodesic 
ow.

4.6.1. Further remarks. There are other possible ways of doing non{commutative

geometry at the boundary of the modular curves. For instance, if we consider the

disconnection of P1(R) at all the �xed points of the parabolic elements of G, as

de�ned in x2 of [Spi], we obtain a totally disconnected compact Hausdor� space �G.

By the results of [Spi], the crossed product C�{algebra C(�G)oG is isomorphic to

a Cuntz{Krieger algebra OA, where the matrix A of zeroes and ones corresponds

to a subshift of �nite type associated to a choice of the fundamental domain for

the group G as in [BS]. The K0 and K1 of this C�{algebra can be computed re-

spectively as the cokernel and the kernel of (I � At). These invariants should also

contain some information on the boundary of the modular curves. Using this same

technique we can construct a Cuntz{Krieger algebra OA with the Markov partition
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determined by the action of PSL(2;Z) on H�P with fundamental domain E�P,
with E = fi; �; 1 + i; i1g. By [Spi], this determines a disconnection � of P1(R)

along P1(Q), such that the algebra C(��P)oPSL(2;Z) contain an image of OA.

Similarly, if we consider the disconnection � of [0; 1] at all the rational points and

the compact totally disconnected space X 0 = � � P with the action of the shift

operator T , we obtain a Markov shift as in x4 of [Ren], such that the C�{algebra

C�(G(X 0; T )) is a generalized Cuntz{Krieger algebra for in�nite matrices, in the

sense of [EL], with partial isometries S = f(x; 1; Tx); x 2 Ug, with U the sets of

the Markov partition. Again, it should be possible to relate in interesting ways the

calculation of the K{theory for this algebra, according to the techniques of [EL],

to the dynamical properties of the shift operator T and to the boundary of the

modular curves.
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